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Recap - Bernoulli percolation

Recall simple Bernoulli percolation on a graph G = (V,E) (simple,
bounded degree).

We take a random spanning subgraph P = (V, E) of G with each
e ∈ E present w.p. p ∈ (0, 1) independently of other edges.

On many graphs (e.g. Zd) there is a value pc ∈ (0, 1) such that:

1) for p < pc connected components of P are finite a.s.

2) for p > pc there are a.s. infinite connected components of P .
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bounded degree).

We take a random spanning subgraph P = (V, E) of G with each
e ∈ E present w.p. p ∈ (0, 1) independently of other edges.

On many graphs (e.g. Z2) there is a value pc ∈ (0, 1) such that:

1) for p < pc connected components of P are finite a.s.

2) for p > pc there are a.s. infinite connected components of P .



The random loop model: intuition

We could place more complicated structures on edges of the graph:

Each edge has a “time” interval [0, β) on which we place links of
two types, crosses (intensity u) and bars (intensity 1− u).
u = 1: random transpositions ⇝ random permutation.
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Definition of the model

Graph G = (V,E) and Circle [0, β)per.

iid Poisson point processes (X
\/
e )e∈E ,

(X
||
e )e∈E on [0, β), intensities u and

1− u, respectively. Law is ρ(u, β).

Relation (‘connectedness’) on V × [0, β):
(v, t) is connected to (v′, t′) (wlog t < t′)
if they are in the same loop.

Now we have two types of percolation on the graph:

1) Percolation of edges with at least one link (link percolation)

2) Percolation of the connectedness condition (loop percolation).

A natural question is whether these two percolations coincide.
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Difficulties of the model

We certainly need link percolation in order to have loop
percolation, but the converse relation is not so clear. Indeed, the
model does not enjoy monotonicity properties, i.e. adding a link
may split a loop into two smaller loops, pictorially like this:

a) b)



The connection with quantum spin systems

The loop model is closely related to the following hamiltonian on G

H = −
∑

{x,y}∈E

σ1
xσ

1
y+(2u−1)σ2

xσ
2
y+σ3

xσ
3
y , on ⊗x∈V C2 ≡ C2|V |

where σi
x acts as the ith Pauli matrix at x and identity elsewhere.

More precisely, for θ ≥ 1 and L the total number of loops, consider

the probability measure

Pθ,u,β(A) = Eρ(u,β)[1lAθ
L]/Eρ(u,β)[θ

L].

We have the following connection

⟨σ1
xσ

1
y⟩β,u = tr(σ1

xσ
1
ye

−βH)/tr(e−βH) = P2,u,β(x ↔ y).
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The loop model is closely related to the following hamiltonian on G

H = −
∑

{x,y}∈E

σ1
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xσ
2
y+σ3

xσ
3
y , on ⊗x∈V C2 ≡ C2|V |

where σi
x acts as the ith Pauli matrix at x and identity elsewhere.

More precisely, for θ ≥ 1 and L the total number of loops, consider
the probability measure

Pθ,u,β(A) = Eρ(u,β)[1lAθ
L]/Eρ(u,β)[θ

L].

We have the following connection

⟨σ1
xσ

1
y⟩β,u = tr(σ1

xσ
1
ye

−βH)/tr(e−βH) = P2,u,β((x, 0) ↔ (y, 0)).



Loop percolation

For β sufficiently small there is no link percolation, and hence no
loop percolation. Thanks to the famous result of Dyson, Lieb, and

Simon ‘76 + Ueltschi ‘13 we have that for G = Zd/LZd, d ≥ 3
and u ≤ 0 if β, L are large enough

1

|V |
∑
x∈V

⟨σ1
oσ

1
x⟩G,N,β > 0.

This result implies long loops occur under the same conditions.
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Thanks to the famous result of Dyson, Lieb, and Simon ‘76 +
Ueltschi ‘13 we have that for G = Zd/LZd, d ≥ 3 and u ≤ 0 if
β, L are large enough

1

|V |
∑
x∈V

⟨σ1
oσ

1
x⟩G,N,β > 0.

