Random walks on a Lévy-type random media

Alessandra Bianchi University of Padova - Italy

Università degli Studi di Padova

Phase transitions in spatial particle systems Berlin, July 31 - August 2, 2023

Scaling limits and moments

Generalized models

イロト イヨト イヨト イヨト

Conclusions

Super-diffusive motions

Main features

- Iong ballistic "flights"
- short disorder motion

Super-diffusive trajectory

Scaling limits and moments

Generalized models

Conclusions

Super-diffusive motions

Super-diffusive trajectory

Main features

- Iong ballistic "flights"
- short disorder motion

This yelds a super-diffusive behavior

$$\mathbb{E}(|X_t|^2) \sim t^{\delta}$$
 for $\delta > 1$

that characterizes many natural systems, and is mainly connected to motion in disorder media

イロト イ部ト イヨト イヨト

Scaling limits and moments

Generalized models

Conclusions

Super-diffusive motions

Super-diffusive trajectory

Main features

- Iong ballistic "flights"
- short disorder motion

This yelds a super-diffusive behavior

$$\mathbb{E}(|X_t|^2) \sim t^{\delta}$$
 for $\delta > 1$

that characterizes many natural systems, and is mainly connected to motion in disorder media

• light particle in an optical lattice;

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- molecular diffusion in porous media;
- predator hunting for food.

Generalized models

э

Conclusions

Models for super-diffusions

• $(\zeta_k)_{k \in \mathbb{N}}$ i.i.d. real r.v.'s in the domain of attraction of an α -stable r.v., with $\alpha \in (0, 2]$:

$$\mathbb{P}(\zeta_k > x) \sim cx^{-lpha}, \quad ext{for } x o \infty$$

Note: $\alpha \in (0,2) \Longrightarrow \mathbb{E}(\zeta_k^2) = \infty$ and $\alpha \in (0,1) \Longrightarrow \mathbb{E}(|\zeta_k|) = \infty$

Scaling limits and moments

Generalized models

イロト イポト イヨト イヨト

Conclusions

Models for super-diffusions

• $(\zeta_k)_{k \in \mathbb{N}}$ i.i.d. real r.v.'s in the domain of attraction of an α -stable r.v., with $\alpha \in (0, 2]$:

$$\mathbb{P}(\zeta_k > x) \sim cx^{-lpha}, \quad \text{for } x o \infty$$

Note: $\alpha \in (0,2) \Longrightarrow \mathbb{E}(\zeta_k^2) = \infty$ and $\alpha \in (0,1) \Longrightarrow \mathbb{E}(|\zeta_k|) = \infty$

• Random walk: $S_0 = 0$, $S_n := \sum_{k=1}^n \zeta_k$, $n \in \mathbb{N}$

Non standard LT (from α -stability)

Scaling limits and moments

Generalized models

イロト イポト イヨト イヨト

Conclusions

Models for super-diffusions

• $(\zeta_k)_{k \in \mathbb{N}}$ i.i.d. real r.v.'s in the domain of attraction of an α -stable r.v., with $\alpha \in (0, 2]$:

$$\mathbb{P}(\zeta_k > x) \sim cx^{-lpha}, \quad \text{for } x o \infty$$

Note: $\alpha \in (0, 2) \Longrightarrow \mathbb{E}(\zeta_k^2) = \infty$ and $\alpha \in (0, 1) \Longrightarrow \mathbb{E}(|\zeta_k|) = \infty$

• Random walk: $S_0 = 0$, $S_n := \sum_{k=1}^n \zeta_k$, $n \in \mathbb{N}$

Non standard LT (from α -stability)

• $\alpha \in (0, 1)$: if $Z_1 \alpha$ -stable r.v.

$$\frac{S_n}{n^{1/\alpha}} \xrightarrow[n \to \infty]{d} Z_1$$

Scaling limits and moments

Generalized models

イロト イポト イヨト イヨト

Conclusions

Models for super-diffusions

• $(\zeta_k)_{k \in \mathbb{N}}$ i.i.d. real r.v.'s in the domain of attraction of an α -stable r.v., with $\alpha \in (0, 2]$:

$$\mathbb{P}(\zeta_k > x) \sim cx^{-lpha}, \quad ext{for } x o \infty$$

Note: $\alpha \in (0, 2) \Longrightarrow \mathbb{E}(\zeta_k^2) = \infty$ and $\alpha \in (0, 1) \Longrightarrow \mathbb{E}(|\zeta_k|) = \infty$

• Random walk: $S_0 = 0$, $S_n := \sum_{k=1}^n \zeta_k$, $n \in \mathbb{N}$

Non standard LT (from α -stability)

• $\alpha \in (0, 1)$: if $Z_1 \alpha$ -stable r.v.

$$\frac{S_n}{n^{1/\alpha}} \xrightarrow[n \to \infty]{d} Z_1$$

• $\alpha \in (1, 2]$: if $\mu = \mathbb{E}(\zeta_k)$ and \overline{Z}_1 centered α -stable r.v.

$$\frac{S_n - \mu n}{n^{1/\alpha}} \xrightarrow[n \to \infty]{d} \bar{Z}_1$$

Scaling limits and moments

Generalized models

イロト イボト イヨト イヨト

Conclusions

Lévy flights and Lévy walks

Schlesinger, Klafter['85], [Zumofen, Klafter '93], Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$. (but infinite second moment)

Scaling limits and moments

Generalized models

イロト イヨト イヨト イヨト

Conclusions

Lévy flights and Lévy walks

Schlesinger, Klafter ['85], [Zumofen, Klafter '93], Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$. (but infinite second moment)

LÉVY WALKS

Stochastic processes $(X_t)_{t\geq 0}$ on \mathbb{R}^d obtained by linear interpolation of Lévy flights (with jumps covered at velocity v_0).

