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Introduction: classical XY model

e classical XY model (or O(2) vector model) one of the simplest
models with continuous symmetry

e various applications in studies related to superfluid helium,
thin-films, superconductivity, liquid crystals, dielectric plasma

e Mermin-Wagner effect: no continuous symmetry breaking in d = 2

e XY model related to integer valued GFF



Introduction: Berezinskii-Kosterlitz- Thouless transitions

e BKT transition: between the phases with exponentially and
power-law decaying correlation functions

e phases linked to delocalization of their dual integer
(Frohlich-Spencer (1981), Kharash-Peled (2017), van
Engelenburg-Lis (2021), Aizenman-Harel-Peled-Shapiro (2021))

e statistical reconstruction of DGFF from F(DGFF) undergoes BKT
transition (Garban-Sepulveda (2020))



Introduction: adding frozen-in disorder

e frozen-in disorder can have the potential to drastically alter some
physically interesting properties of homogeneous media

e random field Ising model in d > 3: first-order phase transition
persists for weak disorder (Bricmont-Kupiainen (1987), Imry-Ma
(1975))

e rounding effect of disorder for d = 2 for the RFIM (Aizenman-Wehr
(1990)), unique Gibbs state for almost all realizations of disorder

e no infinite-volume gradient measure under weak disorder (van
Enter-Kiilske (2006), Bovier-Kiilske (1995), Kiilske (1998))



Introduction: XY with random field

e since '80ties discussion about ordering or not

e Dotsenko-Feigelman ('81+4'82) gave approximative arguments for no
orderind =1,2

e mean-field arguments and simulations suggesting order
(Wehr-Niederberger-Sanchez-Palencia-Lewenstein (2006))

e Gibbs-non Gibbs transitions (van Enter-R. (2009))

e order for

e Kac potentials (Crawford (2011) [2])
e order for nearest-neighbour potential in d = 3 (Crawford (2014) [1])

e question: what happens for d = 27
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The model

e spin configuration o = (0, )ez2, 0x € St

e random field a = (ax(w))xezz, i-i.d. N(0,1) random variables,
we

e (random) Hamiltonian for A C Z2:

Z (ox — (Ty)2 + ez ax(w)ex - o

X~ yix,yEN XEN

1
—HK(UWO) = )

where ¢¥ is the boundary condition, ¢ > 0 and
e =(1,0),e, =(0,1)
e Gibbs measure

1 (A) = Z3! /A [T #(do) exp (— 85 (o10%))

xXEN



The model: some notation

o Ay C Z2, |An| = N2, L =2k for some k € N and define box (block)
Qu(z), z € LZ? by

Qu(z)=z+1{0,1,---,L—1}?

e block average magnetization

1
M, = — E Oy
|Qc|
xEQL(2)

o for w € Q define
D,, = {union of regions for which there are too many small or large
boxes with "large randomness” }



Main result



Main result

Theorem (Crawford, R. 2021 [3])
Let & € (0,1) be sufficiently small. 3 eo(§) > 0 so that for e < €
and for almost all w 3 D, No(w) and 6 > 0 such that

D, N Ay| < Ce 8O |Ay] for all N > No(w).

Moreover 36y(€) > 0 so that if 5 > [y then for each z € Ay with
QuL(z)ND, =0, we have

oo <




Prelude: spin-flop transitions



Prelude: spin-flop transitions

e van Enter and R. (2008) [4] studied Gibbs-non-Gibbs phase
transitions for XY model on Z?2

e (formal) Hamiltonian of the double-layer system w.r.t specific
configuration:

—BHT(6) ﬁJZcosH -4, +th 1)*l'sin(6,)
X~y

e competition: interaction term wants angles close, external field
angles close to +e,

e induced discrete symmetry and ordering perpendicular to field
around +e; (— spin-flop transitions)

10
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Prelude: low-energy clusters percolate

Ideas of the proof:
e identify each point a in the dual lattice (Z?)* with surrounding cube
in Z2
o write: BH™(0) = 3 e (2 Ps(a,0)
e for fixed § > 0 and configuration 6, look at the graph with vertex set

Vs = {a € (Z?)* : ®5(a,0) < (inf dg) + 6}

e let Cs be the "low-energy percolation cluster” on the sites of Gy

e with probability going to 1, 3!/{|Cs| = oo} for 5 > [ for at least
one t.i. Gibbs measure

e discrete symmetry breaking via splitting {3!|Cs| = oo} into disjoint
events

13



Ideas of the proof




Ideas of the proof: What happens in small boxes?

Let us first look at small boxes Qy:

e Hamiltonian with free boundary condition:

Ho()=—5 X (ol re Y hulw)ero

x~yix,y € Qe XEQy
= Z (cos(0x —0,) — 1) +eZax )sin(6y)
X~yix,yEQp xXEQe

with &y = ay — \Tlel ZzeQe ay
e optimize for 6, =V + GAX:

Hoo)m -2 S (b, recos(W) Y Gu(@)itO(e] 3 anl)
2

X~yix,y € Qe xEQy xXEQy

14



Ideas of the proof: ground states

e the optimal deviation is
0, = cos(V)e(—AY)a, = cos(W)g

e this leads to

sup  —He,(0) = —cos (V) Z G (=A™ +0 <e| Z ax|>

(GX)XEng(W) XEQy XEQp

and W € {0, 7}

e the first term is of order €2(?

log(¢) and the error term typically e/

e energetic costly if

falo)=3 Y (0x—0,7 > Celog(t)f?

