



# Computational phase transitions and the hard-core model

#### **Andreas Göbel**

Part I: survey talk Part II based on joint work with Tobias Friedrich, Max Katzmann, Martin Krejca and Marcus Pappik The computational lens (for this talk)



Polynomial-time computation



P vs NP



Hasso

- P: computational problems for which we can find a solution efficiently (e.g. Sorting integers, MinCut)
- NP: computational problems for which, given a solution, we can verify it efficiently (e.g. Satisfiability, MaxCut)

P vs NP



Hasso

- P: computational problems for which we can find a solution efficiently (e.g. Sorting integers, MinCut)
- NP: computational problems for which, given a solution, we can verify it efficiently (e.g. Satisfiability, MaxCut)

Efficiently: in polynomially many steps in the size of the input

P vs NP



Hasso

- P: computational problems for which we can find a solution efficiently (e.g. Sorting integers, MinCut)
- NP: computational problems for which, given a solution, we can verify it efficiently (e.g. Satisfiability, MaxCut)

Efficiently: in polynomially many steps in the size of the input

Given a computational problem C we want to characterise its complexity

- Tractable ( $C \in P$ ): there is an algorithm that solves it in polynomial time
- Intractable (NP-hard): there is a polynomial-time reduction from a known NP-hard problem to C

P vs NP



Hasso

- P: computational problems for which we can find a solution efficiently (e.g. Sorting integers, MinCut)
- NP: computational problems for which, given a solution, we can verify it efficiently (e.g. Satisfiability, MaxCut)

Efficiently: in polynomially many steps in the size of the input

Given a computational problem C we want to characterise its complexity

- Tractable ( $C \in P$ ): there is an algorithm that solves it in polynomial time
- Intractable (NP-hard): there is a polynomial-time reduction from a known NP-hard problem to C

Spin systems  $\rightarrow$  computational problems to solve efficiently





Burley '60 as a lattice version of the hard-sphere model Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{>0}$ 





Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $I \in \mathcal{I}\left(G
ight)$  has weight  $\lambda^{|I|}$ 



Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $I \in \mathcal{I}(G)$  has weight  $\lambda^{|I|}$ 

Partition function:  $Z(G, \lambda) = \sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$ 



Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $I \in \mathcal{I}(G)$  has weight  $\lambda^{|I|}$ 

**Partition function:**  $Z(G, \lambda) = \sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$ 

**Gibbs distribution:**  $\mu_{G,\lambda}(I) = \frac{\lambda^{|I|}}{Z(G,\lambda)}$  for  $I \in \mathcal{I}(G)$ 



Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $I \in \mathcal{I}(G)$  has weight  $\lambda^{|I|}$ 

**Partition function:**  $Z(G, \lambda) = \sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$ 

**Gibbs distribution:**  $\mu_{G,\lambda}(I) = \frac{\lambda^{|I|}}{Z(G,\lambda)}$  for  $I \in \mathcal{I}(G)$ 

# **Two computational Problems**

Sample from the Gibbs distribution

Compute the partition function  $Z(G, \lambda)$ 



Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $I \in \mathcal{I}(G)$  has weight  $\lambda^{|I|}$ 

Partition function:  $Z(G, \lambda) = \sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$ 

**Gibbs distribution:**  $\mu_{G,\lambda}(I) = \frac{\lambda^{|I|}}{Z(G,\lambda)}$  for  $I \in \mathcal{I}(G)$ 

# **Two computational Problems**

Sample from the Gibbs distribution

Compute the partition function  $Z(G, \lambda)$  Shown to be (>> NP-hard  $\forall G, \lambda$ ) Roth '96



Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $I \in \mathcal{I}(G)$  has weight  $\lambda^{|I|}$ 

Partition function:  $Z(G, \lambda) = \sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$ 

**Gibbs distribution:**  $\mu_{G,\lambda}(I) = \frac{\lambda^{|I|}}{Z(G,\lambda)}$  for  $I \in \mathcal{I}(G)$ 

# **Two computational Problems**

Sample from the Gibbs distribution

Approximate the partition function  $Z(G, \lambda)$ 



Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $m{\textit{I}} \in \mathcal{I}\left(m{\textit{G}}
ight)$  has weight  $\lambda^{|m{\textit{I}}|}$ 

Partition function:  $Z(G, \lambda) = \sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$ 

**Gibbs distribution:**  $\mu_{G,\lambda}(I) = \frac{\lambda^{|I|}}{Z(G,\lambda)}$  for  $I \in \mathcal{I}(G)$ 

# **Two computational Problems**

Sample from the Gibbs distribution

Approximate the partition function  $Z(G, \lambda)$ 

- Input: G with n vertices and max degree  $\Delta$ ,  $\varepsilon \in (0, 1)$ . Parameter:  $\lambda$
- Output:  $\hat{Z}$ , such that  $1 \varepsilon \leq \hat{Z}/Z \leq 1 + \varepsilon$  with probability > 1/2
- Runtume: poly( $n, \varepsilon^{-1}$ )



Undirected graph G = (V, E) and parameter  $\lambda \in \mathbb{R}_{\geq 0}$ 



Independent set  $I \in \mathcal{I}(G)$  has weight  $\lambda^{|I|}$ 

**Partition function:**  $Z(G, \lambda) = \sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$ 

**Gibbs distribution:**  $\mu_{G,\lambda}(I) = \frac{\lambda^{|I|}}{Z(G,\lambda)}$  for  $I \in \mathcal{I}(G)$ 

# **Two computational Problems**

Sample from the Gibbs distribution (Approximately)

Sinclair and Jerrum '89

Approximate the partition function  $Z(G, \lambda)$ 

- Input: G with n vertices and max degree  $\Delta$ ,  $\varepsilon \in (0, 1)$ . Parameter:  $\lambda$
- Output:  $\hat{Z}$ , such that  $1 \varepsilon \leq \hat{Z}/Z \leq 1 + \varepsilon$  with probability > 1/2
- Runtume: poly( $n, \varepsilon^{-1}$ )





Idea: simulate the steps of a MC until it converges to its stationary distribution



Idea: simulate the steps of a MC until it converges to its stationary distribution





Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r.



Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r. If  $v \in X_t$  remove it with probability  $\frac{1}{1+\lambda}$ 



Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r. If  $v \in X_t$  remove it with probability  $\frac{1}{1+\lambda}$ 



Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r. If  $v \in X_t$  remove it with probability  $\frac{1}{1+\lambda}$ If  $v \notin X_t$  add it with probability  $\frac{\lambda}{1+\lambda}$  if possible



Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r. If  $v \in X_t$  remove it with probability  $\frac{1}{1+\lambda}$ If  $v \notin X_t$  add it with probability  $\frac{\lambda}{1+\lambda}$  if possible With the remaining probability do nothing



Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r. If  $v \in X_t$  remove it with probability  $\frac{1}{1+\lambda}$ If  $v \notin X_t$  add it with probability  $\frac{\lambda}{1+\lambda}$  if possible With the remaining probability do nothing

- We can easily show that μ is the stationary distribution of this MC.
- If it converges to ε-close after poly(n, ε<sup>-1</sup>) steps we are done



Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r. If  $v \in X_t$  remove it with probability  $\frac{1}{1+\lambda}$ If  $v \notin X_t$  add it with probability  $\frac{\lambda}{1+\lambda}$  if possible With the remaining probability do nothing

- We can easily show that μ is the stationary distribution of this MC.
- If it converges to ε-close after poly(n, ε<sup>-1</sup>) steps we are done

Dyer and Greenhil '00, Vigoda '01 showed that this is true when  $\lambda < \frac{2}{\Delta - 2}$ 



Idea: simulate the steps of a MC until it converges to its stationary distribution



Choose  $v \in V(G)$  u.a.r. If  $v \in X_t$  remove it with probability  $\frac{1}{1+\lambda}$ If  $v \notin X_t$  add it with probability  $\frac{\lambda}{1+\lambda}$  if possible With the remaining probability do nothing

- We can easily show that μ is the stationary distribution of this MC.
- If it converges to ε-close after poly(n, ε<sup>-1</sup>) steps we are done

Dyer and Greenhil '00, Vigoda '01 showed that this is true when  $\lambda < \frac{2}{\Delta-2}$ 

They used a path coupling argument

# Hard-core model PT on $\Delta$ -regular trees





- •
- •
- •







The hard-core model exhibits a phase transition at

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta}$$

(uniqueness vs non-uniqueness of the Gibbs measure) Kelly '85







The hard-core model exhibits a phase transition at

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta}$$

(uniqueness vs non-uniqueness of the Gibbs measure) Kelly '85









The hard-core model exhibits a phase transition at

$$\lambda_c(\Delta) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta}$$

(uniqueness vs non-uniqueness of the Gibbs measure) Kelly '85



Many results at early 00's showing that MC's mix slowly (in exponential time), for  $\lambda >> \lambda_c(\Delta)$  in various graphs

It was conjectured that  $\lambda_c(\Delta)$  is a threshold for the mixing time of the MC (rapid mixing vs torpid mixing) for all graphs Sokal '00 Weitz's results





Weitz '06 showed that the hard-core model exhibits strong spatial mixing when  $\lambda < \lambda_c(\Delta)$ . That is

 $|\mathbb{P}_{\mu}(\mathbf{v} \in \mathbf{I} \mid \mathbf{ au}) - \mathbb{P}_{\mu}(\mathbf{v} \in \mathbf{I} \mid \mathbf{ au'})| \leq Ce^{-d_{\mathcal{T}}(\mathbf{v}, \mathbf{ au} 
eq \mathbf{ au'})}$ 

for independent set configurations  $\tau$ ,  $\tau'$ .



Weitz's results







Weitz '06 showed that the hard-core model exhibits strong spatial mixing when  $\lambda < \lambda_c(\Delta)$ . That is

 $|\mathbb{P}_{\mu}(\mathbf{v}\in\mathbf{I}\mid au)-\mathbb{P}_{\mu}(\mathbf{v}\in\mathbf{I}\mid au')|\leq Ce^{-d_{\mathcal{T}}(\mathbf{v}, au
eq au')}$ 

for independent set configurations  $\tau$ ,  $\tau'$ .

More importantly gave a method of showing this for every graph of max degree  $\Delta$ , by mapping it onto a rooted tree



Weitz's results





Weitz's results




Weitz's results





Weitz '06 showed that the hard-core model exhibits strong spatial mixing when  $\lambda < \lambda_c(\Delta)$ . That is

$$|\mathbb{P}_{\mu}(\mathbf{v} \in \mathbf{I} \mid \mathbf{ au}) - \mathbb{P}_{\mu}(\mathbf{v} \in \mathbf{I} \mid \mathbf{ au}')| \leq Ce^{-d_{T}(\mathbf{v}, \mathbf{ au} 
eq au')}$$

for independent set configurations  $\tau, \tau'$ .

More importantly gave a method of showing this for every graph of max degree  $\Delta$ , by mapping it onto a rooted tree

We can compute the marginal probability of the root of a tree under  $\mu$  by recursion

Exponential decay  $\Rightarrow$  we can cut off Weitz's tree at logarithmic depth

Weitz's results





Weitz '06 showed that the hard-core model exhibits strong spatial mixing when  $\lambda < \lambda_c(\Delta)$ . That is

 $|\mathbb{P}_{\mu}(\mathbf{v} \in \mathbf{I} \mid \mathbf{ au}) - \mathbb{P}_{\mu}(\mathbf{v} \in \mathbf{I} \mid \mathbf{ au'})| \leq Ce^{-d_{T}(\mathbf{v}, \mathbf{ au} 
eq \mathbf{ au'})}$ 

for independent set configurations  $\tau$ ,  $\tau'$ .

More importantly gave a method of showing this for every graph of max degree  $\Delta$ , by mapping it onto a rooted tree

We can compute the marginal probability of the root of a tree under  $\mu$  by recursion

Exponential decay  $\Rightarrow$  we can cut off Weitz's tree at logarithmic depth

This results to an algorithm for computing the partition function in  $O(n^{\log \Delta})$  for bounded degree graphs



On trees Glauber dynamics are fast mixing for all G,  $\lambda$  (Martinelli, Sinclair and Weitz '04)



On trees Glauber dynamics are fast mixing for all G,  $\lambda$  (Martinelli, Sinclair and Weitz '04)

When the graph has subexponential growth: SSM  $\Rightarrow$  rapid mixing of glauber dynamics for  $\lambda < \lambda_c(\Delta)$ 



On trees Glauber dynamics are fast mixing for all  $G, \lambda$  (Martinelli, Sinclair and Weitz '04) When the graph has subexponential growth: SSM  $\Rightarrow$  rapid mixing of glauber dynamics for  $\lambda < \lambda_c(\Delta)$ 

On random  $\Delta$ -regular bipartite graphs Glauber dynamics have exponen-

tial mixing time when  $\lambda > \lambda_c(\Delta)$  (Mossel, Weitz, Wormald '09)



