# Percolation and long-range correlations

Alexander Drewitz

2023 / 07 / 31

with A. Prévost (U Geneva) and P.-F. Rodriguez (Imperial College)



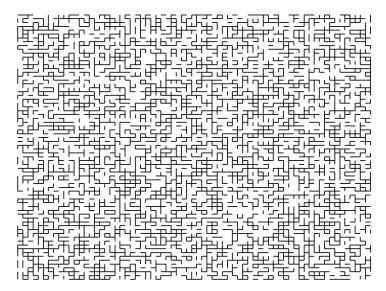


# Bernoulli (bond) percolation

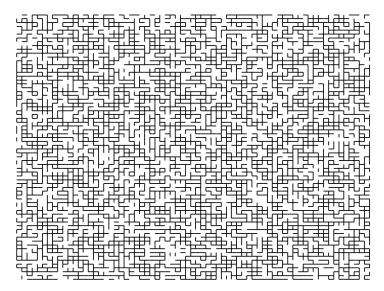
- Bernoulli percolation has first been investigated by chemists
   Flory and Stockmayer in the 1940s investigating the gelation of
   polymers, and then mathematically by Broadbent and
   Hammersley [BH57] in their research on gas masks;
- the model: each bond in  $\mathbb{Z}^d$  is chosen to be "open" with probability  $p \in (0,1)$ , and "closed" otherwise (in an i.i.d. fashion);
- there exists  $p_c \in (0,1)$  such that for  $p \in (0,p_c)$  there exist only bounded connected component of open bonds, whereas for  $p \in (p_c,1)$  there exists a (unique) unbounded connected component;

# Bernoulli bond percolation (p = 0.4)

## Bernoulli bond percolation (p = 0.5)



### Bernoulli bond percolation (p = 0.6)



# Bernoulli percolation on $\mathbb{Z}^d$ well-understood in off-critical regime

For  $p \in (0, p_c)$ :

 sharp phase transition / exponential decay of radius function [Men86] (cf. also [AB87]):

$$\psi_{\mathrm{Ber}}(p,n) := \mathbb{P}_p(0 \leftrightarrow \partial B(0,n)) \leq e^{-c_p n};$$

•  $\rightsquigarrow$  finite expected cluster size  $\chi(p) := \mathbb{E}_p[|\mathcal{C}_0|] < \infty$ , with  $\mathcal{C}_0$  the open cluster of the origin;

For  $p \in (p_c, 1)$ :

- uniqueness of infinite open cluster [AKN87] / [BK89];
- chemical distance [AP96];
- (stretched) exponential decay of radius / volume of finite open clusters [CCG<sup>+</sup>89] / [ADS80] :

For further background see Stauffer & Aharony [SA18], Grimmett [Gri99]. 4 D > 4 P > 4 E > 4 E > 9 Q P



### (Near-)critical percolation

For  $p \approx p_c$ , understanding has been obtained in two dimensions as well as in high dimensions:

- in 2*d* planar Bernoulli (bond) percolation, one has  $p_c = \frac{1}{2}$  [Kes75] and there is no percolation at  $p_c$  [Har60];
- in planar settings of hexagonal / triangular lattice, critical exponents for Bernoulli percolation have been computed in [SW01] using conformal invariance and SLE; e.g., for *percolation function*  $\theta(p) := \mathbb{P}_p(0 \leftrightarrow \infty)$ , one has

$$\theta(p) = (p - 1/2)^{\frac{5}{36} + o(1)}$$
 as  $p \downarrow p_c = 1/2$ ,

so critical exponent for  $\theta$  is  $\beta = 5/36$  in this setting;

 [HS90] used lace expansion to compute critical exponents in high dimensions (mean-field, cf. behavior on trees);

### (Near-)critical percolation – physicists know more

For p close to  $p_c$ , *correlation length*  $\xi = \xi(p) = |p - p_c|^{-\nu}$  describes the natural inherent length scale.

On smaller scales  $L \ll \xi$ , the system looks critical, while for  $L \gg \xi$  its non-criticality becomes apparent. E.g., for  $p \downarrow p_c$ , there is D < d such that

• for  $r \ll \xi$  objects are expected to be fractal like

$$|\mathcal{C}_0 \cap B(r)| \approx r^D$$

• for  $r \gg \xi$ ,

$$|\mathcal{C}_0 \cap B(r)| \approx \xi^D (L/\xi)^d$$

While the above is conjectured to be true for rather general percolation models, in  $\mathbb{Z}^d$ ,  $3 \le d \le 10$ , however, far from determining critical exponents, in Bernoulli percolation it is not even proven that (as expected)

$$\theta(p_c)=0.$$

### (Near-)critical percolation – physicists know more

For p close to  $p_c$ , *correlation length*  $\xi = \xi(p) = |p - p_c|^{-\nu}$  describes the natural inherent length scale.

