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Introduction



Classical XY model
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Introduction: classical XY model

• classical XY model (or O(2) vector model) one of the simplest

models with continuous symmetry

• various applications in studies related to superfluid helium,

thin-films, superconductivity, liquid crystals, dielectric plasma

• Mermin-Wagner effect: no continuous symmetry breaking in d = 2

• XY model related to integer valued GFF
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Introduction: Berezinskii-Kosterlitz-Thouless transitions

• BKT transition: between the phases with exponentially and

power-law decaying correlation functions

• phases linked to delocalization of their dual integer

(Fröhlich-Spencer (1981), Kharash-Peled (2017), van

Engelenburg-Lis (2021), Aizenman-Harel-Peled-Shapiro (2021))

• statistical reconstruction of DGFF from F(DGFF) undergoes BKT

transition (Garban-Sepulveda (2020))
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Introduction: adding frozen-in disorder

• frozen-in disorder can have the potential to drastically alter some

physically interesting properties of homogeneous media

• random field Ising model in d ≥ 3: first-order phase transition

persists for weak disorder (Bricmont-Kupiainen (1987), Imry-Ma

(1975))

• rounding effect of disorder for d = 2 for the RFIM (Aizenman-Wehr

(1990)), unique Gibbs state for almost all realizations of disorder

• no infinite-volume gradient measure under weak disorder (van

Enter-Külske (2006), Bovier-Külske (1995), Külske (1998))
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Introduction: XY with random field

• since ’80ties discussion about ordering or not

• Dotsenko-Feigelman (’81+’82) gave approximative arguments for no

order in d = 1, 2

• mean-field arguments and simulations suggesting order

(Wehr-Niederberger-Sanchez-Palencia-Lewenstein (2006))

• Gibbs-non Gibbs transitions (van Enter-R. (2009))

• order for

• Kac potentials (Crawford (2011) [2])

• order for nearest-neighbour potential in d = 3 (Crawford (2014) [1])

• question: what happens for d = 2?
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The model



The model

• spin configuration σ = (σx)x∈Z2 , σx ∈ S1

• random field α = (αx(ω))x∈Z2 , i.i.d. N(0, 1) random variables,

ω ∈ Ω

• (random) Hamiltonian for Λ ⊂ Z2:

−HωΛ (σ|σ0) = −1

2

∑
x∼y ;x,y∈Λ

(σx − σy )2 + ε
∑
x∈Λ

αx(ω)e2 · σx

where σ0 is the boundary condition, ε > 0 and

e1 = (1, 0), e2 = (0, 1)

• Gibbs measure

µω,σ
0

Λ (A) = Z−1
Λ

∫
A

∏
x∈Λ

ν(dσx) exp
(
−βHωΛ (σ|σ0)

)
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The model: some notation

• ΛN ⊂ Z2, |ΛN | = N2, L = 2k for some k ∈ N and define box (block)

QL(z), z ∈ LZ2 by

QL(z) = z + {0, 1, · · · , L− 1}2

• block average magnetization

Mz =
1

|QL|
∑

x∈QL(z)

σx

• for ω ∈ Ω define

Dω = {union of regions for which there are too many small or large

boxes with ”large randomness”}
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Main result

Theorem (Crawford, R. 2021 [3])
Let ξ ∈ (0, 1) be sufficiently small. ∃ ε0(ξ) > 0 so that for ε < ε0

and for almost all ω ∃ Dω, N0(ω) and δ > 0 such that

|Dω ∩ ΛN | ≤ Ce−c| log(ε)|δ |ΛN | for all N ≥ N0(ω).

Moreover ∃β0(ε) > 0 so that if β > β0 then for each z ∈ ΛN with

QL(z) ∩ Dω = ∅, we have∥∥∥Eµω,e1
ΛN

(Mz)− e1

∥∥∥
2
≤ ξ.
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Prelude: spin-flop transitions



Prelude: spin-flop transitions

• van Enter and R. (2008) [4] studied Gibbs-non-Gibbs phase

transitions for XY model on Z2

• (formal) Hamiltonian of the double-layer system w.r.t specific

configuration:

−βHτ
spec

(θ) = βJ
∑
x∼y

cos(θx − θy ) +
∑
x

ht(−1)|x| sin(θx)

• competition: interaction term wants angles close, external field

angles close to ±e2

• induced discrete symmetry and ordering perpendicular to field

around ±e1 (→ spin-flop transitions)
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Prelude: spin-flop transitions
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Prelude: low-energy clusters percolate

a
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Prelude: low-energy clusters percolate