On trees Glauber dynamics are fast mixing for all  $G, \lambda$  (Martinelli, Sinclair and Weitz '04) When the graph has subexponential growth: SSM  $\Rightarrow$  rapid mixing of glauber dynamics for  $\lambda < \lambda_c(\Delta)$ 

On random  $\Delta$ -regular bipartite graphs Glauber dynamics have exponential mixing time when  $\lambda > \lambda_c(\Delta)$  (Mossel, Weitz, Wormald '09)

Moreover, on these graphs when  $\lambda > \lambda_c(\Delta)$  the system is with high probability in one of two phases







Idea: Reduce from MaxCut



Input: G





Input: G

Reduction: G'

For each edge uv connect left part of the gadget for u to the left part of the gadget for v with "many" edges and the same for the right parts





Input: G

Reduction: G'

For each edge *uv* connect left part of the gadget for *u* to the left part of the gadget for *v* with "many" edges and the same for the right parts

Sampling an independent set when  $\lambda > \lambda_c \Delta$  can be ineterpreted as a Max-Cut solution (w.h.p)





Input: G

Reduction: G'

For each edge uv connect left part of the gadget for u to the left part of the gadget for v with "many" edges and the same for the right parts

Sampling an independent set when  $\lambda > \lambda_c \Delta$  can be ineterpreted as a Max-Cut solution (w.h.p)

The hardcore model undergoes a computational phase transition at the tree threshold  $\lambda_c(\Delta) \approx e \Delta^{-1}$ 





Shearer '85: Z has no zeros (and its logarithm is analytic) when $|\lambda| < \lambda^* = \frac{(\Delta - 1)^{\Delta - 1}}{\Lambda^{\Delta}} < \lambda_c(\Delta)$ 



Shearer '85: Z has no zeros (and its logarithm is analytic) when

$$|\lambda| < \lambda^* = rac{(\Delta - 1)^{\Delta - 1}}{\Delta^\Delta} < \lambda_c(\Delta)$$

Barvinok '15: The taylor series expansion of log Z

- Converges when  $|\lambda| < \lambda^*$
- The *i*-th term can be computed using the number of connected subgraphs of G of size ≤ *i*
- Computing up to log n terms yields an ε-additive approximation for log Z



Shearer '85: Z has no zeros (and its logarithm is analytic) when

$$|\lambda| < \lambda^* = rac{(\Delta - 1)^{\Delta - 1}}{\Delta^\Delta} < \lambda_c(\Delta)$$

Barvinok '15: The taylor series expansion of log Z

- Converges when  $|\lambda| < \lambda^*$
- The *i*-th term can be computed using the number of connected subgraphs of G of size ≤ *i*
- Computing up to log n terms yields an ε-additive approximation for log Z

This yields an  $O(n^{\log n})$  approximation algorithm for Z



Shearer '85: Z has no zeros (and its logarithm is analytic) when

$$|\lambda| < \lambda^* = rac{(\Delta - 1)^{\Delta - 1}}{\Delta^\Delta} < \lambda_c(\Delta)$$

Barvinok '15: The taylor series expansion of log Z

- Converges when  $|\lambda| < \lambda^*$
- The *i*-th term can be computed using the number of connected subgraphs of G of size ≤ *i*
- Computing up to log n terms yields an ε-additive approximation for log Z

This yields an  $O(n^{\log n})$  approximation algorithm for Z

Patel and Regts '17: on graphs of max degree  $\Delta$  we can ennumerate their connected subgraphs in  $O(n^{\log \Delta})$ -time







Zero-free regions by: Shearer '85 Peters and Regts '17 Bencs and Csikvári '18





Zero-free regions by: Shearer '85 Peters and Regts '17 Bencs and Csikvári '18

Bezáková et al. '18: Hardness of approximation outside the cardioid

# The picture on the complex plane









Zero-free regions by: Shearer '85 Peters and Regts '17 Bencs and Csikvári '18

Bezáková et al. '18: Hardness of approximation outside the cardioid

Buys '21: existence of zeros inside the cardioid

de Boer et al. '21: zeros imply hardness of approximation





### Anari et al '20

- map Glauber dynamics to random walk on a simplicial complex
- investgate spectrum via local walks and influence between vertices This yields  $O(n^c)$  mixing time when  $\lambda < \lambda_c(\Delta)$



### Anari et al '20

map Glauber dynamics to random walk on a simplicial complex

• investgate spectrum via local walks and influence between vertices This yields  $O(n^c)$  mixing time when  $\lambda < \lambda_c(\Delta)$ 

Chen, Liu and Vigoda '20: Mixing time in  $O(n^{2+\epsilon})$ 

Chen, Liu and Vigoda '21: Mixing time in O(n log n)



## Anari et al '20

map Glauber dynamics to random walk on a simplicial complex

• investgate spectrum via local walks and influence between vertices This yields  $O(n^c)$  mixing time when  $\lambda < \lambda_c(\Delta)$ 

Chen, Liu and Vigoda '20: Mixing time in  $O(n^{2+\epsilon})$ 

Chen, Liu and Vigoda '21: Mixing time in  $O(n \log n)$ 

Chen, Feng, Yin and Zhang '22: Mixing time in  $O(n^2 \log n)$  and  $\Delta = \Delta(n)$ 



When G has subexponential growth

SSM  $\Rightarrow$  perfect sampling in O(n) time Feng, Guo and Yin '22, Anand and Jerrum '22



When G has subexponential growth

SSM  $\Rightarrow$  perfect sampling in O(n) time Feng, Guo and Yin '22, Anand and Jerrum '22

Very high level idea:

Choose a vertex u.a.r. and update its state using the correct marginal distribution



# Part II





# bounded mesurable **region** $\mathbb{V} \subset \mathbb{R}^d$





bounded mesurable **region**  $\mathbb{V} \subset \mathbb{R}^d$ **configurations:** finite point sets in  $\mathbb{V}$  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ 

Understanding Gibbs PPs computationally





bounded mesurable **region**  $\mathbb{V} \subset \mathbb{R}^d$ **configurations:** finite point sets in  $\mathbb{V}$  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ 

pair potential  $\phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ 

Understanding Gibbs PPs computationally





bounded mesurable **region**  $\mathbb{V} \subset \mathbb{R}^d$  **configurations:** finite point sets in  $\mathbb{V}$   $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$  **pair potential**  $\phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ **activity**  $\lambda \in \mathbb{R}_{>0}$  Understanding Gibbs PPs computationally





bounded mesurable **region**  $\mathbb{V} \subset \mathbb{R}^d$ **configurations:** finite point sets in V  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ pair potential  $\phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ activity  $\lambda \in \mathbb{R}_{>0}$ 

Gibbs point process  $\mu$ :

