Motivation: Bernoulli percolation
0000000

Gaussian free field
0000
(e}

Percolation and long-range correlations
Alexander Drewitz

2023 /07 / 31

with A. Prévost (U Geneva) and P.-F. Rodriguez (Imperial College)

Universitat
zu Koln

Cable system GFF

000000000000 000




Motivation: Bernoulli percolation
®000000

Bernoulli (bond) percolation

e Bernoulli percolation has first been investigated by chemists
Flory and Stockmayer in the 1940s investigating the gelation of
polymers, and then mathematically by Broadbent and
Hammersley [BH57] in their research on gas masks;

e the model: each bond in Z is chosen to be “open” with
probability p € (0, 1), and “closed” otherwise (in an i.i.d. fashion);

e there exists p; € (0, 1) such that for p € (0, p;) there exist only
bounded connected component of open bonds, whereas for
p € (pc, 1) there exists a (unique) unbounded connected
component;



Motivation: Bernoulli percolation
OOOOOOO

Bernoulli bond percolation (p = 0.4)
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Bernoulli bond percolation (p = 0.6)
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Bernoulli percolation on Z¢ well-understood in
off-critical regime
For p € (0, pc):

e sharp phase transition / exponential decay of radius function
[Men86] (cf. also [AB87]):

Vper(p, 1) := Pp(0 + B(0, n)) < e~ %";

e - finite expected cluster size x(p) := Ep[|Co|] < oo, with Cy the
open cluster of the origin;
Forp € (pc, 1):
® uniqueness of infinite open cluster [AKN87] / [BK89];
e chemical distance [AP96];

e (stretched) exponential decay of radius / volume of finite open
clusters [CCG*89] / [ADS80] ;

For further background see Stauffer & Aharony [SA18], Grimmett
[Gri99].
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(Near-)critical percolation

For p =~ p¢, understanding has been obtained in two dimensions as
well as in high dimensions:
¢ in 2d planar Bernoulli (bond) percolation, one has p; = % [Kes75]
and there is no percolation at p, [Har60];
¢ in planar settings of hexagonal / triangular lattice, critical
exponents for Bernoulli percolation have been computed in
[SWO01] using conformal invariance and SLE;
e.g., for percolation function 6(p) := Pp(0 ++ c0), one has

6(p) = (p—1/2)% 7" asplps=1/2,

so critical exponent for 6 is 8 = 5/36 in this setting;

e [HS90] used lace expansion to compute critical exponents in
high dimensions (mean-field, cf. behavior on trees);
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(Near-)critical percolation — physicists know more

For p close to p, correlation length ¢ = £(p) = |p — pc|~ describes
the natural inherent length scale.

On smaller scales L <« &, the system looks critical, while for L >> ¢ its
non-criticality becomes apparent. E.g., for p | p¢, there is D < d such
that

e for r < £ objects are expected to be fractal like
|ConB(r)| ~ rP
e forr > ¢,

ICo N B(r)| ~ £P(L/€)?
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(Near-)critical percolation — physicists know more
For p close to p, correlation length ¢ = £(p) = |p — pc|~ describes
the natural inherent length scale.

On smaller scales L <« &, the system looks critical, while for L >> ¢ its
non-criticality becomes apparent. E.g., for p | p¢, there is D < d such
that

e for r < £ objects are expected to be fractal like
|ConB(r)| ~ rP
e forr > ¢,

ICo N B(r)| ~ £P(L/€)?