This implies loop percolation occurs under the same conditions.

Question:

Are there intermediate β where link percolation occurs but loop
percolation does not?
Let us stick to θ = 1 (independent links on each edge) for now.



Answer on Kn, θ = 1: no

Take the complete graph on n vertices and realisation w of links
on [0, β/(n− 1))× E. For x ∈ V β

n (w) the largest connected

component of links in w

Cx(w) := {(y, 0) : (y, 0) ↔ (x, 0)}, Cw = {Cx : x ∈ V β
n (w)}.

Xw - list of decreasing rescaled cycle sizes (|C|/|V β
n | :C∈Cw). So

in particular, loop and link percolation coincide. This is true for
many (probably all) graphs of diverging degree.
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Theorem (Schramm ‘05 and Björnberg et al ‘19)

1) u = 1. As n → ∞ the law of Xw converges weakly to the
Poisson Dirichlet distribution PD(1). (Schramm ‘05)

2) u < 1. As n → ∞ the law of Xw converges weakly to the
Poisson Dirichlet distribution PD(1/2). (Björnberg et al ‘19)

So in particular, loop and link percolation coincide. This is true for
many (probably all) graphs of diverging degree.
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Xw - list of decreasing rescaled cycle sizes (|C|/|V β
n | :C∈Cw).

Theorem (Schramm ‘05 and Björnberg et al ‘19). For β > 1

1) u = 1. As n → ∞ the law of Xw converges weakly to the
Poisson Dirichlet distribution PD(1). (Schramm ‘05)

2) u < 1. As n → ∞ the law of Xw converges weakly to the
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So in particular, loop and link percolation coincide. This is true for
many (probably all) graphs of diverging degree.



A special case: trees. Summarising a long story

Vertices have fixed degree but the graph has no cycles (so it is
much easier). On a regular tree, θ > 0, Björnberg and Ueltschi
‘17, ‘18

βc(u)

θ
=

1

d
+

1− θu(1− u)− θ2(1− u)2/6

d2
+ o(d−2)

Betz et al ‘18 considered Galton-Watson trees, finding explicit
sufficient conditions on the offspring distribution for infinite loops.
Betz et al ‘21 even found an expansion for βc(u)

βc =

n∑
k=0

αk(u)

dk+1
+O(d−n−2),

where αk’s are degree 2k polynomials that can be computed
recursively. This heavily uses the tree structure.
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Answer on graphs of bounded degree, θ = 1: yes!

Generally, for graphs of bounded degree loop and link percolation
do not coincide.

It is even possible to provide an explicit lower bound on the length
of the interval [βper

c , βc(u)) (Klippel et al ‘23+).
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Theorem (Mühlbacher ‘21)
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bounded degree. Let βper

c be the critical β for link percolation and
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have βc(u) > βper

c for all u < 1.
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of the interval [βper

c , βc(u)) (Klippel et al ‘23+).



Answer on graphs of bounded degree, θ = 1: yes!

Generally, for graphs of bounded degree loop and link percolation
do not coincide.
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Bounded degree graphs - proof idea

The proof idea for bounded degree graphs is quite beautiful and
simple. The links on edges are independent and some link
structures will “block” loops.

Two crosses in a row on the
edge, and no crosses in the
shaded red area. These events
occur on the link percolation,
thinning it and resulting in an
effective decrease of the loop
percolation parameter.