On smaller scales  $L \ll \xi$ , the system looks critical, while for  $L \gg \xi$  its non-criticality becomes apparent. E.g., for  $p \downarrow p_c$ , there is D < d such that

• for  $r \ll \xi$  objects are expected to be fractal like

$$|\mathcal{C}_0 \cap B(r)| \approx r^D$$

• for  $r \gg \xi$ ,

$$|\mathcal{C}_0 \cap B(r)| \approx \xi^D (L/\xi)^d$$

While the above is conjectured to be true for rather general percolation models, in  $\mathbb{Z}^d$ ,  $3 \le d \le 10$ , however, far from determining critical exponents, in Bernoulli percolation it is not even proven that (as expected)

$$\theta(p_c)=0.$$

#### Gaussian free field

- G vertex set of a transient countably infinite graph with symmetric weights λ<sub>x,y</sub>;
- SRW on G is the MC X with transition matrix

$$P(x,y)=\frac{\lambda_{x,y}}{\lambda_x},$$

where  $\lambda_{x} = \sum_{z \sim x} \lambda_{x,z}$ .

#### Definition

The GFF is the centered Gaussian process  $(\varphi_x)$ ,  $x \in G$ , with

$$Cov(\varphi_x, \varphi_y) = g(x, y) = \frac{1}{\lambda_y} \sum_{n>0} P^n(x, y), \quad \forall x, y \in G.$$

#### Gaussian free field

• on finite subset of  $\mathbb{Z}^d$  with edge set E, density with respect to product Lebesgue measure (modulo boundary conditions) is

$$\propto \prod_{(x,y)\in \mathcal{E}} \exp\Big\{-rac{(arphi_x-arphi_y)^2}{2\sigma_{x,y}^2}\Big\}.$$

 $\rightarrow$  can be interpreted as *d*-dimensional analogue of Brownian motion;

strong correlations

$$\mathsf{Cov}(\varphi_{\mathsf{X}}, \varphi_{\mathsf{y}}) = g(\mathsf{X}, \mathsf{y}) \sim c_{\mathsf{d}} \|\mathsf{X} - \mathsf{y}\|_2^{2-\mathsf{d}}$$

in  $\mathbb{Z}^d$ , as  $||x - y||_2 \to \infty$ .

### Gaussian free field

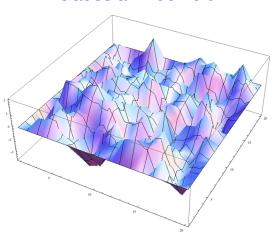


Figure: A realization of a (2d) Gaussian free field on a box with zero boundary condition

(By L. Coquille)



#### Percolation of GFF level sets

Introduce excursion sets

$$E^{\geq h}(G) := \{x \in G : \varphi_x \geq h\} \quad (= \varphi^{-1}([h,\infty)))$$

as percolation model with long-range correlations.

Critical parameter / level:

$$h_*(G) := \inf \big\{ h \in \mathbb{R} \, : \, \mathbb{P} \big( E^{\geq h}(G) \text{ has unbounded cluster} \big) = 0 \big\},$$

first introduced in [LS86] on  $\mathbb{Z}^d$ ;

### Previous (off-critical) results

- [BLM87]:  $h_*(\mathbb{Z}^d) \ge 0$  for all  $d \ge 3$ , and  $h_*(\mathbb{Z}^3) < \infty$ ;
- [RS13]:

$$h_*(\mathbb{Z}^d) < \infty$$
 for all  $d \ge 3$ ,  $h_*(\mathbb{Z}^d) > 0$  for  $d$  large;

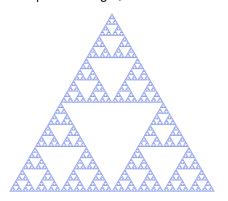
• [DPR18b]:

$$h_*(\mathbb{Z}^d) > 0$$
 for all  $d \geq 3$ ;

- [DPR18a]:  $\overline{h}(G) > 0$  for "regular G with dimension > 2";  $\rightsquigarrow$  via isomorphism theorems also settles non-trivial phase transition ( $u_*(G) > 0$ ) for vacant set percolation of Random Interlacements, confirming a conjecture of [Szn12];
- [DCGRS20]: Sharp phase transition for GFF level-set percolation in Z<sup>d</sup>, d > 3;