While the above is conjectured to be true for rather general
percolation models, in Z9, 3 < d < 10, however, far from determining
critical exponents, in Bernoulli percolation it is not even proven that
(as expected)

0(pc) = 0.
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Gaussian free field

® G vertex set of a transient countably infinite graph with
symmetric weights Ay ,;
e SRW on G is the MC X with transition matrix
Ax
P ===
y) =3

Where >\X - ZZNX )\X,Z'

The GFF is the centered Gaussian process (px), X € G, with

1
COV(S@x#’y):g(XaY):)\*ZPH(XJ’)’ vxvyEG'
y

n>0
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Gaussian free field

* on finite subset of Z9 with edge set E, density with respect to
product Lebesgue measure (modulo boundary conditions) is

< ] exp{ 20;?) }

(x,y)eE

~+ can be interpreted as d-dimensional analogue of Brownian
motion;

e strong correlations

Cov(x, py) = 9(x, ¥) ~ callx — y||57°

inZ9 as || x — yll2 — oo.
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Gaussian free field Cable system GFF
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Gaussian free field

boundary condition

Figure: A realization of a (2d) Gaussian free field on a box with zero
(By L. Coquille)
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Percolation of GFF level sets

Introduce excursion sets
EZ"G):={x€ G:px>h} (=9 ([hx))
as percolation model with long-range correlations.
Critical parameter / level:
h.(G) :=inf {h € R : P(E="(G) has unbounded cluster) = 0},

first introduced in [LS86] on Z;
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Previous (off-critical) results

* [BLM87]: h.(z%) > 0 for all d > 3, and h,(Z%) < oo;
e [RS13]:

h.(Z%) < ccforalld >3, h,(z% >0 ford large;

« [DPR18b]:
h.(z9) >0 forall d > 3;

 [DPR18a]: h(G) > 0 for “regular G with dimension > 2”;
~> via isomorphism theorems also settles non-trivial phase
transition (u.(G) > 0) for vacant set percolation of Random
Interlacements, confirming a conjecture of [Szn12];

e [DCGRS20]: Sharp phase transition for GFF level-set percolation
inz? d>3;
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Previous results

S x Z, with S the Sierpinski triangle;

(Picture by Beojan Stanislaus, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=8862246)

Cable system GFF
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https://commons.wikimedia.org/w/index.php?curid=8862246
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Sierpinski carpet

¢ the d-dimensional Sierpinski carpet, d > 3;

(Picture by Josh Greig,

https://commons.wikimedia.org/wiki/File:Sierpinski_carpet.png)


https://commons.wikimedia.org/wiki/File:Sierpinski_carpet.png
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A continuous model

Surprisingly, for an extension of the GFF, explicit computations are
possible: ~ “Cable system G” (goes back to [Var85] at least)

G is obtained by adding line segments between neighboring vertices:
for x, y € G neighboring vertices, on the line segment / , connecting
x to y, conditionally on ¢, and ¢, the GFF (¢;), z € I« ,, behaves
like a Brownian bridge ~~ “brings in analysis”.
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A continuous model

Surprisingly, for an extension of the GFF, explicit computations are
possible: ~ “Cable system G” (goes back to [Var85] at least)

G is obtained by adding line segments between neighboring vertices:
for x, y € G neighboring vertices, on the line segment / , connecting
x to y, conditionally on ¢, and ¢, the GFF (¢;), z € I« ,, behaves
like a Brownian bridge ~~ “brings in analysis”.

Then an edge {x, y} is defined to be open iff Brownian bridge from
©x 10 ¢, stays positive; have explicit formula

P(BB from ¢y to ¢, stays above h| oy, ¢y )
=1—exp {2)\x,y(90x vV h)(py Vv h)}

~- alternative interpretation as bond percolation model with
long-range correlations.
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Objects of interest
Want to obtain near-critical information on the following objects:
e Excursion sets E2:= {x € G : ¢y > h};
e S E2h
e cluster of “the origin” K" := {x € G : 0 % x};
e (non-)percolation function 6(h) := P(K" is bounded);
(w define critical parameter h, := inf{h € R : 6(h) = 1})

e truncated radius function

J(h,n) == P(0 & 9B(0, n), K" is bounded);

e truncated two-point function 7(0, x) := P(x € K", K" bounded);
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Some previous work

* Atlevel h = 0, the (truncated) two-point function 7;_(0, x)
admits an exact formula, first observed in [Lup16]:

2
~r _ = i 9(0.x) - 2—d iy 7d
75 (0, x) = —arcsin ( g(0,0)g(x,x))(,\ d(0,x)==%in Z9),

as d(0, x) — oc.

