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The Marked Random Connection Model

We produce a random graph on the space X = Rd × E , where E is
the Mark Space.

The Vetex Set η ⊂ X is a Poisson Point Process with intensity
measure λν. λ > 0 and ν = Leb⊗ P, where P is a probability
measure on E .
Edges form independently according to a given symmetric Adjacency
function:

φ (x , y) = P (x ∼ y)

where x = (x , a) and y = (y , b). In order to have spatial translation
invariance, we require φ (x , y) = φ (x − y ; a, b).
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Example Model: Boolean Hyper-Sphere Model

First assign vertices to Rd

according to a PPP with
intensity λLeb, with λ > 0.

Independently assign each
vertex a disc with random
radius in E = R+ with
distribution P.
Edges form between vertices
when their discs overlap.
This corresponds to

φ (x ; a, b) = 1 {|x | < a+ b} .
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Other Examples

Factorisable Models: Let ψ : Rd → [0, 1] and K : E × E → [0, 1] be
symmetric and measurable. Then let

φ (x ; a, b) = ψ (x)K (a, b) .

Gaussian Model: Let Σ: E2 → Rd×d be a measurable map where
for every a, b ∈ E , Σ (a, b) is itself a symmetric positive definite
covariance matrix. Then let

φ(x ; a, b) = (2π)−d/2 (detΣ(a, b))−1/2 exp

(
−1

2
x⊺Σ(a, b)−1x

)
.

Weight-Dependent Models: Let ρ : R+ → [0, 1] be non-increasing
and g : (0, 1)× (0, 1)→ R+ be non-decreasing in both arguments.
Then let

φ(x ; a, b) = ρ
(
g (a, b) |x |d

)
.
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Other Examples

Weight-Dependent Models: Let ρ : R+ → [0, 1] be non-increasing
and g : (0, 1)× (0, 1)→ R+ be non-decreasing in both arguments.
Then let

φ(x ; a, b) = ρ
(
g (a, b) |x |d

)
.

Different choices of ρ and g produce various models in the literature:

Boolean model, Gilbert disk model [Gilbert ’61, Hall ’85]

(Soft) random geometric graph [Penrose ’93]

Ultra-small scale-free geometric networks [Yukich ’03]

Scale-free Gilbert graph [Hirsch ’17]

Continuum scale-free percolation [Deprez-Wüthrich ’19]

Geometric inhomogeneous random graphs
[Bringmann-Keusch-Lengler ’19]

Age-dependent random connection model [Gracar-Mönch-Mörters
’19].
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Critical Intensities

The cluster of x is given by

C (x) = {y ∈ ηx : x ←→ y in ξx} .

Define susceptibility:

χλ : E → [0,∞] , χλ(a) = Eλ

[∣∣C (
0, a

)∣∣] ,
and the percolation probability:

θλ : E → [0, 1] , θλ(a) = Pλ

(∣∣C (
0, a

)∣∣ =∞)
.

For p ∈ [1,∞] there are the associated critical intensities

λ
(p)
T := inf

{
λ > 0: ∥χλ∥p =∞

}
, λ

(p)
c := inf

{
λ > 0: ∥θλ∥p > 0

}
.
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Critical Intensities

Recall

λ
(p)
T := inf

{
λ > 0: ∥χλ∥p =∞

}
, λ(p)c := inf

{
λ > 0: ∥θλ∥p > 0

}
.

Observe

▶ For all p ∈ [1,∞], λ
(p)
c = λc .

▶ For all p ∈ [1,∞], λ
(p)
T ≤ λc .

▶ For all 1 ≤ p1 ≤ p2 ≤ ∞, λ
(p1)
T ≥ λ(p2)T .

Lemma (D., Heydenreich ’22+ & Caicedo, D. ’23+)

ess sup
a,b∈E

∫
Rd

φ(x ; a, b)dx <∞ =⇒ λ
(∞)
T = λ

(1)
T = λT .

If furthermore φ > 0 on a Leb× P2-positive set and d ≥ 2, then

0 < λT ≤ λc <∞.