#### Previous results

#### $S \times \mathbb{Z}$ , with S the Sierpinski triangle;



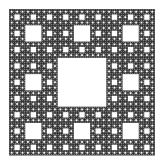
(Picture by Beojan Stanislaus, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=8862246)



### Sierpinski carpet

• the *d*-dimensional Sierpinski carpet,  $d \ge 3$ ;



(Picture by Josh Greig,

https://commons.wikimedia.org/wiki/File:Sierpinski\_carpet.png)



### A continuous model

Surprisingly, for an extension of the GFF, explicit computations are possible:  $\leadsto$  "Cable system  $\widetilde{\mathcal{G}}$ " (goes back to [Var85] at least)

 $\widetilde{\mathcal{G}}$  is obtained by adding line segments between neighboring vertices: for  $x,y\in G$  neighboring vertices, on the line segment  $I_{x,y}$  connecting x to y, conditionally on  $\varphi_x$  and  $\varphi_y$ , the GFF  $(\widetilde{\varphi}_z)$ ,  $z\in I_{x,y}$ , behaves like a Brownian bridge  $\leadsto$  "brings in analysis".

Then an edge  $\{x,y\}$  is defined to be open iff Brownian bridge from  $\varphi_x$  to  $\varphi_y$  stays positive; have explicit formula

$$\mathbb{P}(\mathsf{BB} \mathsf{ from } \varphi_{\mathsf{X}} \mathsf{ to } \varphi_{\mathsf{Y}} \mathsf{ stays above } h \, | \, \varphi_{\mathsf{X}}, \varphi_{\mathsf{Y}})$$
$$= 1 - \exp \left\{ 2\lambda_{\mathsf{X},\mathsf{Y}}(\varphi_{\mathsf{X}} \vee h)(\varphi_{\mathsf{Y}} \vee h) \right\}.$$

→ alternative interpretation as bond percolation model with long-range correlations.

#### A continuous model

Surprisingly, for an extension of the GFF, explicit computations are possible:  $\leadsto$  "Cable system  $\widetilde{\mathcal{G}}$ " (goes back to [Var85] at least)

 $\widetilde{\mathcal{G}}$  is obtained by adding line segments between neighboring vertices: for  $x,y\in G$  neighboring vertices, on the line segment  $I_{x,y}$  connecting x to y, conditionally on  $\varphi_x$  and  $\varphi_y$ , the GFF  $(\widetilde{\varphi}_z), z\in I_{x,y}$ , behaves like a Brownian bridge  $\leadsto$  "brings in analysis".

Then an edge  $\{x,y\}$  is defined to be open iff Brownian bridge from  $\varphi_x$  to  $\varphi_y$  stays positive; have explicit formula

$$\mathbb{P}(\mathsf{BB} \mathsf{ from } \varphi_{\mathsf{X}} \mathsf{ to } \varphi_{\mathsf{Y}} \mathsf{ stays above } h \,|\, \varphi_{\mathsf{X}}, \varphi_{\mathsf{Y}})$$
$$= 1 - \exp \{ 2\lambda_{\mathsf{X},\mathsf{Y}} (\varphi_{\mathsf{X}} \vee h) (\varphi_{\mathsf{Y}} \vee h) \}.$$

→ alternative interpretation as bond percolation model with long-range correlations.

## Objects of interest

Want to obtain near-critical information on the following objects:

- Excursion sets  $\widetilde{E}^{\geq h} := \{x \in \widetilde{\mathcal{G}} : \varphi_x \geq h\};$
- cluster of "the origin"  $\widetilde{\mathcal{K}}^h := \{x \in \widetilde{\mathcal{G}} : 0 \stackrel{\widetilde{\mathcal{E}}^{\geq h}}{\leftrightarrow} x\};$
- (non-)percolation function  $\widetilde{\theta}(h) := \mathbb{P}(\widetilde{\mathcal{K}}^h)$  is bounded);

$$\Big(\leadsto \mathsf{define}\;\mathsf{critical}\;\mathsf{parameter}\;\widetilde{h}_* := \mathsf{inf}\{h\in\mathbb{R}\,:\,\widetilde{ heta}(h)=1\}\Big)$$

- truncated radius function  $\widetilde{\psi}(h, n) := \mathbb{P}(0 \overset{\widetilde{\mathcal{E}} \geq h}{\leftrightarrow} \partial B(0, n), \widetilde{\mathcal{K}}^h \text{ is bounded});$
- truncated two-point function  $\widetilde{\tau}_h^{\text{tr}}(0,x) := \mathbb{P}(x \in \widetilde{\mathcal{K}}^h, \widetilde{\mathcal{K}}^h \text{ bounded});$

## Some previous work

• At level h = 0, the (truncated) two-point function  $\tau_{h=0}^{\text{tr}}(0, x)$  admits an exact formula, first observed in [Lup16]:

$$\widetilde{ au}_0^{\mathrm{tr}}(0,x) = rac{2}{\pi} \arcsin\Big(rac{g(0,x)}{\sqrt{g(0,0)g(x,x)}}\Big) (symp d(0,x)^{2-d} \ \mathrm{in} \ \mathbb{Z}^d),$$

as  $d(0,x) \to \infty$ .