 $\frac{d\mu}{dP}(\eta) \sim \lambda^{|\eta|} e^{-\sum_{\{x,y\} \subseteq \eta} \phi(x,y)}$  (P: Poisson point process of intensity 1)





bounded mesurable **region**  $\mathbb{V} \subset \mathbb{R}^d$ **configurations:** finite point sets in V  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ pair potential  $\phi : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ 

activity  $\lambda \in \mathbb{R}_{>0}$ 

# Gibbs point process $\mu$ :

 $\frac{d\mu}{dP}(\eta) \sim \lambda^{|\eta|} e^{-\sum_{\{x,y\} \subseteq \eta} \phi(x,y)}$  (P: Poisson point process of intensity 1)

**Partition function:** 
$$\Xi_{\mathbb{V}}(\phi, \lambda) = \sum_{k \ge 0} \frac{\lambda^k}{k!} \int_{\mathbb{V}^k} e^{-\sum_{i < j} \phi(x_i, x_j)} dx_1 \dots dx_k$$

#### Hard-sphere model:

Poisson point process of intensity  $\lambda \in \mathbb{R}_{\geq 0}$  but  $dist(x, y) \geq R \in \mathbb{R}_{\geq 0}$ 





## Hard-sphere model:

Poisson point process of intensity  $\lambda \in \mathbb{R}_{\geq 0}$  but  $dist(x, y) \geq R \in \mathbb{R}_{\geq 0}$ 



region  $\mathbb{V} \subset \mathbb{R}^d$ 

configurations  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ 


#### Hard-sphere model:

Poisson point process of intensity  $\lambda \in \mathbb{R}_{\geq 0}$  but  $dist(x, y) \geq R \in \mathbb{R}_{\geq 0}$ 



region  $\mathbb{V} \subset \mathbb{R}^d$ 

configurations  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ 

potential:

$$\phi_R(x,y) = egin{cases} 0 & ext{if } dist(x,y) \geq R \ \infty & ext{if } dist(x,y) < R \end{cases}$$



#### Hard-sphere model:

Poisson point process of intensity  $\lambda \in \mathbb{R}_{\geq 0}$  but  $dist(x, y) \geq R \in \mathbb{R}_{\geq 0}$ 



region  $\mathbb{V} \subset \mathbb{R}^d$ 

configurations  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ 

#### potential:

$$\phi_R(x,y) = egin{cases} 0 & ext{if } dist(x,y) \geq R \ \infty & ext{if } dist(x,y) < R \end{cases}$$

reminder:

$$rac{\mathsf{d}\mu}{\mathsf{d}P}(\eta) \sim \lambda^{|\eta|} \mathrm{e}^{-\sum_{\{x,y\}\subseteq\in\eta} \phi_{\mathcal{R}}(x,y)}$$



## Hard-sphere model:

Poisson point process of intensity  $\lambda \in \mathbb{R}_{\geq 0}$  but  $dist(x, y) \geq R \in \mathbb{R}_{\geq 0}$ 



region  $\mathbb{V} \subset \mathbb{R}^d$ 

configurations  $\mathcal{N}_{\mathbb{V}} = \{\eta \subset \mathbb{V} \mid |\eta| < \infty\}$ 

potential:

$$\phi_R(x,y) = egin{cases} 0 & ext{if } dist(x,y) \geq R \ \infty & ext{if } dist(x,y) < R \end{cases}$$

reminder:

$$\frac{\mathrm{d}\mu}{\mathrm{d}P}(\eta) \sim \lambda^{|\eta|} \mathrm{e}^{-\sum_{\{x,y\} \subseteq \in \eta} \phi_R(x,y)}$$

#### inspired the hard-core model





- $\phi$  is **repulsive** if  $\phi \ge 0$
- $\phi$  has **range** r if  $\phi(x, y) = 0$  for dist(x, y) > r



- $\phi$  is **repulsive** if  $\phi \ge 0$
- $\phi$  has **range** *r* if  $\phi(x, y) = 0$  for dist(x, y) > r

**Example:** hard-sphere potential  $\phi_R$  is repulsive with range *R* 

$$\phi_R(x,y) = \begin{cases} 0 & \text{if } dist(x,y) \ge R \\ \infty & \text{if } dist(x,y) < R \end{cases}$$



- $\phi$  is **repulsive** if  $\phi \ge 0$
- $\phi$  has **range** *r* if  $\phi(x, y) = 0$  for dist(x, y) > r

**Example:** hard-sphere potential  $\phi_R$  is repulsive with range *R* 

$$\phi_R(x,y) = \begin{cases} 0 & \text{if } dist(x,y) \ge R \\ \infty & \text{if } dist(x,y) < R \end{cases}$$

**Temperedness constant:** 

$$C_{\phi} = \sup_{x \in \mathbb{R}^d} \left\{ \int_{y \in \mathbb{R}^d} \left| 1 - e^{-\phi(x,y)} \right| dy \right\}$$



- $\phi$  is **repulsive** if  $\phi \ge 0$
- $\phi$  has **range** *r* if  $\phi(x, y) = 0$  for dist(x, y) > r

**Example:** hard-sphere potential  $\phi_R$  is repulsive with range *R* 

$$\phi_R(x,y) = \begin{cases} 0 & \text{if } dist(x,y) \ge R \\ \infty & \text{if } dist(x,y) < R \end{cases}$$

**Temperedness constant:** 

$$C_{\phi} = \sup_{x \in \mathbb{R}^d} \left\{ \int_{y \in \mathbb{R}^d} \left| 1 - e^{-\phi(x,y)} \right| dy \right\}$$

hard-sphere model:  $C_{\phi_R} = \text{vol}(\mathbb{B}(R))$ 



• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{eC_{\phi}}$ 

Meeron '70:

• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{C_{\phi}}$ 



• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{eC_{+}}$ 

## Meeron '70:

• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{C_{\phi}}$ 

## Helmuth et al. '20:

• strong spatial mixing and uniqueness of hard-sphere model for  $\lambda < \frac{2}{C_{dep}}$ 

## Michelen et al. '20:

• uniqueness and zero-freeness for repulsive potentials for  $\lambda < \frac{e}{C_{+}}$ 



• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{eC_{+}}$ 

## Meeron '70:

• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{C_{\phi}}$ 

## Helmuth et al. '20:

• strong spatial mixing and uniqueness of hard-sphere model for  $\lambda < \frac{2}{C_{dep}}$ 

## Michelen et al. '20:

• uniqueness and zero-freeness for repulsive potentials for  $\lambda < \frac{e}{C_{+}}$ 

