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Bernoulli (bond) percolation

• Bernoulli percolation has first been investigated by chemists
Flory and Stockmayer in the 1940s investigating the gelation of
polymers, and then mathematically by Broadbent and
Hammersley [BH57] in their research on gas masks;

• the model: each bond in Zd is chosen to be “open” with
probability p ∈ (0,1), and “closed” otherwise (in an i.i.d. fashion);

• there exists pc ∈ (0,1) such that for p ∈ (0,pc) there exist only
bounded connected component of open bonds, whereas for
p ∈ (pc ,1) there exists a (unique) unbounded connected
component;
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Bernoulli bond percolation (p = 0.4)
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Bernoulli bond percolation (p = 0.5)
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Bernoulli bond percolation (p = 0.6)
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Bernoulli percolation on Zd well-understood in
off-critical regime

For p ∈ (0,pc):
• sharp phase transition / exponential decay of radius function

[Men86] (cf. also [AB87]):

ψBer(p,n) := Pp(0↔ ∂B(0,n)) ≤ e−cpn;

•  finite expected cluster size χ(p) := Ep[|C0|] <∞, with C0 the
open cluster of the origin;

For p ∈ (pc ,1):
• uniqueness of infinite open cluster [AKN87] / [BK89];
• chemical distance [AP96];
• (stretched) exponential decay of radius / volume of finite open

clusters [CCG+89] / [ADS80] ;
For further background see Stauffer & Aharony [SA18], Grimmett
[Gri99].
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(Near-)critical percolation

For p ≈ pc , understanding has been obtained in two dimensions as
well as in high dimensions:
• in 2d planar Bernoulli (bond) percolation, one has pc = 1

2 [Kes75]
and there is no percolation at pc [Har60];

• in planar settings of hexagonal / triangular lattice, critical
exponents for Bernoulli percolation have been computed in
[SW01] using conformal invariance and SLE;
e.g., for percolation function θ(p) := Pp(0↔∞), one has

θ(p) = (p − 1/2)
5
36 +o(1) as p ↓ pc = 1/2,

so critical exponent for θ is β = 5/36 in this setting;
• [HS90] used lace expansion to compute critical exponents in

high dimensions (mean-field, cf. behavior on trees);
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(Near-)critical percolation – physicists know more
For p close to pc , correlation length ξ = ξ(p) = |p − pc |−ν describes
the natural inherent length scale.

On smaller scales L� ξ, the system looks critical, while for L� ξ its
non-criticality becomes apparent. E.g., for p ↓ pc , there is D < d such
that
• for r � ξ objects are expected to be fractal like

|C0 ∩ B(r)| ≈ rD

• for r � ξ,

|C0 ∩ B(r)| ≈ ξD(L/ξ)d

While the above is conjectured to be true for rather general
percolation models, in Zd , 3 ≤ d ≤ 10, however, far from determining
critical exponents, in Bernoulli percolation it is not even proven that
(as expected)

θ(pc) = 0.
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Gaussian free field

• G vertex set of a transient countably infinite graph with
symmetric weights λx,y ;

• SRW on G is the MC X with transition matrix

P(x , y) =
λx,y

λx
,

where λx =
∑

z∼x λx,z .

Definition

The GFF is the centered Gaussian process (ϕx ), x ∈ G, with

Cov(ϕx , ϕy ) = g(x , y) =
1
λy

∑
n≥0

Pn(x , y), ∀x , y ∈ G.
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Gaussian free field

• on finite subset of Zd with edge set E , density with respect to
product Lebesgue measure (modulo boundary conditions) is

∝
∏

(x,y)∈E

exp
{
−

(ϕx − ϕy )2

2σ2
x,y

}
.

 can be interpreted as d-dimensional analogue of Brownian
motion;

• strong correlations

Cov(ϕx , ϕy ) = g(x , y) ∼ cd‖x − y‖2−d
2

in Zd , as ‖x − y‖2 →∞.
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Gaussian free field

Figure: A realization of a (2d) Gaussian free field on a box with zero
boundary condition

(By L. Coquille)
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Percolation of GFF level sets

Introduce excursion sets

E≥h(G) := {x ∈ G : ϕx ≥ h} (= ϕ−1([h,∞)))

as percolation model with long-range correlations.