• For  $\widetilde{\mathcal{G}}=\widetilde{\mathbb{Z}}^3$ , [DW18] obtain bounds for truncated radius function  $\psi(0,r)$ :

$$cr^{-\frac{1}{2}} \leq \widetilde{\psi}(0,r) \leq C\left(\frac{r}{\log r}\right)^{-\frac{1}{2}}$$

# Cluster capacity law

Crucial quantity in our investigations: For  $K \subset G$ , its *capacity* is

$$\operatorname{cap}(K) := \sum_{x \in \partial K} \lambda_x P_x (\widetilde{H}_K = \infty); \quad \text{e.g.} \quad \operatorname{cap}(B(0,r)) \asymp r^{\nu}.$$

#### Theorem [D-Prévost-Rodriguez] 2022

For all reasonably nice  $\widetilde{\mathcal{G}}$ , all  $h \in \mathbb{R}$ , and under  $\mathbb{P}(\cdot,\emptyset \neq \widetilde{\mathcal{K}}^h)$  bounded), the random variable  $\operatorname{cap}(\widetilde{\mathcal{K}}^h)$  has density given by

$$\varrho_h(t) = \frac{1}{2\pi t \sqrt{g(0,0)(t-g(0,0)^{-1})}} \exp\Big\{-\frac{h^2 t}{2}\Big\} \mathbb{1}_{t \ge g(0,0)^{-1}}$$

## Cluster capacity law

Crucial quantity in our investigations: For  $K \subset G$ , its *capacity* is

$$\operatorname{cap}(K) := \sum_{x \in \partial K} \lambda_x P_x(\widetilde{H}_K = \infty); \quad \text{e.g.} \quad \operatorname{cap}(B(0, r)) \asymp r^{\nu}.$$

#### Theorem [D-Prévost-Rodriguez] 2022

For all reasonably nice  $\widetilde{\mathcal{G}}$ , all  $h \in \mathbb{R}$ , and under  $\mathbb{P}(\cdot,\emptyset \neq \widetilde{\mathcal{K}}^h$ bounded), the random variable  $\operatorname{cap}(\widetilde{\mathcal{K}}^h)$  has density given by

$$\varrho_h(t) = \frac{1}{2\pi t \sqrt{g(0,0)(t-g(0,0)^{-1})}} \exp\Big\{-\frac{h^2 t}{2}\Big\} \mathbb{1}_{t \geq g(0,0)^{-1}}.$$

## Cluster capacity law

Crucial quantity in our investigations: For  $K \subset G$ , its *capacity* is

$$\operatorname{cap}(K) := \sum_{x \in \partial K} \lambda_x P_x(\widetilde{H}_K = \infty); \quad \text{e.g.} \quad \operatorname{cap}(B(0, r)) \asymp r^{\nu}.$$

#### Theorem [D-Prévost-Rodriguez] 2022

For all reasonably nice  $\widetilde{\mathcal{G}}$ , all  $h \in \mathbb{R}$ , and under  $\mathbb{P}(\cdot,\emptyset \neq \widetilde{\mathcal{K}}^h$ bounded), the random variable  $\operatorname{cap}(\widetilde{\mathcal{K}}^h)$  has density given by

$$\varrho_h(t) = \frac{1}{2\pi t \sqrt{g(0,0)(t-g(0,0)^{-1})}} \exp\Big\{-\frac{h^2 t}{2}\Big\} \mathbb{1}_{t \geq g(0,0)^{-1}}.$$

# What happens close to / at the critical point $h_* = 0$ ?

At level h close to (but different from)  $h_*(=0)$ , the

correlation length 
$$\xi = \xi(h) = |h|^{-\nu_c}$$

is expected to describe the natural inherent length scale of the system.  $\nu_c \in (0,\infty)$  is the *critical exponent for the correlation length*. More generally, close to the critical point  $\widetilde{h}_* = 0$ , physicists expect observables to be described via 'power functions':

$$1 - \widetilde{\theta}(h) \approx |h|^{\beta} \text{ some } \beta \in (0, \infty);$$

$$\leadsto$$
 can define critical exponent  $\beta := \lim_{h \uparrow 0} \log(1 - \widetilde{\theta}(h)) / \log(|h|)$ .