## Michelen et al. 21:

• uniqueness and zero-freeness for repulsive potentials for  $\lambda < \frac{e}{\Delta_{\Phi}}$ 

## Michelen et al. '22:

• strong spatial mixing for bounded-range repulsive potentials for  $\lambda < \frac{e}{\Delta_{\phi}}$ Potential-weighted "connective constant":  $\Delta_{\phi} \leq C_{\phi}$ 



• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{eC_{+}}$ 

## Meeron '70:

• analyticity and uniquness for repulsive potentials for  $\lambda < \frac{1}{C_{\phi}}$ 

## Helmuth et al. '20:

• strong spatial mixing and uniqueness of hard-sphere model for  $\lambda < \frac{2}{C_{dep}}$ 

## Michelen et al. '20:

• uniqueness and zero-freeness for repulsive potentials for  $\lambda < \frac{e}{C_{\phi}}$ 

## Michelen et al. 21:

• uniqueness and zero-freeness for repulsive potentials for  $\lambda < \frac{e}{\Delta_{\Phi}}$ 

## Michelen et al. '22:

• strong spatial mixing for bounded-range repulsive potentials for  $\lambda < \frac{e}{\Delta_{\phi}}$ Potential-weighted "connective constant":  $\Delta_{\phi} \leq C_{\phi}$ 

best known bound is for the hard-sphere model:  $\Delta_{\phi_R} \leq (1 - (1/8)^{d+1}) C_{\phi_R}$ 



#### $\epsilon$ -approximation of partition functions:

| paper                     | potentials                           | regime                                | running time                                                                | type               |
|---------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|--------------------|
| Friedrich et al.<br>'21   | hard-sphere                          | $\lambda < e/C_{\varphi_R}$           | poly $(vol (V))$                                                            | randomized         |
| Friedrich et al.<br>• '22 | hard-sphere                          | $\lambda < e/C_{\varphi_R}$           | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight)^{4} ight)$          | randomized         |
|                           |                                      |                                       | $vol\left(\mathbb{V} ight)^{\mathcal{O}\left(log(vol(\mathbb{V})) ight)}$   | deterministic      |
| Friedrich et al.<br>• '22 | repulsive                            | $\lambda < \mathbf{e}/C_{\Phi}$       | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight)^{4} ight)$          | randomized         |
| Michelen et al.<br>'22    | repulsive with bounded range         | $\lambda < \textbf{e}/\Delta_\varphi$ | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight)^{3} ight)$          | randomized         |
| Jenssen et al.<br>'22     | smooth, repulsive with bounded range | $\lambda < {f e}/\Delta_{\varphi}$    | $vol\left(\mathbb{W} ight)^{\mathcal{O}\left(log(vol(\mathbb{V}))^2 ight)}$ | deterministic      |
| Anand et al.<br>'23       | repulsive with bounded range         | $\lambda < {f e}/\Delta_{\varphi}$    | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight) ight)$              | perfect<br>sampler |



#### $\epsilon$ -approximation of partition functions:

| paper                   | potentials                           | regime                                | running time                                                                | type               |
|-------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|--------------------|
| Friedrich et al.<br>'21 | hard-sphere                          | $\lambda < e/C_{\varphi_R}$           | poly $(vol (V))$                                                            | randomized         |
| Friedrich et al.<br>'22 | hard-sphere                          | $\lambda < e/C_{\varphi_R}$           | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight)^{4} ight)$          | randomized         |
|                         |                                      |                                       | $vol\left(\mathbb{V} ight)^{\mathcal{O}\left(log(vol(\mathbb{V})) ight)}$   | deterministic      |
| Friedrich et al.<br>'22 | repulsive                            | $\lambda < \mathbf{e}/C_{\Phi}$       | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight)^{4} ight)$          | randomized         |
| Michelen et al.<br>'22  | repulsive with bounded range         | $\lambda < \textbf{e}/\Delta_\varphi$ | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight)^{3} ight)$          | randomized         |
| Jenssen et al.<br>'22   | smooth, repulsive with bounded range | $\lambda < \textbf{e}/\Delta_\varphi$ | $vol\left(\mathbb{V} ight)^{\mathcal{O}\left(log(vol(\mathbb{V}))^2 ight)}$ | deterministic      |
| Anand et al.<br>'23     | repulsive with bounded range         | $\lambda < {f e}/\Delta_{\varphi}$    | $\widetilde{\mathcal{O}}\left(vol\left(\mathbb{V} ight) ight)$              | perfect<br>sampler |



**Basic idea:** 
$$(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$$



**Basic idea:** 
$$(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$$
 such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$ 











Hasso Plattner **Basic idea:** (V,  $\lambda$ , R)  $\xrightarrow{\rho \in \mathbb{R}_{>0}}$  ( $G_{\rho}$ ,  $\lambda_{\rho}$ ) such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{V}(\phi_{R}, \lambda)$  $V_{\rho}$ : contains vertex  $v_x$  for each grid point x  $\frac{1}{\rho}$  $E_{o}$ : edge between  $v_{x}, v_{y}$  iff  $x \neq y$  and dist(x,y) < R $\lambda_{\rho} = \frac{\lambda}{\rho^{d}} = \lambda \frac{\operatorname{vol}(\mathbb{V})}{|V_{\rho}|}$  $G_{
ho} = (V_{
ho}, E_{
ho})$ 



**Basic idea:**  $(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$  such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$  $V_{\rho}$ : contains vertex  $v_x$  for each grid point x  $\frac{1}{\rho}$  $E_{o}$ : edge between  $v_{x}, v_{y}$  iff  $x \neq y$  and dist(x,y) < R $\lambda_{\rho} = \frac{\lambda}{\rho^{d}} = \lambda \frac{\operatorname{vol}(\mathbb{V})}{|V_{\rho}|}$  $G_{
ho} = (V_{
ho}, E_{
ho})$ 

Hasso Plattner **Basic idea:**  $(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$  such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$  $V_{\rho}$ : contains vertex  $v_x$  for each grid point x  $\frac{1}{\rho}$  $E_{o}$ : edge between  $v_{x}, v_{y}$  iff  $x \neq y$  and dist(x,y) < R $\lambda_{\rho} = \frac{\lambda}{\rho^{d}} = \lambda \frac{\operatorname{vol}(\mathbb{V})}{|V_{\rho}|}$  $G_{
ho} = (V_{
ho}, E_{
ho})$ 



**Basic idea:**  $(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$  such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$  $V_{o}$ : contains vertex  $v_{x}$  for each grid point x $\frac{1}{\rho}$  $E_{o}$ : edge between  $v_{x}, v_{y}$  iff  $x \neq y$  and dist(x,y) < R $\lambda_{\rho} = \frac{\lambda}{\rho^{d}} = \lambda \frac{\operatorname{vol}(\mathbb{V})}{|V_{\rho}|}$  $G_{
ho} = (V_{
ho}, E_{
ho})$ 