Ideas of the proof:

• identify each point a in the dual lattice (Z2)∗ with surrounding cube

in Z2

• write: βHτ spec

(θ) =
∑

a∈(Z2)∗ Φβ(a, θ)

• for fixed δ > 0 and configuration θ, look at the graph with vertex set

Vδ = {a ∈ (Z2)∗ : Φβ(a, θ) ≤ (inf Φβ) + δ}

• let Cδ be the ”low-energy percolation cluster” on the sites of Gδ

• with probability going to 1, ∃!{|Cδ| =∞} for β > βc for at least

one t.i. Gibbs measure

• discrete symmetry breaking via splitting {∃!|Cδ| =∞} into disjoint

events
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Ideas of the proof



Ideas of the proof: What happens in small boxes?

Let us first look at small boxes Q`:

• Hamiltonian with free boundary condition:

−HQ`(σ) = −1

2

∑
x∼y ;x,y∈Q`

(σx − σy )2 + ε
∑
x∈Q`

α̂x(ω)e2 · σx

=
∑

x∼y ;x,y∈Q`

(cos(θx − θy )− 1) + ε
∑
x∈Q`

α̂x(ω) sin(θx)

with α̂x = αx − 1
|Q`|

∑
z∈Q` αz

• optimize for θx = Ψ + θ̂x :

−HQ`(σ) ≈ −1

2

∑
x∼y ;x,y∈Q`

(θ̂x−θ̂y )2+ε cos(Ψ)
∑
x∈Q`

α̂x(ω)θ̂x+O(ε|
∑
x∈Q`

αx |)
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Ideas of the proof: ground states

• the optimal deviation is

θ̂x = cos(Ψ)ε(−∆−1)α̂x = cos(Ψ)gN
x

• this leads to

sup
(θx )x∈Q`≈(Ψ)

−HQ`(θ) =
ε2

2
cos2(Ψ)

∑
x∈Q`

α̂x(−∆−1)α̂x+O

(
ε|
∑
x∈Q`

αx |

)

and Ψ ∈ {0, π}
• the first term is of order ε2`2 log(`) and the error term typically ε`

• energetic costly if

EQ`(σ) =
1

2

∑
x∼y ;x,y∈Q`

(σx − σy )2 ≥ Cε2 log(`)`2
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Ideas of the proof: construct contours

• artificial microscopic surface tension by considering two scales ` and

L, such that `� ”interaction length” � L,

(Presutti, Zahradnik)

• the larger L, the worse GPS bounds

• fundamental length scale: ε−1| log(ε)|−1/2 (width of 0↔ π)

• choose ` ∼ ε−1| log(ε)|−1/2−1/64 and L ∼ ε−1| log(ε)|−1/2+1/64

• contours will be defined relative to L

• roughly a box Q` will behave bad if either the Dirichlet energy is too

large or the average configuration is far from ±e1

• a contour Γ is a maximally connected union of boxes QL so that

within 2L ∃ Q` which is bad
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Ideas of the proof: constructing contours

z′

zQL(z)

Ql(z
′)

ψ0
z = 1

ψ0
z = 0

ψ0
z = 1 if in an enlarged neighbourhood the Dirichlet energy is small

EQ`(σ) ≤ Cε2| log(ε)|1+χ|Q`|
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Ideas of the proof: constructing contours

z′

zQL(z)

Ql(z
′)

ψ1
z = 1

ψ1
z = 0

ψ1
z = −1

ψ1
z = ±1 if in an enlarged neighbourhood the average orientation is close

to ±e1
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Ideas of the proof: constructing contours

L

L

Ψz = ψ0
zψ

1
z = 1 Ψz = ψ0

zψ
1
z = −1 Ψz = ψ0

zψ
1
z = 0

contour Γ, union of squares on scale L separates Ψ = 1 from Ψ = −1
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Ideas of the proof: construct new configuration σ from σ

• regular regions: if the thickened region δ(R) has not too many boxes

with randomness which behaves atypical (dirty boxes QL0 )

• show that

P(Γ is not regular)

≤ C exp
(
−| log(ε)|δ]|boxes on scale L0 which cover Γ|

)
• on regular contours Γ, construct σ from σ:

• on ΛN \ δ(Γ) set σ = σ or the reflection of σ on e2

• on δ(Γ) do surgery and interpolate smoothly to σ

• regular contours can contain dirty boxes but energy contribution

small

• Peierls argument: large contours are unlikely and surgery provides

energy gain
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Ideas of the proof: bulk of a contour