Similarly, for the truncated radius function on conjectures that

$$ho := \lim_{n \to \infty} \log(\widetilde{\psi}(0, n)) / \log(n)$$
 exists.

### Critical exponents

Using (among other things) that unbounded, closed, connected sets have infinite capacity, we get the following.

### **Corollary [D-Prévost-Rodriguez] 2022**

$$\widetilde{\theta}(h) = 2\Phi(h \wedge 0)$$
 for all  $h \in \mathbb{R}$ ,

where  $\Phi(t) = \mathbb{P}(\varphi_0 \leq t)$ . In particular,

$$\widetilde{h}_* = 0$$
 and  $\widetilde{\theta}(0) = 1$ .

Furthermore,  $\widetilde{\theta}: \mathbb{R} \to [0,1]$  is continuous, and

$$\lim_{h\uparrow 0} \frac{1-\widetilde{\theta}(h)}{|h|} = \sqrt{\frac{2}{\pi g(0,0)}}; \quad \rightsquigarrow \beta = 1.$$

(recall that  $\beta := \lim_{h \uparrow 0} \log(1 - \widetilde{\theta}(h)) / \log(|h|)$ , if it exists)

See Prévost [Pré21] for graphs with  $h_* \neq 0$ 



### Critical exponents

Using (among other things) that unbounded, closed, connected sets have infinite capacity, we get the following.

### Corollary [D-Prévost-Rodriguez] 2022

$$\widetilde{\theta}(h) = 2\Phi(h \wedge 0)$$
 for all  $h \in \mathbb{R}$ ,

where  $\Phi(t) = \mathbb{P}(\varphi_0 \leq t)$ . In particular,

$$\widetilde{h}_* = 0$$
 and  $\widetilde{\theta}(0) = 1$ .

Furthermore,  $\widetilde{\theta}: \mathbb{R} \to [0,1]$  is continuous, and

$$\lim_{h\uparrow 0} \frac{1-\widetilde{\theta}(h)}{|h|} = \sqrt{\frac{2}{\pi g(0,0)}}; \quad \rightsquigarrow \beta = 1.$$

(recall that  $\beta := \lim_{h \uparrow 0} \log(1 - \widetilde{\theta}(h)) / \log(|h|)$ , if it exists) See Prévost [Pré21] for graphs with  $\widetilde{h}_* \neq 0$ ;

### Standing assumptions

α-Ahlfors regular volume growth

$$cr^{\alpha} \leq \lambda(B(x,r)) \leq Cr^{\alpha} \quad \forall x \in G, r \geq 1;$$

regular Green function decay

$$c \le g(x,x) \le C,$$
  $cd(x,y)^{-\nu} \le g(x,y) \le Cd(x,y)^{-\nu} \quad \forall x \ne y \in G;$ 

 technical assumptions: uniform ellipticity λ<sub>x,y</sub>/λ<sub>x</sub> ≥ c and existence of a certain infinite geodesic;

## Critical exponents

Set  $\xi(h) := |h|^{-2/\nu}$ , which will play the role of the correlation length.

#### Theorem [D-Prévost-Rodriguez] 2023

For  $\nu < 1$ ,  $h \in \mathbb{R}$  and r > 1:

$$c_3\widetilde{\psi}(0,r)\exp\big\{-c_4(r/\xi(h))^\nu\big\}\leq \widetilde{\psi}(h,r)\leq \widetilde{\psi}(0,r)\exp\big\{-c_5(r/\xi(h))^\nu\big\}.$$

For  $\nu \geq 1$ ,  $h \in \mathbb{R}$  and  $r \geq 1$ :

$$\widetilde{\psi}(h,r) \leq \widetilde{\psi}(0,r) \cdot \begin{cases} \exp\big\{-c_5 \frac{(r/\xi(h))}{\log(r\vee2)}\big\}, & \text{if } \nu = 1, \\ \exp\big\{-c_5 rh^2\big\}, & \text{if } \nu > 1. \end{cases}$$

There exists  $c_6 \in (0,1)$  such that for  $\nu = 1$  and all  $|h| \le c$ ,

$$\widetilde{\psi}(h,r) \geq c_3 \psi(0,r) \cdot \exp\Big\{-c_4 \frac{(r/\xi(h))}{\log((r/\xi(h)) \vee 2)}\Big\}, \text{ if } \frac{r}{\xi(h)} \notin (1,(\log \xi(h))^{c_6}).$$

## Critical exponents

Can derive similar estimates for the truncated two-point function  $\tau_h^{\rm tr}(0,x)$ 

 $\leadsto$  yields the following corollary, consistent with predictions of Weinrib & Halperin [WH83, Wei84] ("disorder relevance" (e.g. for  $\mathbb{Z}^{\alpha}$  and  $\alpha < 6$ )).

