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1. Gibbs processes

Setting

1 (X,X ) is a Polish space equipped with a locally finite
measure λ.

2 N(X) ≡ N is the set of all locally finite counting measures
on X equipped with the standard σ-field N (X) ≡ N .

3 The restriction of a measure ν on X to a set B ∈ X is
denoted by νB := ν(B ∩ ·).

4 A point process is a random element ξ of N(X) defined
over a fixed probability space (Ω,F ,P).

5 For a locally finite measure ν on X let Πν denote the
distribution of a Poisson process with intensity measure ν.
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Setting

κ : X× N→ [0,∞) is a measurable function.

Definition

A point process ξ on X is a Gibbs process with Papangelou
intensity κ if

E
∫

f (x , ξ) ξ(dx) = E
∫

f (x , ξ + δx )κ(x , ξ)λ(dx),

for each measurable f : X× N→ [0,∞).
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Definition

For m ∈ N define κm : N× Xm by

κm(x1, . . . , xm, ξ)

:= κ(x1, ξ)κ(x2, ξ + δx1) · · ·κ(xm, ξ + δx1 + · · ·+ δxm−1).

Theorem

Suppose that ξ is a Gibbs process with Papangelou intensity κ
and let m ∈ N. Then

E
∫

f (x, ξ) ξ(m)(dx)

= E
∫

f (x, ξ + δx1 + · · ·+ δxm )κm(x, ξ)λm(dx),

for each measurable f : Xm × N→ [0,∞). Here ξ(m) is the m-th
factorial measure of ξ.
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Definition

Let ξ be a Gibbs process with PI κ. Let m ∈ N. Then

ρm(x1, . . . , xm) := Eκm(x1, . . . , xm, ξ)

is the m-th correlation function of ξ.
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Definition

The Hamiltonian H : N× N→ (−∞,∞] is defined by

H(ψ, µ) :=


0, if ψ(X) = 0,
− log κm(x1, · · · , xm, µ), if ψ = δx1 + · · ·+ δxm ,

∞, if ψ(X) =∞.

For B ∈ Xb the partition function ZB : N→ (0,∞] is defined by

ZB(µ) :=

∫
e−H(ψ,µ) ΠλB (dψ), µ ∈ N.
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Theorem (Nguyen, Zessin ’79, Matthes, Warmuth, Mecke ’79)

Suppose that ξ is a Gibbs process with Papangelou intensity κ.
Let B ∈ Xb. Then

P(ZB(ξBc ) <∞) = 1

and, for each measurable f : N→ [0,∞), we have the
DLR-equations

E[f (ξB) | ξBc ] = ZB(ξBc )−1
∫

f (ψ)e−H(ψ,ξBc ) ΠλB (dψ).
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2. Interaction potentials

Setting

U : N<∞ → (−∞,∞] is a measurable function with U(0) = 0,
where N<∞ := {ψ ∈ N : ψ(X) <∞}.

Definition

Let µ ∈ N and B ∈ Xb. Define

NB(µ) := {ψ ∈ N<∞ : ψ ≤ µ, ψ(B) > 0},

EB(µ) :=
∑

ψ∈NB(µ)

U(ψ),

whenever the sum of the associated negative parts is finite.
Otherwise set EB(µ) := −∞.
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Definition

For a given B ∈ Xb define the partition function ZB : N→ [0,∞]
by

ZB(µ) :=

∫
e−EB(ψ+µ) ΠλB (dψ), µ ∈ N.

Definition

A Gibbs process with interaction potential U and reference
measure λ is a point process ξ satisfying, for each B ∈ Xb,

P(ZB(ξBc ) <∞) = 1

and

P(ξB ∈ · | ξBc ) = ZB(ξBc )−1
∫

1{ψ ∈ ·}e−EB(ψ+ξBc ) ΠλB (dψ).

Günter Last Disagreement coupling of Gibbs processes



Theorem (Nguyen, Zessin ’79)

Suppose that ξ is a Gibbs process with interaction potential U.
Then ξ is a Gibbs process with Papangelou intensity κ, given by

κ(x , µ) = exp[−E{x}(µ+ δx )], (µ, x) ∈ N× X.

Example

Assume that U is a pair potential, that is U(ψ) = 0 if ψ(X) 6= 2.
Then

κ(µ, x) = exp

[
−
∫

U(δx + δy )µ(dy)

]
, (µ, x) ∈ N× X.
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3. Poisson thinning

Setting

1 λ is a diffuse and finite measure on X.
2 κ : X× N→ R+ is a measurable function satisfying for all

(x , y , µ) ∈ Rd × Rd × N the cocycle condition

κ(x , µ)κ(y , µ+ δx ) = κ(y , µ)κ(x , µ+ δy ).