This works because links are independent for θ = 1, so link

percolation = Bernoulli percolation with parameter 1− e−β. If
θ ̸= 1 links are not independent making things difficult.
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Loop models for classical spin systems

There are also loop representations for classical spin systems.
Their loop percolation properties are simpler than even the θ = 1
case above, but the difficulty of whether link percolation = loop
percolation seems to lie somewhere between the θ = 1 and θ ̸= 1
case. The spin model of interest is the O(N)-spin model, the
classical version of the hamiltonian we saw. For a collection
S = (Sx)x∈V of unit vectors (spins) in RN , N > 1 define the
hamiltonian

H(S) = −
∑

{x,z}∈E

Sx · Sy

A function of these spins f has expectation

Eβ,N (f) =
1

Zβ,N

∫
dSf(S) e−βH(S)
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The random path model

The loop model for this system has
3 ingredients:

a collection of natural
numbers m = (me)e∈E
where me is the number of
links on edge e

a colouring c of these links
with colours in {1, . . . , N}.
a pairing π of links at each
vertex to form loops and
paths



The measure on loops

Different choices of measure for w = (m, c, π) give different
models of interest such as dimers, spatial random permutations,
O(N)-loops.... the most important example is the O(N)-spin
model.

The measure is

µG,N,β(w) =
1

ZG,N,β

∏
e∈E

βme

me!

∏
x∈V

Ux(w).

with

Ux(w) =
1

2nxΓ
(
nx +

N
2

)
where nx(w) = is the local time of paths at x. Under this measure
Zβ,N = total weight of configurations with only loops.
Long loops occur for large enough β (Fröhlich, Simon, and Spencer
‘76 for O(N)-spins)
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(
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N
2

)
where nx(w) = is the local time of paths at x. Under this measure
Zβ,N = total weight of configurations with only loops.
Loop percolation occurs for large β (Fröhlich, Simon, and Spencer
‘76 for O(N)-spins).



The analogue to blocking structures - sausages

Again we have the question: do connected components of edges
carrying links percolate at a different value of β to loops?
Just like the case θ = 1, this model has a natural blocking
structure that prevent loops from crossing an edge.



Loop vs link percolation for O(N)-spins

Theorem (Betz, Klippel, L. ‘23++)

Let d ≥ 3 and G be any d-regular graph, then there is a δ > 0
depending on G such that

|βper
c − βloop

c | > δ

We work on a sequence of finite graphs Gn ⇑ G and show that for
some values of β connected components of links can, in the limit
n → ∞, contain a positive fraction of edges of Gn but no single
loop can.

The main difficulty in the proof is that links are far from
independent, so the blocking sausages (apparently) do not thin the
link clusters in a simple way.
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Rough proof strategy blocking edges occur with some
“density”

First let us suppose we are on a “good” set of random path
configurations on Gn: For some K > 0 let Gε(K) be the set of
configurations such that ≤ ε|Vn| vertices have local time > K. It

can be shown that for a set A ⊂ E such that dist(e, e′) ≥ 4 for
every distinct pair e, e′ ∈ A we have for any w ∈ Gε(K)

µG,N,β(every edge in A is blocking
∣∣w|N2(A)c) ≥ c|A|

where N2(A) is the 2-neighbourhood of A, for some c > 0 that
depends on K,G, β (but not on A or Gn).

So blocking edges aren’t independent, but if they are far enough
apart their occurrence can be bounded below in a nice way.
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Counting SAWs

Suppose there is a long loop containing o ∈ Vn for a realisation w
of loops on Gn. There must be a SAW in Gn, contained in the
support of this long loop such that every edge in the walk: 1) has

at least one link,

2) is not a blocking edge.

We can hence sum over all SAWs and find that our bound on
blocking edges leads to a decrease in the connective constant of
the link clusters. With some work, the result follows.
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V. Betz, J. Ehlert, and B. Lees, Phase transition for loop representations
of quantum spin systems on trees, J. Math. Phys. 59, 113302 (2018).

V. Betz, J. Ehlert, B. Lees, and L. Roth, Sharp phase transition for
random loop models on trees, Electron. J. Probab. 26: 1-26 (2021).

J. Björnberg, M. Kotowski, B. Lees, and P. Milos, The interchange
process with reversals on the complete graph, Electron. J. Probab. 24
(2019), no. 108, 1–43.

F. Dyson, E. Lieb, and B. Simon, Phase transitions in quantum spin
systems with isotropic and non- isotropic interactions, J. Stat. Phys.
18(4), 335–383 (1978)
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