#### Corollary [D-Prévost-Rodriguez] 2023

For  $\nu \leq 1$ ,

$$\gamma \stackrel{\text{def.}}{=} -\lim_{h \to 0} \frac{\log(\mathbb{E}[|\mathcal{K}^h| 1\{|\mathcal{K}^h| < \infty\}])}{\log |h|}$$

exists and

$$\gamma = \frac{2\alpha}{\nu} - 2 \quad \Big( = \nu_c(2 - \eta)\Big).$$

For  $\nu <$  1 one has the stronger result

$$\mathbb{E}[|\mathcal{K}^h|1\{|\mathcal{K}^h|<\infty\}] \simeq |h|^{-\frac{2\alpha}{\nu}+2} \text{ as } h \to 0.$$

### Critical exponents [DPR23]

| Exponent                 | αc                 | β      | γ                  | δ                    | Δ                    | ρ               | $\nu_{\mathcal{C}}$ | η               |
|--------------------------|--------------------|--------|--------------------|----------------------|----------------------|-----------------|---------------------|-----------------|
| Value                    | $2-\frac{2d}{\nu}$ | 1      | $\frac{2d}{\nu}-2$ | $\frac{2d}{\nu} - 1$ | $\frac{2d}{\nu} - 1$ | $\frac{2}{\nu}$ | $\frac{2}{\nu}$     | $\nu$ - $d$ + 2 |
| Bernoulli ℤ <sup>3</sup> | ≈ -0.63            | ≈ 0.41 | ≈ 1.7              | ≈ 5.3                | ≈ 2.2                | ≈ 2.1           | ≈ 0.87              | ≈ -0.06         |

Can determine red exponents, use scaling relations to conjecture further critical exponents:

$$2-\alpha_{\rm c}=\gamma+2\beta=\beta(\delta+1), \quad \Delta=\delta\beta$$
 (scaling relations); 
$$d\rho=\delta+1, \quad d\nu_{\rm c}=2-\alpha_{\rm c} \quad \mbox{(hyperscaling relations)};$$

#### Cheat sheet:

4

 $\begin{array}{cccc} \beta & & \longleftrightarrow & \text{percolation probability} \\ \rho & \longleftrightarrow & \text{radius function} \\ \nu_c & \longleftrightarrow & \text{correlation length} \\ \alpha_c & \longleftrightarrow & \text{clusters per vertex} \\ \gamma & \longleftrightarrow & \text{truncated cluster size} \\ \delta & \longleftrightarrow & \text{cluster volume} \\ \Delta & \longleftrightarrow & \text{cluster moments} \end{array}$ 

truncated two-point function.

N.b.:

- valid for ν ∈ (0, 1] except for β and η, which hold for all ν > 0;
- For diffusive RW, for  $d \uparrow 6$  (or  $\nu \uparrow 4$ , equivalently), exponent converge to respective mean-field values for Bernoulli percolation ( $\beta = \gamma = 1$ ,  $\Delta = \delta = 2$ , n = 0):

# Strategy for upper & lower bounds on radius function

Want to show: For  $\nu \leq 1$ ,  $h \in \mathbb{R}$  and  $r \geq 1$ :

$$c_3\psi(0,r)\exp\Big\{-c_4(r/\xi(h))^{\nu}\Big\} \le \psi(h,r) \le \psi(0,r)\exp\Big\{-c_5(r/\xi(h))^{\nu}\Big\}.$$
 $\nu < 1 \Longrightarrow$  cluster radius can be understood in terms of cluster capacity.

To show the upper bound, use differential inequalities to infer upper bounds of the form

$$\psi(h,r) \leq \psi(0,r)e^{-ch^2f_{\nu}(r)},$$

with  $f_{\nu}(r)=r^{\nu}$  for  $\nu<1$  (logarithmic corrections for  $\nu=1$ ) and recalling  $\xi(h)=|h|^{-2/\nu}$ .

Tool to obtain differential inequalities: Cameron Martin theorem allows to compare capacities of  $\mathcal{K}^h$  at different levels h; then use strong Markov property to derive the general formula comparing well-behaved functionals of GFF at different shifts.