3 Write x ≤ y if φ(x) ≤ φ(y), where φ : X→ I is a Borel
isomorphism between X and a Borel subset I of R.

4 For B ∈ X let ZB : N→ (0,∞] be the partition function
defined w.r.t. κ and Πλ.
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Definition

Define

p(x , ψ) := κ(x , ψ(−∞,x))
Z(x ,∞)(ψ(−∞,x) + δx )

Z(x ,∞)(ψ(−∞,x))
, (x , ψ) ∈ X× N.

Definition

κ is said to be stable if there exists a measurable α : X→ [0,∞)
such that

∫
α dλ <∞ and

κ(x , ψ) ≤ α(x), (x , ψ) ∈ X× N.

Lemma

If κ is stable, then p(x , ψ) ≤ α(x) for all (x , ψ) ∈ X× N.
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Theorem (Hofer-Temmel, Houdebert ’19, L. and Otto ’21)

Assume that κ is stable. Then the probability measure∫ ∑
ψ≤ϕ

1{ψ ∈ ·}
∏
x∈ψ

α(x)−1p(x , ψ)

∏
x∈µ−ψ

(
1− α(x)−1p(x , ψ)

)
Παµ(dϕ)

is the distribution of a Gibbs process with PI κ.
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4. Poisson embedding

Setting

1 λ is a diffuse and finite measure on X.
2 κ : X× N→ R+ satisfies the cocycle condition.
3 Φ is a Poisson process on X× R+ with intensity measure
λ⊗ Leb.

Goal

Represent a Gibbs process with PI κ as T (Φ) for a suitable
(embedding) mapping T .
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Algorithm

1 Let N∗ be a suitable space of simple counting measures ψ
on X× R+ such that P(Φ ∈ N∗) = 1.

2 For ψ ∈ N∗ set

x1(ψ) :=

min{x ∈ X : there ex. t ≥ 0 s. t. (x , t) ∈ ψ and t ≤ p(x ,0)}.

3 Define inductively,

xn+1(ψ) := min{x > xn(ψ) : there ex. t ≥ 0 s.t. (x , t) ∈ ψ
and t ≤ p(x , δx1(ψ) + · · ·+ δxn(ψ))}.

4 Set τ(ψ) := sup{n ≥ 1 : xn(ψ) ∈ X} and

T (ψ) := 1{τ(ψ) <∞}
τ(ψ)∑
n=1

δxn(ψ).
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Theorem (L. and Otto ’21)

Assume that ZB(ψBc ) <∞ holds for Πλ-a.e. ψ simultaneously
for all B ∈ X . Then T (Φ) is a Gibbs process with PI κ.
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5. Disagreement coupling

Remark

Let ξ be a Gibbs process with PI κ and let W ⊂ X be a
bounded Borel set. Let ψ ∈ N and define

κψ(x , µ) := κ(x , ψ + µ), (x , µ) ∈ X× N.

Let κB,ψ denote the restriction of κψ to B × N(W ). The
conditional distribution P(ξW ∈ · | ξW c ) is almost surely a Gibbs
process with PI κW ,ξWc .
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Setting

λ is diffuse and κ is a PI bounded by some α ≥ 0.
∼ is a symmetric relation on X such that {(x , y) : x ∼ y} is
a measurable subset of X2.
κ localizes w.r.t. ∼, that is

κ(x , µ) = κ(x ,C(x , µ)), (x , µ) ∈ X× N,

where C(x , µ) are all points from µ which are connected
via (µ,∼) to x .
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Theorem (van den Berg, Maes ’94, Hofer-Temmel, Houdebert
’19, L. and Otto ’21)

Let the preceding assumptions be satisfied, let W ∈ X be
bounded and let ψ,ψ′ ∈ N(W c). Then there exist point
processes ξ, ξ′ and η on W (defined on the same probability
space) with the following properties.

ξ is a Gibbs process with PI κW ,ψ and ξ′ is a Gibbs process
with PI κW ,ψ′ .
η is a Poisson process with intensity measure αλW .
Every point in |ξ − ξ′| is connected via ξ + ξ′ to ψ + ψ′.
The support of ξ + ξ′ is contained in the support of η.
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6. Decorrelation in a subcritical regime

Setting

λ is diffuse and κ is a PI bounded by some α > 0.
∼ is a symmetric measurable relation on X.
κ localizes w.r.t. ∼.
w : [0,∞)→ [0,∞) is a continuous decreasing function
with limr→∞w(r) = 0.
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Definition (Blaszczyszyn, Yogeshwaran and Yukich ’19)

A point process ξ with correlation functions ρn, n ∈ N,
w-decorrelates if there exist for all k ,m ∈ N a ck ,m ≥ 0 such that