e For G = Z3, [DW18] obtain bounds for truncated radius function
¥(0,r):

_1
crt <9(0,r) < C<Io;r) ’
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Cluster capacity law

Crucial quantity in our investigations: For K C G, its capacity is

cap(K) == Z MPx(Hk = x);  e.g. cap(B(0,r)) =< r
x€0K
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Cluster capacity law

Crucial quantity in our investigations: For K C G, its capacity is

cap(K) := Z/\X HK_ x); e.g. cap(B(0,r)) =
X€OK

Eor all reasonably nice 5, all h € ]R,~and under P(-,0 #
K"bounded), the random variable cap(K") has density given
by

L e { - 111
2rt\/9(0,0)(t — g(0,0)- 1) 2 5 flig(0,0)-

on(t) =
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What happens close to / at the critical point h, = 0?
At level h close to (but different from) h,.(= 0), the
correlation length £ = ¢(h) = |h|™"°

is expected to describe the natural inherent length scale of the
system. v € (0, 00) is the critical exponent for the correlation length.

More generally, close to the critical point h, = 0, physicists expect
observables to be described via ‘power functions’:

1 —6(h) ~ |h|® some 8 € (0, c0);
~~ can define critical exponent 5 := m log(1 — 6(h))/ log(|hl).

Similarly, for the truncated radius function on conjectures that

pi= lim log((0, n))/ log(n) exists.
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Critical exponents

Using (among other things) that unbounded, closed, connected sets
have infinite capacity, we get the following.

6(h) =2d(hn0) forall heR,
where () = P(po < t). In particular,

h,=0 and 6(0)=1.

Furthermore,  : R — [0, 1] is continuous, and

. 1—0(h) 2 )
= N | :1
i A\ mg00) 7

(recall that 8 := limpg log(1 — 6(h))/ log(|h|), if it exists)
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Critical exponents

Using (among other things) that unbounded, closed, connected sets
have infinite capacity, we get the following.

6(h) =2d(hn0) forall heR,
where () = P(po < t). In particular,

h,=0 and 6(0)=1.

Furthermore, 6 : R — [0, 1] is continuous, and

. 1—0(h) 2 /
= N | :1
i A\ mg00) 7

(recall that 8 := limpg log(1 — 6(h))/ log(|h|), if it exists)
See Prévost [Pré21] for graphs with h, # 0;
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Standing assumptions

e «-Ahlfors regular volume growth
cr* < X(B(x,r)) < Cr* Vxe G,r>1,;
¢ regular Green function decay

¢ <g(x,x) < C,
cd(x,y)™" <g9(x,y) < Cd(x,y)™" Vx#yeG,

e technical assumptions: uniform ellipticity Ax ,/Ax > ¢ and
existence of a certain infinite geodesic;
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on: Bernoulli percolation

Critical exponents
Set £(h) := |h|~2/¥, which will play the role of the correlation length.
Forv <1, heRandr > 1:

c31p(0, r) exp { — ca(r/&(h))"} < P(h,r) < 9(0, r)exp { — cs(r/€(h))"}.
Forv >1, heRandr > 1:

(r/€() R

b b expy— G5 ifv=1,
Y(h,r) <(0,r) - { |°g(rv2)}

exp { — csrh?}, o> 1.

There exists ¢ € (0, 1) such that for v =1 and all |h| < ¢,

'J(h, r) > c3y(0,r) - exp{ — 04% h) & (1, (log&(h))%).
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Critical exponents

Can derive similar estimates for the truncated two-point function
tr
7—h (Oa X)

~- yields the following corollary, consistent with predictions of Weinrib
& Halperin [WH83, Wei84] (“disorder relevance” (e.g. for Z* and
a < 6)).