**Basic idea:**  $(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$  such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$  $V_{o}$ : contains vertex  $v_{x}$  for each grid point x  $\left.\right\} \frac{1}{\rho}$  $E_{\rho}$ : edge between  $v_x, v_y$  iff  $x \neq y$  and dist (x, y) < R $\lambda_{\rho} = \frac{\lambda}{\rho^{d}} = \lambda \frac{\operatorname{vol}(\mathbb{V})}{|V_{\rho}|}$  $G_{
ho} = (V_{
ho}, E_{
ho})$ 



**Basic idea:**  $(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$  such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$  $V_{o}$ : contains vertex  $v_{x}$  for each grid point x  $\frac{1}{\rho}$  $E_{o}$ : edge between  $v_{x}, v_{y}$  iff  $x \neq y$  and dist (x, y) < R $G_{\rho} = (V_{\rho}, E_{\rho})$   $\lambda_{\rho} = \frac{\lambda}{\rho^d} = \lambda \frac{\operatorname{vol}(\mathbb{V})}{|V_{\rho}|}$ **intuition:**  $\lim_{\rho\to\infty} Z(G_{\rho}, \lambda_{\rho}) = \Xi_{\mathbb{V}}(\phi_R, \lambda)$ 

Hasso Plattner **Basic idea:**  $(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$  such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$  $V_{\rho}$ : contains vertex  $v_x$  for each grid point x  $\frac{1}{\rho}$  $E_{o}$ : edge between  $v_{x}, v_{y}$  iff  $x \neq y$  and dist (x, y) < R $G_{\rho} = (V_{\rho}, E_{\rho})$   $\lambda_{\rho} = \frac{\lambda}{\rho^d} = \lambda \frac{\operatorname{vol}(\mathbb{V})}{|V_{\rho}|}$ **intuition:**  $\lim_{\rho\to\infty} Z(G_{\rho}, \lambda_{\rho}) = \Xi_{\mathbb{V}}(\phi_R, \lambda)$ 

Friedrich et al. 2022:

$$\left|\Xi_{\mathbb{V}}\left(\phi_{R},\lambda\right)-Z\left(G_{\rho},\lambda_{\rho}\right)\right|\leq \frac{\mathsf{vol}(\mathbb{V})^{1/d}}{\rho}\cdot\Xi_{\mathbb{V}}\left(\phi_{R},\lambda\right)$$



**Basic idea:**  $(\mathbb{V}, \lambda, R) \xrightarrow{\rho \in \mathbb{R}_{>0}} (G_{\rho}, \lambda_{\rho})$  such that  $Z(G_{\rho}, \lambda_{\rho}) \approx \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$  $V_{\rho}$ : contains vertex  $v_x$  for each grid point x $\frac{1}{\rho}$  $E_{\rho}$ : edge between  $v_x, v_y$  iff  $x \neq y$  and dist (x, y) < R $G_{\rho} = (V_{\rho}, E_{\rho})$   $\lambda_{\rho} = \frac{\lambda}{\rho^d} = \lambda \frac{\text{vol}(V)}{|V_{\rho}|}$ **intuition:**  $\lim_{\rho \to \infty} Z(G_{\rho}, \lambda_{\rho}) = \Xi_{\mathbb{V}}(\phi_{R}, \lambda)$ 

Friedrich et al. 2022: 
$$\left|\Xi_{\mathbb{V}}(\phi_{R},\lambda)-Z\left(G_{\rho},\lambda_{\rho}\right)\right|\leq \frac{\operatorname{vol}(\mathbb{V})^{1/d}}{\rho}\cdot\Xi_{\mathbb{V}}(\phi_{R},\lambda)$$

## **Observations:**

1. for  $\rho \in \Theta\left(\text{vol}(\mathbb{V})^{1/d}\right)$  we have  $|V_{\rho}| \in \Theta\left(\text{vol}(\mathbb{V})^{2}\right)$  and  $\Delta_{G_{\rho}} \in \Theta\left(\text{vol}(\mathbb{V})\right)$ 2. for  $\lambda < \frac{e}{C_{\phi_{R}}}$  we have  $\lambda_{\rho} < \frac{e}{\Delta_{G_{\rho}}} \approx \lambda^{*}\left(\Delta_{G_{\rho}}\right)$ 



#### HPI Hasso Plattn Institu

## **Problems with general repulsive potentials:**

adversarial potentials soft interactions

adversarial potentials — randomize vertices soft interactions



adversarial potentials — randomize vertices soft interactions — randomize edges



 $\rightarrow$ 

adversarial potentials —

soft interactions

Given  $\mathbb{V}$ ,  $\phi$ ,  $\lambda$  and  $n \in \mathbb{N}_{\geq 1}$ 





V



adversarial potentials — randomize vertices soft interactions — randomize edges

Given  $\mathbb{V}$ ,  $\phi$ ,  $\lambda$  and  $n \in \mathbb{N}_{\geq 1}$ 



random graph model  $\zeta_{V,\phi}^{(n)}$ :

**x**: choose  $x_1, \dots, x_n \sim U(\mathbb{V})$  (uniform) i.i.d. **u**: for i < j choose  $u_{i,j} \sim U[0, 1]$  i.i.d.



randomize vertices

randomize edges

Given  $\mathbb{V}$ ,  $\phi$ ,  $\lambda$  and  $n \in \mathbb{N}_{\geq 1}$ 



**random graph model**  $\zeta_{\mathbb{V},\phi}^{(n)}$ : **x**: choose  $x_1, \dots, x_n \sim U(\mathbb{V})$  (uniform) i.i.d. **u**: for i < j choose  $u_{i,j} \sim U[0, 1]$  i.i.d. output  $G(\mathbf{x}, \mathbf{u})$ : connect  $v_i, v_j$  iff  $u_{i,j} \leq 1 - e^{-\phi(x_i, x_j)}$ 