ρk+m(x1, . . . , xk+m)− ρk (x1, . . . , xk )ρm(xk+1, . . . , xk+m)

≤ c(k ,m) · w(d({x1, . . . , xk}, {xk+1, . . . , xk+m}))

for λk+m-a.e. (x1, . . . , xk+m).
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Theorem (Benes et. al. ’19, Betsch and L. ’22)

Let ξ be a Gibbs process with PI κ bounded by α ≥ 0. Assume
that for all bounded B,W ∈ X with B ⊂W

Παλ(ν ∈ N : C(x , ν + µ)(W c) > 0) ≤ w(d(B,W c))

for λ-a.e. x ∈ B and all finite µ ∈ N with µ(W ) = 0. Then ξ
w-decorrelates with c(k ,m) := 2αk+m min{k ,m}.

Remark

Under the assumption of the theorem it can be proved that
there exists exactly one Gibbs process with PI κ.
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Definition

Let ξ be a point process on X and s, t , r ≥ 0. The β-mixing
coefficient of a point process ξ is defined by

ms,t (r) := sup
B,C
‖P(ξB ,ξC) − PξB ⊗ PξC‖TV,

where the supremum is taken over all bounded B,C ∈ X , such
that λ(B) ≤ s, λ(C) ≤ t and dist(B,C) > r .

Theorem (Betsch and L. ’22)

Under the assumptions of the previous theorem,

ms,t (r) ≤ 4αe2α(s+t) min{s, t}w(r), r , s, t ≥ 0.
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Lemma (Poinas ’19, Betsch and L. ’22)

Let ξ be a point process admitting correlation functions ρn,
n ∈ N. Let B,C ∈ X be bounded and disjoint and assume that
E3ξ(B∪C) <∞. Then

‖P(ξB ,ξC) − PξB ⊗ PξC‖TV

≤
∞∑

k ,m=1

2k+m

k !m!

∫
Bk×Cm

|ρk+m(x,y)− ρk (x)ρm(y)|λk+m(d(x,y)).
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Example

Let X be space of all non-empty compact subsets of a Polish
space equipped with the Hausdorff metric. Define the relation ∼
by K ∼ L if K ∩ L = ∅. Assume that ξ is Gibbs with a PI κ which
is bounded and localizes w.r.t. ∼. Let λ be a diffuse measure
on X such that the diameter of K is smaller than some constant
for λ-a.e. K . If the Boolean model with intensity measure λ
does not percolate, then ξ is decorrelating and β-mixing.
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8. A uniqueness result for repulsive pair potentials

Setting

λ is locally finite and κ is a PI defined by a pair potential
U : X× X→ [0,∞).
ϕ : X× X→ [0,1] is defined by

ϕ(x , y) := 1− e−U(x ,y), x , y ∈ X.

We assume that∫
ϕ(x , y)λ(dy) <∞, λ-a.e. x ∈ X.

Φ is a Poisson process with intensity measure λ.
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Definition

The random connection model (RCM) Γ based on Φ is a
random graph with vertices from Φ. Edges arises by connecting
every pair x , y ∈ Φ with probability ϕ(x , y), independently for
different pairs.

Definition

Let x ∈ X and Φx := Φ + δx . Then Cx denotes the cluster of a
RCM based on Φx , interpreted as a point process on X.

Definition

The RCM is subcritical if

P
(
Cx (X) <∞

)
= 1, λ-a.e. x ∈ X.
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Theorem (Betsch and L. ’21)

Assume that (U, λ) is subcritical. Then there is exactly only one
distribution of a Gibbs process with pair potential U.

Idea of the proof:
Reduce to diffuse intensity measure.
Consider the product X×M, where M is a suitable mark
space equipped with a probability measure Q.
Given an approximation parameter δ > 0 define a relation
∼δ on X×M in terms of the connection function
ϕ = 1− e−U

Consider locally defined Gibbs processes ξδ which are
hard core w.r.t. ∼δ, depending on boundary conditions.
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The projection ξδ onto X approximates a (locally) defined
Gibbs process with PI κ with the same boundary condition.
Consider a Poisson process Ψ on X×M with intensity
measure λ⊗Q and the resulting random graph based on
∼δ.
As δ → 0 the clusters of this graph approximate the
clusters of a RCM based on Ψ(· ×M) and ϕ (and the
boundary conditions).
Perform a disagreement coupling (ξδ, ξ

′
δ,Ψ), where ξδ, ξ′δ

are Gibbs processes with (different) boundary conditions.
Project the coupling on X and let δ → 0, such that the
dependence on the boundary conditions is controlled by
the clusters of a RCM driven by Ψ(· ×M) and ϕ.
Use the DLR-equations to localize two (infinite) Gibbs
processes with pair potential U and show that their
distributions coincide on local events.
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Thank You!
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