For comparison, in the single-mark case we have λT = λc [Meester ’95], and
λc ∈ (0,∞) iff

∫
Rd φ(x)dx ∈ (0,∞) (for d ≥ 2) [Penrose ’91].
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Critical Exponents

Recall

χλ(a) = Eλ

[∣∣C (
0, a

)∣∣] , θλ(a) = Pλ

(∣∣C (
0, a

)∣∣ =∞)
.

How do χλ and θλ behave near λT and λc? Do there exist γ, β such
that (in a bounded ratio sense)

∥χλ∥p ≍
1

(λT − λ)γ
, as λ↗ λT ,

∥θλ∥p ≍ (λ− λc)β , as λ↘ λc?

If you were to consider a spatial branching process with offspring
kernel λφ, the analogous quantities would have exponents γ = 1 and
β = 1. These are called the mean-field exponents.

Matthew Dickson (Universität Augsburg) Critical Exponents for Marked RCM Aug 1, 2023 8 / 19



Some Assumptions ...
Given a, b ∈ E and n ≥ 1, let us define

D(a, b) :=

∫
Rd

φ (x ; a, b) dx ,

D(n)(a, b) :=

∫
En−1

 n∏
j=1

D(cj−1, cj)

P⊗(n−1)
(
dc⃗[1,...,n−1]

)
,

where c0 = a and ck = b. D(n) is the “matrix product” of n copies of D.

Assumptions (D)

(D.1) “Every mark has bounded expected degree with every other mark”

ess sup
a,b∈E

D(a, b) <∞,

(D.2) “Some mark can be connected to every other mark in exactly k steps for
some k”

ess sup
a∈E

sup
k≥1

ess inf
b∈E

D(k)(a, b) > 0.
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Mean Field Bounds

Theorem (Caicedo, D. ’23+)

If Assumptions (D.1) and (D.2) hold, then there exist ε > 0 and C > 0
such that

∥χλ∥p ≥ C (λT − λ)−1 for λ < λT ,

∥θλ∥p ≥ C (λ− λT )+ for λ < λT + ε,

for all p ∈ [1,∞].

Oh look!
λT = λc

This theorem had already been proven for the Boolean Hyper-Sphere
model [Dembin, Tassion ’22] if the radius distribution has finite
d-moments. This is a weaker radius condition than (D.1), but our result
can be applied to a wider class of models.
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Mean-Field Behaviour

Theorem (Caicedo, D. ’23+)

If Assumptions (D.1), (D.2), and (T) hold, then there exist ε > 0 and
C ′ > 0 such that

∥χλ∥p ≤ C ′ (λT − λ)−1 for λ < λT ,

∥θλ∥p ≤ C ′ (λ− λT )+ for λ < λT + ε,

for all p ∈ [1,∞].
That is, γ = 1 and β = 1 (they take their mean-field values).

What is (T)?
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What is (T)?
Define the two-point function:

τλ(x , y) := Pλ (x ←→ y in ξx ,y ) .

For λ ≥ 0, the “triangle diagram” is defined as

△λ := λ2 ess sup
x ,y∈X

∫
τλ(x , u)τλ(u, v)τλ(v , y)ν

⊗2 ( du, dv) .

Triangle Condition

(T) We have
△λT

< C△,

where C△ > 0 is a specific constant.

When does (T) hold?
For the single-mark RCM, (Heydenreich, van der Hofstad, Last, Matzke
’19) gave conditions under which there exists d∗ such that the triangle
condition holds for d > d∗. (It is expected that d∗ = 6. This is not
proven.)
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When does (T) hold?

Let {φd}d≥1 be a sequence of adjacency functions, each on
(
Rd × E

)2
.

Theorem (D., Heydenreich ’22+)

Given conditions on {φd}d≥1 (to be seen shortly), there exists a critical
dimension d∗ ∈ N, a constant C > 0, and α = α (d) such that for d > d∗

and all λ ∈ [0, λT ],
△λ ≤ Cα.

The ‘lace expansion’ proof relies on deriving a linear operator equation (an
Ornstein-Zernike Equation). We therefore need to introduce our operator
formalism (relevant for the conditions).
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Operator Notation

For all k ∈ Rd , let φ̂(k; a, b) is the Fourier transform of φ(x ; a, b) and define

Φ̂ (k) : L2 (E)→ L2 (E) ,
(
Φ̂ (k) f

)
(a) =

∫
φ̂ (k; a, b) f (b)P (db) .