Forv <1,

h h
et i JOBEIRTIT{IXT] < oo}])
h—0 log | h|

exists and 5
(6%
=— -2 =ve(2— .
v==-2 (=v(2-n)
For v < 1 one has the stronger result

E[KCP1{|Kh| < 0o}] < |h~ 32 as h — 0.
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Critical exponents [DPR23]
Exponent ac B lo% ) A P ve n
Value 22 1 4 _» 2d 4 2d 4 2 - v—d+2
Bernoulli z3 ~ —0.63 ~ 0.41 ~1.7 ~ 5.3 2.2 ~ 21 ~ 0.87 ~ —0.06

Can determine red exponents, use scaling relations to conjecture further critical exponents:
2—ac=~v+28=pB(6+1), A=453 (scalingrelations);
dp=6+1, dv.=2— ac (hyperscaling relations);

Cheat sheet:
B «~  percolation probability N.b.: ©.1]
) . ® valid for v € (0, 1] except for 8 and n
p «~ radius function . ) . ’
which hold for all v > 0;
Ve e~ comelation length ® as conjectured, critical exponents do not
ac «~  clusters per vertex depend on the microscopic structure of the
~ e~  truncated cluster size underlying graph ~~ universality;
§ «~  cluster volume ¢ For diffusive RW, for d 1 6 (or v 1 4,
| equivalently), exponent converge to
A e~ cluster moments respective mean-field values for Bernoulli
n «~  truncated two-point function. percolation (B =v=1,A=§ =2,

n = 0);
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Strategy for upper & lower bounds on radius function

Want to show: Forv <1, heRandr > 1:

03t (0, r) exp { — ca(r/&()” } < w(h,r) < w(0,r) exp { — es(r/&(h)" }.

v < 1 = cluster radius can be understood in terms of cluster capacity.
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Strategy for upper & lower bounds on radius function

Want to show: Forv <1, heRandr > 1:

03t (0, r) exp { — ca(r/&()” } < w(h,r) < w(0,r) exp { — es(r/&(h)" }.

v < 1 = cluster radius can be understood in terms of cluster capacity.

To show the upper bound, use differential inequalities to infer upper bounds of the form

W(h,r) < (0, r)e= (),

with f,(r) = r¥ for v < 1 (logarithmic corrections for » = 1) and recalling
g(h) = | =3/¥.

Tool to obtain differential inequalities: Cameron Martin theorem allows to compare
capacities of K" at different levels h; then use strong Markov property to derive the
general formula comparing well-behaved functionals of GFF at different shifts.
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Strategy for lower bounds on radius function (v < 1)

Main tools:
® Change of measure / entropy formula: allows for comparing original GFF with a
GFF shifted on a compact set;

® isomorphism theorems: coupling two GFFs (&x), x € g, ({/;x) and

interlacement local times (Z(,u) atlevel u > 0,

x€g’
x€g’

px + Vau = QZX1X¢5UQQ + 4/ ’IF/JV)Z( + 2ZXvU1X65,‘j°’

with Cs° := {x € G : Zx,u > 0}, and (¢x) is independent from (ex u)

xeG xeg’

~~ connections in EZ" = {x € G : §x > h}, h <0, can be made using random
interlacements ZV = {x € G : fy.y > 0};

e critical local uniqueness for Random Interlacements: with asymptotically
non-vanishing probability and for u ~ R~", there is a unique giant connected
component of Z in ball B(0, R);
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Strategy for lower bound on the radius function (v < 1)

1.) explore cluster iég (h € (0, ¢)), which extends to

capacity at least ¢¢” with probability > ¢~¥/2;

(case h € (—c, 0) follows by symmetry)

Forced shift (in £7)

L} (dotted region)
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Strategy for lower bound on the radius function (v < 1)

2.) cluster Eg is “felt” by the harmonic extension

within ball B(0, o€) (o large constant); ~ make

Forced shift (in £7)

L} (dotted region)
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Strategy for lower bound on the radius function (v < 1)

3.) on £, make a connection in E=" for slightly

shifted GFF (using isomorphism and sharp local
u,2
z uniqueness) at const. probability; pay price
_ (r/s)”1“ \
of 1(0,r)e loe(r/&) V=1 for shift;

\

v
'
\

" Exploration |

Forced shift (in £7)

L} (dotted region)
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