# Strategy for upper & lower bounds on radius function

Want to show: For  $\nu < 1$ ,  $h \in \mathbb{R}$  and r > 1:

$$c_3\psi(0,r)\exp\Big\{-c_4(r/\xi(h))^{\nu}\Big\} \le \psi(h,r) \le \psi(0,r)\exp\Big\{-c_5(r/\xi(h))^{\nu}\Big\}.$$
 $\nu < 1 \Longrightarrow \text{ cluster radius can be understood in terms of cluster capacity.}$ 

To show the upper bound, use differential inequalities to infer upper bounds of the form

$$\psi(h,r) \leq \psi(0,r)e^{-ch^2f_{\nu}(r)},$$

with  $f_{\nu}(r)=r^{\nu}$  for  $\nu<1$  (logarithmic corrections for  $\nu=1$ ) and recalling  $\xi(h)=|h|^{-2/\nu}$ .

Tool to obtain differential inequalities: Cameron Martin theorem allows to compare capacities of  $\mathcal{K}^h$  at different levels h; then use strong Markov property to derive the general formula comparing well-behaved functionals of GFF at different shifts.

### Strategy for lower bounds on radius function ( $\nu \leq 1$ )

#### Main tools:

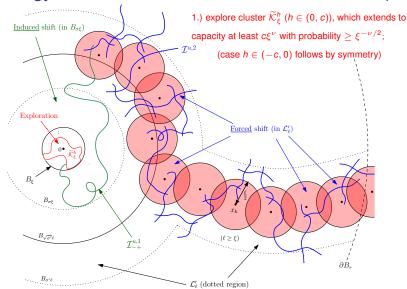
- Change of measure / entropy formula: allows for comparing original GFF with a GFF shifted on a compact set;
- isomorphism theorems: coupling two GFFs  $(\widetilde{\varphi}_x)$ ,  $x \in \widetilde{\mathcal{G}}$ ,  $(\widetilde{\psi}_x)_{x \in \widetilde{\mathcal{G}}}$ , and interlacement local times  $(\widetilde{\ell}_{x,u})_{x \in \widetilde{\mathcal{G}}}$ , at level u > 0,

$$\widetilde{\varphi}_{X} + \sqrt{2u} = \widetilde{\psi}_{X} \mathbf{1}_{X \notin \widetilde{C}_{u}^{\infty}} + \sqrt{\widetilde{\psi}_{X}^{2} + 2\widetilde{\ell}_{X,u}} \mathbf{1}_{X \in \widetilde{C}_{u}^{\infty}},$$

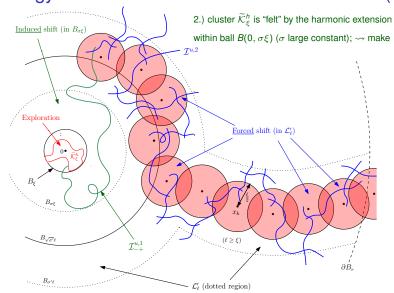
with 
$$\widetilde{\mathcal{C}}_u^\infty := \{x \in \widetilde{\mathcal{G}} \,:\, \widetilde{\ell}_{x,u} > 0\}$$
, and  $(\widetilde{\psi}_x)_{x \in \widetilde{\mathcal{G}}}$  is independent from  $(\widetilde{\ell}_{x,u})_{x \in \widetilde{\mathcal{G}}}$ ;

- $\leadsto$  connections in  $E^{\geq h} = \{x \in \widetilde{\mathcal{G}} : \widetilde{\varphi}_x \geq h\}, h < 0$ , can be made using random interlacements  $\mathcal{I}^u = \{x \in \widetilde{\mathcal{G}} : \widetilde{\ell}_{x,u} > 0\};$
- critical local uniqueness for Random Interlacements: with asymptotically non-vanishing probability and for u ≈ R<sup>-ν</sup>, there is a unique giant connected component of T̃<sup>u</sup> in ball B(0, R);

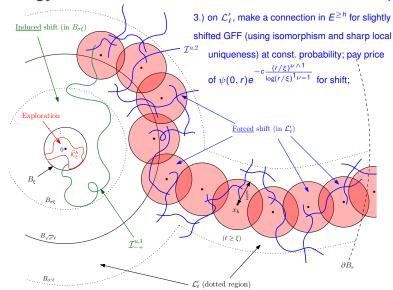
# Strategy for lower bound on the radius function ( $\nu \le 1$ )



# Strategy for lower bound on the radius function ( $\nu \leq 1$ )



# Strategy for lower bound on the radius function ( $\nu \leq 1$ )



- Michael Aizenman and David J. Barsky.

