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Condensation in IPS has been studied in probability and statistical mechanics for the
past 20 years or so [12, 13, 22]. While there exist continuous versions, we focus on models
with a conserved quantity (called mass) which is discretized into individual particles moving
on a regular lattice or a graph. These can represent actual mass or energy in physical
applications, individuals in a biological population or vehicles in a traffic model. When
the particle density exceeds a critical level, a condensing IPS separates into a bulk phase
with a homogeneous distribution of mass, and a condensate where a non-zero mass fraction
concentrates on a vanishing volume fraction. Classical examples which will be discussed
in the lectures include zero-range [29, 13] and inclusion processes [16], and more general
models of mass transport [15] or exchange-driven growth [5]. In the first lecture we will
discuss results at stationarity in analogy to the classical theory of Gibbs measures and phase
transitions. In the second lecture we address the dynamics of condensing IPS, for which
there are various open problems.

Part 1 - Stationary results. We define condensation for a sequence of canonical
measures πL,N with a single conserved quantity (total mass N) and lattice size L in the
thermodynamic limit N,L → ∞ with N/L → ρ. The particle density ρ ≥ 0 is the order
parameter for the condensation transition which is characterized in the context of the equiv-
alence of ensembles. We focus mostly on spatially homogeneous product measures which
arise in a large class of IPS [11]. Here the condensed phase usually concentrates on a single
lattice site and can be characterized by large deviations for sub-exponential random vari-
ables. When system parameters are scaled with the size L, the condensate may also exhibit
a non-trivial structure, which is related to Poisson-Dirichlet distributions for inclusion pro-
cesses [24, 9]. As a phase transition, condensation can be continuous or discontinuous and
we will discuss several natural examples for both cases [21]. We shortly mention extensions
to nearest-neighbour (or pair-factorized) stationary measures [14], spatial inhomogeneities
(e.g. [10]) and more than one conserved quantity (several particle species) [23].

Part 2 - Dynamic results. The stationary dynamics of condensing IPS was the first
to be understood rigorously [3], and can exhibit metastability w.r.t. the spatial location
of the condensate in spatially homogeneous systems. We will discuss a combination of
potential theory [7] and martingale techniques [4] that has been developed to derive rigorous
scaling limits for the dynamics of the condensate location for reversible zero-range [3, 2]
and inclusion processes [6], and most recently also for non-reversible models [27, 26].

Out-of-equilibrium dynamics of condensing IPS usually consists of three regimes [22, 18]:
Starting from a homogeneous initial distribution at a super-critical density, particle clusters
form locally (nucleation), then exchange mass leading to a decrease in the number and an
increase in the typical size of clusters (coarsening). When the largest cluster size scales like
the total mass N , the system saturates and converges to a typical stationary configuration
on a time scale depending on L. We will present a complete heuristic picture, including a
coarsening scaling law [25, 17], and a few rigorous results that have been obtained so far
[20, 1], related also to propagation of chaos in mean-field models [19, 28].

All above mentioned results rely on a separation of time scales where dynamics in the
condensed phase is slower than in the bulk, which is the case e.g. for zero-range dynamics.
There is also another class of models related to exchange-driven growth [15, 8], where the
condensate is faster than the bulk. This leads to qualitatively different dynamics for which
there are essentially no rigorous results so far.
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