x~yix,y € Qe

15



Ideas of the proof: construct contours

e artificial microscopic surface tension by considering two scales ¢ and
L, such that ¢ < "interaction length” < L,
(Presutti, Zahradnik)

e the larger L, the worse GPS bounds

e fundamental length scale: ¢~ !|log(e)|~%/? (width of 0 <+ )

e choose £ ~ e 1|log(e)|/271/%* and L ~ ¢~!| log(e)|~1/2+1/04
e contours will be defined relative to L

e roughly a box @, will behave bad if either the Dirichlet energy is too
large or the average configuration is far from +¢e;

e a contour I is a maximally connected union of boxes Q; so that
within 2L 3 Q, which is bad

16



Ideas of the proof: constructing contours

P =1

Qu)f > -0

% = 1 if in an enlarged neighbourhood the Dirichlet energy is small
£q,(0) < Ce?| log(€)["X| Q|
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Ideas of the proof: constructing contours

Qu(2')

¥l = £1 if in an enlarged neighbourhood the average orientation is close

to +e;
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Ideas of the proof: constructing contours

L

[ |
. =ylel=1 T, =yl =1 T, =9y, =0

contour [, union of squares on scale L separates W =1 from ¥ = —1
19



Ideas of the proof: construct new configuration o from o

e regular regions: if the thickened region §(R) has not too many boxes
with randomness which behaves atypical (dirty boxes Qy,)

e show that

P(T is not regular)
< Cexp (-] log(€)|°#|boxes on scale Ly which cover r)

e on regular contours [, construct & from o

e on Ay \ (') set & = o or the reflection of o on &
e on §(I") do surgery and interpolate smoothly to o

e regular contours can contain dirty boxes but energy contribution
small

e Peierls argument: large contours are unlikely and surgery provides
energy gain

20



Ideas of the proof: bulk of a contour

op(T)

HEEEENEENEEEENEENENNEEEEEEENEEEEEEEEEEEEEE
R
um
um
dirty small box
um
um

clean small box

e on 6,(I) \ T the cubes @ are good and W of constant sign
e for dirty boxes set 7, = e; and for clean boxes
7y = (cos(g,g,):sin(g2g,)) (replace gV by g*P)
o energy gain: —H,(r)(7) + Hs,(r)(0) = Ce?|log(e)*~%'|T]|
21



Ideas of the proof: surgery on the boundary of a contour

Collar of T C*

M

middle strip in

the collar
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Ideas of the proof: surgery on the boundary of a contour

Modification 1:

e there exists a thickened region around M= with constant sign
sign(e; - 0x) and such that o is close to +e; on the outer boundary

e flip configuration on M* if it has sign F
o energy gain: —Hp,(0M) > —Hya,(0)
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Ideas of the proof: surgery on the boundary of a contour

Modification 2:

dirty small box

L1}
[ ] ]
clean small box

() (1)

e 0,/ = o)’ outside thickened region around dirty boxes
° g)(f) = gradient descent in blue region to a)(})
o 7P = oM otherwise

X X

o energy gain: | — Ha, (0@ ]er) + Hay(0W]e)| < €/ log(e)|*" ]
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Ideas of the proof: approximate Hamiltonian

e replace gV by the massive field
AD _
8x.Q = 6(_A8 +A)71
e perform the c.o.v. ¢y = 60, — cos(9x)gx’\7’(§J and obtain

—Kr(g|T) = Zcos —¢y)— 1+ % Z m, cos?(¢x)

X~y

and my =3 (Vegy'®)? ~ €| log(e)|
e then we have
—Hr(d|7) = —Kr(d|7)
e error small if Eg < Ce?|log(e)||R| and a, is typical inside R
e need energy cost of average angle to be of same order as before,

choose \ = €2| log(e€)[**+"
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Ideas of the proof: ground states for auxiliary Hamiltonian

e think of maximizers of —K that satisfy

— Y " Co¢x — b)) + Vi =0

y~x
. __ sin(px—gy) _ sin(¢x) cos(px) my
with ny = W and VX = 2
e we can write the above equation as

(~Lc+V)p=0

and interpret it as discrete elliptic PDE with random mass

e prove that maximizer is unique and uniformly close to +e; for points
inside boundary layer O(L)
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Ideas of the proof: surgery on the boundary of a contour

Modification 3:

e construct 03 on M* \ D* by replacing o(® with optimizer of —K
e angle in bulk configuration is inversion of c.o.v. of minimizers

o energy gain: | — Ha, (0]er) + Ha, (0 ]er)] < Ce2|log()|*"IT|

Modification 4:
match ¢®) with @ inside the "middle strip”, by forcing () towards +e;

Glue together: flip interior components of I

27



Ideas of the proof: Peierls argument

e after all modifications we obtain

~Han(S(o)ler) + Hay(oler) > Ce?|log(e)[*~°

< Z 1(Tregular) Z s (Wx(o) # 1,T is largest surr. Q)
r (sp(M),w(I)

o0
<C C{Cerz/Zze_C(e)ﬁ <e 28 for B> 1
r=1

where C{ is the upper bound on # connected sets I surrounding Q.
2
with r boxes of size L2 and Czlrl/e is #f of W(I) for given 6(I)
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Discussion

e skeleton of contour argument robust

e implementation of modifications differs from d = 3 (patching of
almost ground states)

e random field behaves worse in d = 2, new bounds were needed

e possible extensions are for example considering general boundary
conditions or O(N) spins

e interpretation in terms of connections to IVGFF?
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Thank you for your attention!
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