  Sharpness of the phase transition in percolation models.

  Comm. Math. Phys., 108(3):489–526, 1987.
- Michael Aizenman, François Delyon, and Bernard Souillard. Lower bounds on the cluster size distribution.

  J. Statist. Phys., 23(3):267–280, 1980.
- M. Aizenman, H. Kesten, and C. M. Newman. Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Comm. Math. Phys., 111(4):505–531, 1987.
- Peter Antal and Agoston Pisztora.
  On the chemical distance for supercritical Bernoulli percolation. *Ann. Probab.*, 24(2):1036–1048, 1996.
- S. R. Broadbent and J. M. Hammersley.
  Percolation processes. I. Crystals and mazes.
  Proc. Cambridge Philos. Soc., 53:629–641, 1957.
- R. M. Burton and M. Keane.

Density and uniqueness in percolation.

Comm. Math. Phys., 121(3):501-505, 1989.



Jean Bricmont, Joel L. Lebowitz, and Christian Maes. Percolation in strongly correlated systems: the massless Gaussian field.

J. Statist. Phys., 48(5-6):1249-1268, 1987.



J. T. Chayes, L. Chayes, G. R. Grimmett, H. Kesten, and R. H. Schonmann.

The correlation length for the high-density phase of Bernoulli percolation.

Ann. Probab., 17(4):1277–1302, 1989.



Hugo Duminil-Copin, Subhajit Goswami, Pierre-Francois Rodriguez, and Franco Severo.

Equality of critical parameters for percolation of Gaussian free field level-sets.

Preprint available at arXiv:2002.07735, to appear in Duke Math. J., 2020.



Alexander Drewitz, Alexis Prévost, and Pierre-François Rodriguez.

Geometry of Gaussian free field sign clusters and random interlacements, 2018.



Alexander Drewitz, Alexis Prévost, and Pierre-François Rodriguez.

The sign clusters of the massless Gaussian free field percolate on  $\mathbb{Z}^d$ ,  $d \geqslant 3$  (and more).

Comm. Math. Phys., 362(2):513-546, 2018.



Alexander Drewitz, Alexis Prévost, and Pierre-François Rodriguez.

Critical exponents for a percolation model on transient graphs. Invent. Math., 232(1):229-299, 2023.



Jian Ding and Mateo Wirth.

Percolation for level-sets of gaussian free fields on metric graphs, 2018.



Geoffrey Grimmett.

Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].

Springer-Verlag, Berlin, second edition, 1999.



A lower bound for the critical probability in a certain percolation process.

Proc. Cambridge Philos. Soc., 56:13–20, 1960.

- Takashi Hara and Gordon Slade.

  Mean-field critical behaviour for percolation in high dimensions.

  Comm. Math. Phys., 128(2):333–391, 1990.
- Harry Kesten.
  Sums of stationary sequences cannot grow slower than linearly.

  Proc. Amer. Math. Soc., 49:205–211, 1975.
- Joel L. Lebowitz and H. Saleur. Percolation in strongly correlated systems. *Phys. A*, 138(1-2):194–205, 1986.
- Titus Lupu.



From loop clusters and random interlacements to the free field. *Ann. Probab.*, 44(3):2117–2146, 2016.



Coincidence of critical points in percolation problems. *Dokl. Akad. Nauk SSSR*, 288(6):1308–1311, 1986.

Alexis Prévost.

Percolation for the Gaussian free field on the cable system: counterexamples.

Preprint, available at arXiv:2102.07763, 2021.

Pierre-François Rodriguez and Alain-Sol Sznitman. Phase transition and level-set percolation for the Gaussian free field.

Comm. Math. Phys., 320(2):571-601, 2013.

D. Stauffer and A. Aharony.

Introduction To Percolation Theory: Second Edition.

CRC Press, 2018.



Math. Res. Lett., 8(5-6):729-744, 2001.

- Alain-Sol Sznitman.
  - Decoupling inequalities and interlacement percolation on  $G \times \mathbb{Z}$ . *Invent. Math.*, 187(3):645–706, 2012.
- Nicholas Th. Varopoulos. Long range estimates for Markov chains. Bull. Sci. Math. (2), 109(3):225–252, 1985.
- Abel Weinrib.
  Long-range correlated percolation. *Phys. Rev. B*, 29:387–395, Jan 1984.
- Abel Weinrib and B. I. Halperin.
  Critical phenomena in systems with long-range-correlated quenched disorder.

Phys. Rev. B, 27:413-427, Jan 1983.