The important properties of these operators are encoded in their spectra.
We have the spectral radius:

ρ
(
Φ̂(k)

)
= sup

{
|z | : z ∈ σ

(
Φ̂ (k)

)}
.

Since Φ̂ (k) is self-adjoint, we can also define the spectral supremum:

S
(
Φ̂ (k)

)
= sup

{
z : z ∈ σ

(
Φ̂ (k)

)
⊂ R

}
.

Sometimes easier to work with∥∥∥Φ̂ (k)
∥∥∥
∞,∞

= ess sup
a,b
|φ̂ (k ; a, b)|.
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Marked RCM Assumptions

Assumption 1

For all dimensions d , there exists a d-independent constant C > 0 such that:

S
(
Φ̂(0)

)
<∞,

∥∥∥Φ̂(0)∥∥∥
∞,∞

≤ CS
(
Φ̂(0)

)
,∥∥∥Φ̂(0)− Φ̂(k)∥∥∥

∞,∞
≤ C

(
S
(
Φ̂(0)

)
− S

(
Φ̂(k)

))
.

Assumption 2

There exist d-independent constants
C1 ∈ (0, 1) and C2 > 0 such that

S
(
Φ̂ (k)

)
≤

[
C1 ∨

(
1− C2|k |2

)]
S
(
Φ̂(0)

)
.

|k|

S
(
Φ̂ (k)

)
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Marked RCM Assumptions

By a spatial scaling argument, w.l.o.g. S
(
Φ̂(0)

)
= 1.

Assumption 3

There exists a function g : N→ R≥0 with the following three properties:

1 that g(d)→ 0 as d →∞,

2 that

ess sup
x∈Rd ,a1,...,a6∈E

(φ (·; a1, a2) ⋆ φ (·; a3, a4) ⋆ φ (·; a5, a6)) (x) ≤ g(d),

3 and that the family of sets {B (x)}x∈X given by

B (x) :=

{
y ∈ Rd × E :

∫
φ (x , u)φ (u, y) ν ( du) > g (d)

}
satisfy ess supx∈Rd×E ν (B (x)) ≤ g (d).
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Proof Outline

Recall the two-point function:

τλ(x , y) := Pλ (x ←→ y in ξx,y ) ,

and define the associated τ̂λ(k ; a, b) and T̂λ(k).

Lace Expansion: For λ ∈ [0, λT ),

T̂λ(k) = Φ̂(k) + Π̂λ,n(k) + λT̂λ(k)
(
Φ̂(k) + Π̂λ,n(k)

)
+ R̂λ,n(k).

These Π̂λ,n(k) are constructed by counting configurations with ≤ n pivotal
points.

Bounding Π̂λ,n(k) with triangles: We can count these configurations
using thinnings, Mecke’s formula, and BK inequality to get bounds in terms
of integrals. By supremum bounds, we can extract triangles and other
similar shapes.
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Proof Outline
Compare to Random walk: Define

Ĝµλ(k) :=
1

1− µλS
(
Φ̂(k)

) , f (λ) := ess sup
k∈Rd

ρ
(
T̂λ(k)

)
Ĝµλ(k)

.

In the single-mark model, Ĝµλ(k) is the Fourier transform of the Green’s function
of a random walk with jump density φ. We can use f (λ) to replace factors of the
‘unknown’ τλ in the triangles with the ‘known’ φ.

Sub-critical Convergence: For d sufficiently large, we can show that the
Ĝµλ -triangle (and the original τλ-triangle) are small, and therefore the expansion
converges for λ < λT .

T̂λ (k) = Φ̂(k) + Π̂λ (k) + λT̂λ (k)
(
Φ̂(k) + Π̂λ (k)

)
. (OZE)

Uniform Sub-critical Convergence: Using this expansion, we show that f (λ) is
uniformly bounded on the entire sub-critical regime (by a forbidden range
argument). This also gives a uniform bound △λ ≤ Cα for λ < λT .

Extend (OZE) to Criticality: By Monotone and Dominated convergence
arguments, (OZE) holds at λ = λT and △λT ≤ Cα.
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