Γ

δL(Γ)

dirty small box

clean small box

• on δL(Γ) \ Γ the cubes Q` are good and Ψ of constant sign

• for dirty boxes set σx = e1 and for clean boxes

σx = (cos(gλ,Dx,Q`
), sin(gλ,Dx,Q`

)) (replace gN by gλ,D)

• energy gain: −HδL(Γ)(σ) +HδL(Γ)(σ) ≥ Cε2| log(ε)|1−δ′ |Γ|
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Ideas of the proof: surgery on the boundary of a contour

Γ

δL(Γ)
Collar of Γ C+

C−

M+

M−

middle strip in
the collar
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Ideas of the proof: surgery on the boundary of a contour

Modification 1:

• there exists a thickened region around M± with constant sign

sign(e1 · σx) and such that σ is close to ±e1 on the outer boundary

• flip configuration on M± if it has sign ∓
• energy gain: −HΛN

(σ(1)) ≥ −HΛN
(σ)
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Ideas of the proof: surgery on the boundary of a contour

Modification 2:

Γ

δL(Γ)

dirty small box

clean small box

• σ
(2)
x = σ

(1)
x outside thickened region around dirty boxes

• σ
(2)
x = gradient descent in blue region to σ

(1)
x

• σ
(2)
x = σ

(1)
x otherwise

• energy gain: | − HΛN
(σ(2)|e1) +HΛN

(σ(1)|e1)| ≤ ε2| log(ε)|δ′′ |Γ|
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Ideas of the proof: approximate Hamiltonian

• replace gN
x by the massive field

gλ,Dx,Q = ε(−∆D
Q + λ)−1αx

• perform the c.o.v. φx = θx − cos(θx)gλ,Dx,Q and obtain

−KR(φ|τ) =
∑
x∼y

cos(φx − φy )− 1 +
1

4

∑
x

mx cos2(φx)

and mx =
∑

y∼x(∇eg
λ,D
Q )2 ∼ ε2| log(ε)|

• then we have

−HR(φ|τ) ≈ −KR(φ|τ)

• error small if ER ≤ Cε2| log(ε)||R| and αx is typical inside R

• need energy cost of average angle to be of same order as before,

choose λ = ε2| log(ε)|1+η
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Ideas of the proof: ground states for auxiliary Hamiltonian

• think of maximizers of −K that satisfy

−
∑
y∼x

Cxy (φx − φy ) + Vxφx = 0

with Cxy =
sin(φx−φy )
φx−φy

and Vx = − sin(φx ) cos(φx )mx

2φx

• we can write the above equation as

(−LC + V )φ = 0

and interpret it as discrete elliptic PDE with random mass

• prove that maximizer is unique and uniformly close to ±e1 for points

inside boundary layer O(L)
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Ideas of the proof: surgery on the boundary of a contour

Modification 3:

• construct σ(3) on M± \ D± by replacing σ(2) with optimizer of −K
• angle in bulk configuration is inversion of c.o.v. of minimizers

• energy gain: | − HΛN
(σ(3)|e1) +HΛN

(σ(2)|e1)| ≤ Cε2| log(ε)|δ′′ |Γ|

Modification 4:

match σ(3) with σ inside the ”middle strip”, by forcing σ(3) towards ±e1

Glue together: flip interior components of Γ
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Ideas of the proof: Peierls argument

• after all modifications we obtain

−HΛN
(S(σ)|e1) +HΛN

(σ|e1) ≥ Cε2| log(ε)|1−δ

• then

µω,e1

ΛN
(Ψx(σ) 6= 1)

≤
∑

Γ

1(Γregular)
∑

(sp(Γ),Ψ(Γ))

µω,e1

ΛN
(Ψx(σ) 6= 1, Γ is largest surr. QL)

≤ C
∞∑
r=1

C r
1C

rL2/`2

2 e−c(ε)β < e−
1
2 c(ε)β for β � 1

where C r
1 is the upper bound on ] connected sets Γ surrounding QL

with r boxes of size L2 and C
|Γ|/`2

2 is ] of Ψ(Γ) for given δ(Γ)
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Discussion

• skeleton of contour argument robust

• implementation of modifications differs from d = 3 (patching of

almost ground states)

• random field behaves worse in d = 2, new bounds were needed

• possible extensions are for example considering general boundary

conditions or O(N) spins

• interpretation in terms of connections to IVGFF?
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Thank you for your attention!
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