Hasso

adversarial potentials soft interactions 

Given  $\mathbb{V}$ ,  $\phi$ ,  $\lambda$  and  $n \in \mathbb{N}_{>1}$  $X_i$  $u_{i,j} \leq 1 - \mathrm{e}^{-\phi(x_i,x_j)}$ Xi  $\mathbb{W}$ 

random graph model  $\zeta_{V,\phi}^{(n)}$ : **x**: choose  $x_1, \dots, x_n \sim U(\mathbb{V})$  (uniform) i.i.d. **u**: for i < j choose  $u_{i,j} \sim U[0, 1]$  i.i.d. output  $G(\mathbf{x}, \mathbf{u})$ : connect  $v_i$ ,  $v_j$  iff  $u_{i,j} \leq 1 - e^{-\phi(x_i, x_j)}$ 

weight: 
$$\lambda_n(\lambda) = \lambda \frac{\operatorname{vol}(\mathbb{V})}{n}$$

randomize vertices

randomize edges



Given  $\mathbb{V}$ ,  $\phi$ ,  $\lambda$  and  $n \in \mathbb{N}_{\geq 1}$ 



**random graph model**  $\zeta_{\mathbb{V},\phi}^{(n)}$ : **x**: choose  $x_1, \dots, x_n \sim U(\mathbb{V})$  (uniform) i.i.d. **u**: for i < j choose  $u_{i,j} \sim U[0, 1]$  i.i.d. output  $G(\mathbf{x}, \mathbf{u})$ : connect  $v_i$ ,  $v_j$  iff  $u_{i,j} \leq 1 - e^{-\phi(x_i, x_j)}$ 

weight: 
$$\lambda_n(\lambda) = \lambda \frac{\operatorname{vol}(\mathbb{W})}{n}$$

randomize vertices

randomize edges

What can we say about  $Z(G(\mathbf{x}, \mathbf{u}), \lambda_n(\lambda))$ ?

Hasso



# **Lemma:** $\mathbb{E}\left[Z\left(G(\boldsymbol{x},\boldsymbol{u}),\lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi,\lambda\right)$ for $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$



**Lemma:** 
$$\mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi, \lambda\right)$$
 for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ 

**Does**  $Z(G(x, u), \lambda_n(\lambda))$  **concentrate around its expectation?** 

**Observation:** function of independent random variables


**Lemma:** 
$$\mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi, \lambda\right)$$
 for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ 

**Observation:** function of independent random variables

**Idea:** McDiarmid's inequality (a.k.a. bounded differences)

**Requirement:** function needs to be *c*-Lipschitz w.r.t. Hamming distance



**Lemma:** 
$$\mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi, \lambda\right)$$
 for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ 

**Observation:** function of independent random variables

**Idea:** McDiarmid's inequality (a.k.a. bounded differences)



**Requirement:** function needs to be *c*-Lipschitz w.r.t. Hamming distance (counter example)



**Lemma:** 
$$\mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi, \lambda\right)$$
 for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ 

**Does**  $Z(G(x, u), \lambda_n(\lambda))$  **concentrate around its expectation?** 

**Observation:** function of independent random variables

**Observation:**  $Z(G(\mathbf{x}, \mathbf{u}), \lambda_n(\lambda))$  exhibits small relative differences  $(|Z - Z'| \le c(n) \cdot \min\{Z, Z'\} \text{ for } c(n) \to 0)$ 



**Lemma:** 
$$\mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi, \lambda\right)$$
 for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ 

**Does**  $Z(G(x, u), \lambda_n(\lambda))$  **concentrate around its expectation?** 

**Observation:** function of independent random variables

**Observation:**  $Z(G(\mathbf{x}, \mathbf{u}), \lambda_n(\lambda))$  exhibits small relative differences  $(|Z - Z'| \le c(n) \cdot \min\{Z, Z'\} \text{ for } c(n) \to 0)$ 

#### **Theorem:**

Let  $\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_m$  and  $f : \mathcal{Y} \to \mathbb{R}_{\geq 0}$ . If, for all  $\mathbf{y}, \mathbf{y}^{(i)} \in \mathcal{Y}$  that differ only at position *i*,

$$\left|f(\mathbf{y}) - f(\mathbf{y^{(i)}})\right| \leq c_i \min\{f(\mathbf{y}), f(\mathbf{y^{(i)}})\}$$

with  $C := \sum_i c_i^2 < 1$  then

$$\mathbb{P}_{\mathrm{v}}\left[\left|f - \mathbb{E}_{\mathrm{v}}\left[f\right]\right| \geq \varepsilon \mathbb{E}_{\mathrm{v}}\left[f\right]
ight] \leq C \cdot \varepsilon^{-2}$$

for all  $\varepsilon > 0$  and product distributions  $\nu$  on  $\mathcal{Y}$ .



**Lemma:** 
$$\mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi, \lambda\right)$$
 for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ 

**Observation:** function of independent random variables

**Observation:**  $Z(G(\mathbf{x}, \mathbf{u}), \lambda_n(\lambda))$  exhibits small relative differences  $(|Z - Z'| \le c(n) \cdot \min\{Z, Z'\} \text{ for } c(n) \to 0)$ 

#### **Theorem:**

Let  $\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_m$  and  $f : \mathcal{Y} \to \mathbb{R}_{\geq 0}$ . If, for all  $\mathbf{y}, \mathbf{y}^{(i)} \in \mathcal{Y}$  that differ only at position *i*,

$$\left|f(\mathbf{y}) - f(\mathbf{y^{(i)}})\right| \leq c_i \min\{f(\mathbf{y}), f(\mathbf{y^{(i)}})\}$$

with  $C := \sum_i c_i^2 < 1$  then

$$\mathbb{P}_{\mathrm{v}}\left[\left|f-\mathbb{E}_{\mathrm{v}}\left[f
ight]
ight|\geq arepsilon\mathbb{E}_{\mathrm{v}}\left[f
ight]
ight]\leq C\cdotarepsilon^{-2}$$

for all  $\varepsilon > 0$  and product distributions  $\nu$  on  $\mathcal{Y}$ . Computational phase transitions and the hard-core model



**Lemma:** 
$$\mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi, \lambda\right)$$
 for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ 

**Observation:** function of independent random variables

**Observation:**  $Z(G(\mathbf{x}, \mathbf{u}), \lambda_n(\lambda))$  exhibits small relative differences  $(|Z - Z'| \le c(n) \cdot \min\{Z, Z'\} \text{ for } c(n) \to 0)$ 

#### **Theorem:** Corollary of Efron-Stein inequality:

Let  $\mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_m$  and  $f : \mathcal{Y} \to \mathbb{R}_{\geq 0}$ . If, for all  $\mathbf{y}, \mathbf{y}^{(i)} \in \mathcal{Y}$  that differ only at position *i*,

$$\left|f(\mathbf{y}) - f(\mathbf{y^{(i)}})\right| \leq c_i \min\{f(\mathbf{y}), f(\mathbf{y^{(i)}})\}$$

with  $C := \sum_i c_i^2 < 1$  then

$$\mathbb{P}_{\mathrm{v}}\left[\left|f-\mathbb{E}_{\mathrm{v}}\left[f
ight]
ight|\geq arepsilon\mathbb{E}_{\mathrm{v}}\left[f
ight]
ight]\leq C\cdotarepsilon^{-2}$$

for all  $\epsilon > 0$  and product distributions  $\nu$  on  $\mathcal{Y}$ .