Critical parameter / level:

h∗(G) := inf
{

h ∈ R : P
(
E≥h(G) has unbounded cluster

)
= 0

}
,

first introduced in [LS86] on Zd ;
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Previous (off-critical) results

• [BLM87]: h∗(Zd ) ≥ 0 for all d ≥ 3, and h∗(Z3) <∞;
• [RS13]:

h∗(Zd ) <∞ for all d ≥ 3, h∗(Zd ) > 0 for d large;

• [DPR18b]:
h∗(Zd ) > 0 for all d ≥ 3;

• [DPR18a]: h(G) > 0 for “regular G with dimension > 2”;
 via isomorphism theorems also settles non-trivial phase
transition (u∗(G) > 0) for vacant set percolation of Random
Interlacements, confirming a conjecture of [Szn12];

• [DCGRS20]: Sharp phase transition for GFF level-set percolation
in Zd , d ≥ 3;
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Previous results

S × Z, with S the Sierpinski triangle;

(Picture by Beojan Stanislaus, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=8862246)

https://commons.wikimedia.org/w/index.php?curid=8862246
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Sierpinski carpet

• the d-dimensional Sierpinski carpet, d ≥ 3;

(Picture by Josh Greig,

https://commons.wikimedia.org/wiki/File:Sierpinski_carpet.png)

https://commons.wikimedia.org/wiki/File:Sierpinski_carpet.png
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A continuous model

Surprisingly, for an extension of the GFF, explicit computations are
possible:  “Cable system G̃” (goes back to [Var85] at least)

G̃ is obtained by adding line segments between neighboring vertices:
for x , y ∈ G neighboring vertices, on the line segment Ix,y connecting
x to y , conditionally on ϕx and ϕy , the GFF (ϕ̃z), z ∈ Ix,y , behaves
like a Brownian bridge “brings in analysis”.

Then an edge {x , y} is defined to be open iff Brownian bridge from
ϕx to ϕy stays positive; have explicit formula

P
(
BB from ϕx to ϕy stays above h |ϕx , ϕy

)
= 1− exp

{
2λx,y (ϕx ∨ h)(ϕy ∨ h)

}
.

 alternative interpretation as bond percolation model with
long-range correlations.
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Objects of interest

Want to obtain near-critical information on the following objects:

• Excursion sets Ẽ≥h := {x ∈ G̃ : ϕx ≥ h};

• cluster of “the origin” K̃h := {x ∈ G̃ : 0 Ẽ≥h

↔ x};

• (non-)percolation function θ̃(h) := P(K̃h is bounded);

(
 define critical parameter h̃∗ := inf{h ∈ R : θ̃(h) = 1}

)
• truncated radius function
ψ̃(h,n) := P

(
0 Ẽ≥h

↔ ∂B(0,n), K̃h is bounded
)
;

• truncated two-point function τ̃ tr
h (0, x) := P(x ∈ K̃h, K̃h bounded);
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Some previous work

• At level h = 0, the (truncated) two-point function τ tr
h=0(0, x)

admits an exact formula, first observed in [Lup16]:

τ̃ tr
0 (0, x) =

2
π

arcsin
(

g(0,x)√
g(0,0)g(x,x)

)
(� d(0, x)2−d in Zd ),

as d(0, x)→∞.

• For G̃ = Z̃3, [DW18] obtain bounds for truncated radius function
ψ(0, r):

cr−
1
2 ≤ ψ̃(0, r) ≤ C

( r
log r

)− 1
2
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Cluster capacity law

Crucial quantity in our investigations: For K ⊂ G, its capacity is

cap(K ) :=
∑

x∈∂K

λxPx (H̃K =∞); e.g. cap(B(0, r)) � rν .

Theorem [D-Prévost-Rodriguez] 2022

For all reasonably nice G̃, all h ∈ R, and under P( · , ∅ 6=
K̃hbounded), the random variable cap(K̃h) has density given
by

%h(t) =
1

2πt
√

g(0,0)(t − g(0,0)−1)
exp

{
− h2t

2

}
1t≥g(0,0)−1 .
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What happens close to / at the critical point h̃∗ = 0?
At level h close to (but different from) h∗(= 0), the

correlation length ξ = ξ(h) = |h|−νc

is expected to describe the natural inherent length scale of the
system. νc ∈ (0,∞) is the critical exponent for the correlation length.
More generally, close to the critical point h̃∗ = 0, physicists expect
observables to be described via ‘power functions’:

1− θ̃(h) ≈ |h|β some β ∈ (0,∞);

 can define critical exponent β := lim
h↑0

log(1− θ̃(h))/ log(|h|).

Similarly, for the truncated radius function on conjectures that

ρ := lim
n→∞

log(ψ̃(0,n))/ log(n) exists.
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Critical exponents
Using (among other things) that unbounded, closed, connected sets
have infinite capacity, we get the following.

Corollary [D-Prévost-Rodriguez] 2022

θ̃(h) = 2Φ(h ∧ 0) for all h ∈ R,

where Φ(t) = P(ϕ0 ≤ t). In particular,

h̃∗ = 0 and θ̃(0) = 1.

Furthermore, θ̃ : R→ [0,1] is continuous, and

lim
h↑0

1− θ̃(h)

|h|
=

√
2

πg(0,0)
;  β = 1.

(recall that β := limh↑0 log(1− θ̃(h))/ log(|h|), if it exists)
See Prévost [Pré21] for graphs with h̃∗ 6= 0;
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Standing assumptions

• α-Ahlfors regular volume growth

crα ≤ λ(B(x , r)) ≤ Crα ∀x ∈ G, r ≥ 1;

• regular Green function decay

c ≤g(x , x) ≤ C,

cd(x , y)−ν ≤g(x , y) ≤ Cd(x , y)−ν ∀x 6= y ∈ G;

• technical assumptions: uniform ellipticity λx,y/λx ≥ c and
existence of a certain infinite geodesic;
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Critical exponents

Set ξ(h) := |h|−2/ν , which will play the role of the correlation length.

Theorem [D-Prévost-Rodriguez] 2023

For ν < 1, h ∈ R and r ≥ 1:

c3ψ̃(0, r) exp
{
− c4(r/ξ(h))ν

}
≤ ψ̃(h, r) ≤ ψ̃(0, r) exp

{
− c5(r/ξ(h))ν

}
.

For ν ≥ 1, h ∈ R and r ≥ 1:

ψ̃(h, r) ≤ ψ̃(0, r) ·

exp
{
− c5

(r/ξ(h))
log(r∨2)

}
, if ν = 1,

exp
{
− c5rh2}, if ν > 1.

There exists c6 ∈ (0, 1) such that for ν = 1 and all |h| ≤ c,

ψ̃(h, r) ≥ c3ψ(0, r) · exp
{
− c4

(r/ξ(h))

log((r/ξ(h)) ∨ 2)

}
, if r

ξ(h)
/∈ (1, (log ξ(h))c6 ).
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Critical exponents

Can derive similar estimates for the truncated two-point function
τ tr

h (0, x)

 yields the following corollary, consistent with predictions of Weinrib
& Halperin [WH83, Wei84] (“disorder relevance” (e.g. for Zα and
α < 6)).

Corollary [D-Prévost-Rodriguez] 2023

For ν ≤ 1,

γ
def.
= − lim

h→0

log(E[|Kh|1{|Kh| <∞}])
log |h|

exists and
γ =

2α
ν
− 2

(
= νc(2− η)

)
.

For ν < 1 one has the stronger result

E[|Kh|1{|Kh| <∞}] � |h|−
2α
ν

+2 as h→ 0.
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Critical exponents [DPR23]
Exponent αc β γ δ ∆ ρ νc η

Value 2 − 2d
ν

1 2d
ν
− 2 2d

ν
− 1 2d

ν
− 1 2

ν
2
ν

ν − d + 2

Bernoulli Z3 ≈ −0.63 ≈ 0.41 ≈ 1.7 ≈ 5.3 ≈ 2.2 ≈ 2.1 ≈ 0.87 ≈ −0.06

Can determine red exponents, use scaling relations to conjecture further critical exponents:

2− αc = γ + 2β = β(δ + 1), ∆ = δβ (scaling relations);

dρ = δ + 1, dνc = 2− αc (hyperscaling relations);

Cheat sheet:

β ! percolation probability

ρ ! radius function

νc ! correlation length

αc ! clusters per vertex

γ ! truncated cluster size

δ ! cluster volume

∆ ! cluster moments

η ! truncated two-point function.