**Theorem:** For  $n \ge \Theta \left( \operatorname{vol}(\mathbb{V})^2 \delta^{-1} \varepsilon^{-2} \right)$  it holds that  $\mathbb{P} \left[ \left| Z \left( G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda) \right) - \mathbb{E} \left[ Z \left( G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda) \right) \right] \right| \ge \varepsilon \mathbb{E} \left[ Z \left( G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda) \right) \right] \le \delta.$  Repulsive potentials: assembling the pieces



**Theorem:** For  $n \ge \Theta\left(\operatorname{vol}(\mathbb{V})^2 \delta^{-1} \varepsilon^{-2}\right)$  it holds that  $\mathbb{P}\left[\left|Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right) - \mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right]\right| \ge \varepsilon \mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right] \le \delta.$ 

Recall that  $\mathbb{E}\left[Z\left(G(\boldsymbol{x},\boldsymbol{u}),\lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi,\lambda\right)$  for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ .

**Corollary:** For  $n \ge \Theta\left(\operatorname{vol}(\mathbb{V})^2 \delta^{-1} \varepsilon^{-2}\right)$  it holds that  $\mathbb{P}\left[\left|Z\left(G, \lambda_n(\lambda)\right) - \Xi_{\mathbb{V}}\left(\phi, \lambda\right)\right| \ge \varepsilon \Xi_{\mathbb{V}}\left(\phi, \lambda\right)\right] \le \delta.$  Repulsive potentials: assembling the pieces



**Theorem:** For  $n \ge \Theta\left(\operatorname{vol}(\mathbb{V})^2 \delta^{-1} \varepsilon^{-2}\right)$  it holds that  $\mathbb{P}\left[\left|Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right) - \mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right]\right| \ge \varepsilon \mathbb{E}\left[Z\left(G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda)\right)\right]\right] \le \delta.$ 

Recall that  $\mathbb{E}\left[Z\left(G(\boldsymbol{x},\boldsymbol{u}),\lambda_{n}(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi,\lambda\right)$  for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^{2}\right)$ .

**Corollary:** For  $n \ge \Theta\left(\operatorname{vol}(\mathbb{V})^2 \delta^{-1} \varepsilon^{-2}\right)$  it holds that  $\mathbb{P}\left[\left|Z\left(G, \lambda_n(\lambda)\right) - \Xi_{\mathbb{V}}\left(\phi, \lambda\right)\right| \ge \varepsilon \Xi_{\mathbb{V}}\left(\phi, \lambda\right)\right] \le \delta.$ 

By Chernoff's inequality:  $\lambda_n(\lambda) < \lambda^* (\Delta_G)$  (w.h.p.) if  $\lambda < \frac{e}{C_{\phi}}$ 



**Theorem:** For  $n \ge \Theta \left( \operatorname{vol}(\mathbb{V})^2 \delta^{-1} \varepsilon^{-2} \right)$  it holds that  $\mathbb{P} \left[ \left| Z \left( G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda) \right) - \mathbb{E} \left[ Z \left( G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda) \right) \right] \right] \ge \varepsilon \mathbb{E} \left[ Z \left( G(\boldsymbol{x}, \boldsymbol{u}), \lambda_n(\lambda) \right) \right] \le \delta.$ 

Recall that  $\mathbb{E}\left[Z\left(G(\boldsymbol{x},\boldsymbol{u}),\lambda_n(\lambda)\right)\right] \approx \Xi_{\mathbb{V}}\left(\phi,\lambda\right)$  for  $n \geq \Theta\left(\operatorname{vol}\left(\mathbb{V}\right)^2\right)$ .

**Corollary:** For  $n \ge \Theta\left(\operatorname{vol}(\mathbb{V})^2 \delta^{-1} \varepsilon^{-2}\right)$  it holds that  $\mathbb{P}\left[\left|Z\left(G, \lambda_n(\lambda)\right) - \Xi_{\mathbb{V}}\left(\phi, \lambda\right)\right| \ge \varepsilon \Xi_{\mathbb{V}}\left(\phi, \lambda\right)\right] \le \delta.$ 

By Chernoff's inequality:  $\lambda_n(\lambda) < \lambda^* (\Delta_G)$  (w.h.p.) if  $\lambda < \frac{e}{C_{\phi}}$ 

# Algorithm (sketch):

1. draw 
$$G \sim \zeta^{(n)}_{\mathbb{V}, \phi}$$
 for  $n \in \Theta\left(\mathsf{vol}\,(\mathbb{V})^2\right)$  sufficiently large

2. if 
$$\lambda_n(\lambda) < \lambda^*(\Delta_G)$$
: output an approx. of  $Z(G, \lambda_n(\lambda))$  else: goto 1



## **Efficient perfect sampling for GPPs:**

- Huber '12: perfect sampler for finite-range and repulsive if  $\lambda < \frac{2}{C_{\phi}}$
- Guo et al. '18: perfect sampler for hard-sphere model if  $\lambda < \frac{1}{\sqrt{2}C_{\Phi_R}}$



## **Efficient perfect sampling for GPPs:**

- Huber '12: perfect sampler for finite-range and repulsive if  $\lambda < \frac{2}{C_{+}}$
- Guo et al. '18: perfect sampler for hard-sphere model if  $\lambda < \frac{1}{\sqrt{2}C_{\phi_R}}$

## Bounded-range repulsive potentials under SSM

(with Konrad Anand, Marcus Pappik and Will Perkins) Perfect sampler if  $\lambda < \frac{e}{\Delta_{\Phi}}$  in  $\widetilde{O}(vol(\mathbb{V}))$ 



## **Efficient perfect sampling for GPPs:**

- Huber '12: perfect sampler for finite-range and repulsive if  $\lambda < \frac{2}{C_{\phi}}$
- Guo et al. '18: perfect sampler for hard-sphere model if  $\lambda < \frac{1}{\sqrt{2}C_{\phi_R}}$

## Bounded-range repulsive potentials under SSM

(with Konrad Anand, Marcus Pappik and Will Perkins) Perfect sampler if  $\lambda < \frac{e}{\Delta_{\phi}}$  in  $\widetilde{O}(vol(\mathbb{V}))$ 

Idea: adapt perfect samping algorithm for discrete spin systems by Feng et al. '21 and combine it with Bernoulli factories