N.b.:
• valid for ν ∈ (0, 1] except for β and η,

which hold for all ν > 0;
• as conjectured, critical exponents do not

depend on the microscopic structure of the
underlying graph universality;

• For diffusive RW, for d ↑ 6 (or ν ↑ 4,
equivalently), exponent converge to
respective mean-field values for Bernoulli
percolation (β = γ = 1, ∆ = δ = 2,
η = 0);
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Strategy for upper & lower bounds on radius function

Want to show: For ν ≤ 1, h ∈ R and r ≥ 1:

c3ψ(0, r) exp
{
− c4(r/ξ(h))ν

}
≤ ψ(h, r) ≤ ψ(0, r) exp

{
− c5(r/ξ(h))ν

}
.

ν ≤ 1 =⇒ cluster radius can be understood in terms of cluster capacity.

To show the upper bound, use differential inequalities to infer upper bounds of the form

ψ(h, r) ≤ ψ(0, r)e−ch2fν (r),

with fν(r) = rν for ν < 1 (logarithmic corrections for ν = 1) and recalling
ξ(h) = |h|−2/ν .

Tool to obtain differential inequalities: Cameron Martin theorem allows to compare
capacities of Kh at different levels h; then use strong Markov property to derive the
general formula comparing well-behaved functionals of GFF at different shifts.
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Strategy for lower bounds on radius function (ν ≤ 1)

Main tools:
• Change of measure / entropy formula: allows for comparing original GFF with a

GFF shifted on a compact set;

• isomorphism theorems: coupling two GFFs (ϕ̃x ), x ∈ G̃, (ψ̃x )x∈G̃ , and

interlacement local times (˜̀x,u)x∈G̃ , at level u > 0,

ϕ̃x +
√

2u = ψ̃x 1x /∈C̃∞u
+

√
ψ̃2

x + 2˜̀x,u1x∈C̃∞u
,

with C̃∞u := {x ∈ G̃ : ˜̀x,u > 0}, and (ψ̃x )x∈G̃ is independent from (˜̀x,u)x∈G̃ ;

 connections in E≥h = {x ∈ G̃ : ϕ̃x ≥ h}, h < 0, can be made using random
interlacements Iu = {x ∈ G̃ : ˜̀x,u > 0};

• critical local uniqueness for Random Interlacements: with asymptotically
non-vanishing probability and for u ≈ R−ν , there is a unique giant connected
component of Ĩu in ball B(0,R);
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Strategy for lower bound on the radius function (ν ≤ 1)

0

Bξ

K̃hξ

Induced shift (in Bσξ)

Exploration

Iu,1−+

xk

`
2

∂Br

Iu,2

Forced shift (in L′
`)

(` ≥ ξ)B√
σ′`

Bσ′`

Bσξ

L′
` (dotted region)

1.) explore cluster K̃h
ξ (h ∈ (0, c)), which extends to

capacity at least cξν with probability ≥ ξ−ν/2;

(case h ∈ (−c, 0) follows by symmetry)
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Strategy for lower bound on the radius function (ν ≤ 1)

0

Bξ

K̃hξ

Induced shift (in Bσξ)

Exploration

Iu,1−+

xk

`
2

∂Br

Iu,2

Forced shift (in L′
`)

(` ≥ ξ)B√
σ′`

Bσ′`

Bσξ

L′
` (dotted region)

2.) cluster K̃h
ξ is “felt” by the harmonic extension

within ball B(0, σξ) (σ large constant); make

connection above level h using isomorphism;
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Strategy for lower bound on the radius function (ν ≤ 1)

0

Bξ

K̃hξ

Induced shift (in Bσξ)

Exploration

Iu,1−+

xk

`
2

∂Br

Iu,2

Forced shift (in L′
`)

(` ≥ ξ)B√
σ′`

Bσ′`

Bσξ

L′
` (dotted region)

3.) on L′`, make a connection in E≥h for slightly

shifted GFF (using isomorphism and sharp local

uniqueness) at const. probability; pay price

of ψ(0, r)e
−c (r/ξ)ν∧1

log(r/ξ)1ν=1 for shift;
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