Scaling limits and moments

Generalized models

イロト イヨト イヨト イヨト

Conclusions

Lévy flights and Lévy walks

Schlesinger, Klafter ['85], [Zumofen, Klafter '93], Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$. (but infinite second moment)

LÉVY WALKS

Stochastic processes $(X_t)_{t\geq 0}$ on \mathbb{R}^d obtained by linear interpolation of Lévy flights (with jumps covered at velocity v_0). Lévy walks give rise to superdiffusive motion with

$$\mathbb{E}(|X_t|^2) \propto \begin{cases} t^2 & \text{if } \alpha \in (0,1) \\ t^{3-\alpha} & \text{if } \alpha \in (1,2) \end{cases} \quad \text{for } t \to \infty$$

Scaling limits and moments

Generalized models

イロト イポト イヨト イヨト

Conclusions

Lévy flights and Lévy walks

Schlesinger, Klafter ['85], [Zumofen, Klafter '93], Barkai, Dubkov ['17]

LÉVY FLIGHTS

Random walk on \mathbb{R}^d with jumps length given by a sequence of i.i.d. α -stable- r.v., with $\alpha \in (0, 2)$. (but infinite second moment)

LÉVY WALKS

Stochastic processes $(X_t)_{t\geq 0}$ on \mathbb{R}^d obtained by linear interpolation of Lévy flights (with jumps covered at velocity v_0). Lévy walks give rise to superdiffusive motion with

$$\mathbb{E}(|X_t|^2) \propto \left\{ \begin{array}{ll} t^2 & \text{if } \alpha \in (0,1) \\ t^{3-\alpha} & \text{if } \alpha \in (1,2) \end{array} \right. \qquad \text{for } t \to \infty$$

The super-diffusive behavior is intrinsic to the walker motion, and independent of the media. **Good behavior** but **naive models**.

Scaling limits and moments

Generalized models

э

Conclusions

Lévy random media

Define the environment $\omega = (\omega_k)_{k \in \mathbb{Z}}$ as the renewal P.P. on \mathbb{R}

 $\omega_0 = 0$, $\omega_k - \omega_{k-1} = \zeta_k$ Lévy random medium

with $(\zeta_k)_{k\in\mathbb{Z}}$ i.i.d. positive r.v.'s in the domain of attraction of an α -stable law, $\alpha \in (0, 2]$

Scaling limits and moments

Generalized models

イロト イポト イヨト イヨト

Conclusions

Lévy random media

Define the environment $\omega = (\omega_k)_{k \in \mathbb{Z}}$ as the renewal P.P. on \mathbb{R}

 $\omega_0 = 0$, $\omega_k - \omega_{k-1} = \zeta_k$ Lévy random medium

with $(\zeta_k)_{k \in \mathbb{Z}}$ i.i.d. positive r.v.'s in the domain of attraction of an α -stable law, $\alpha \in (0, 2]$

Remark: Since $\omega_k = \sum_{j=1}^k \zeta_j$, $\forall k > 0$ (and similarly for k < 0) setting $\tilde{\omega}_x^{(n)} := \frac{\omega_{[nx]} - \mu[nx]}{n^{1/\alpha}}$, $x \in \mathbb{R}$, and $Z = \alpha$ -stable Lévy process on \mathbb{R} , $(\tilde{\omega}_x^{(n)})_{x \in \mathbb{R}} \xrightarrow{w} Z = (Z_x)_{x \in \mathbb{R}} \text{ in } (D(\mathbb{R}, \mathbb{R}), J_1)$

Scaling limits and moments

Generalized models

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

Conclusions

Random walks on Lévy random media

Let $S = (S_n)_{n \in \mathbb{N}}$ be an underlying RW on \mathbb{Z} with i.i.d. centered increments $(\xi_j)_{j \in \mathbb{N}}$ s.t. $\mathbb{E}(\xi_j^2) < \infty$.

Generalized models

イロト イヨト イヨト イヨト

Conclusions

Random walks on Lévy random media

Let $S = (S_n)_{n \in \mathbb{N}}$ be an underlying RW on \mathbb{Z} with i.i.d. centered increments $(\xi_j)_{j \in \mathbb{N}}$ s.t. $\mathbb{E}(\xi_i^2) < \infty$.

• **RW on a Lévy medium:** $Y = (Y_n)_{n \in \mathbb{N}}$ with $Y_n := \omega_{S_n}$. In other words Y_n is the position of scatterer labeled by S_n

Generalized models

イロト イヨト イヨト イヨト

Conclusions

Random walks on Lévy random media

Let $S = (S_n)_{n \in \mathbb{N}}$ be an underlying RW on \mathbb{Z} with i.i.d. centered increments $(\xi_j)_{j \in \mathbb{N}}$ s.t. $\mathbb{E}(\xi_j^2) < \infty$.

- **RW** on a Lévy medium: $Y = (Y_n)_{n \in \mathbb{N}}$ with $Y_n := \omega_{S_n}$. In other words Y_n is the position of scatterer labeled by S_n
- Generalized Lévy-Lorentz gas $X = (X_t)_{t \ge 0}$ is obtained as linear interpolation of *Y*:

Generalized models

イロト イボト イヨト イヨト

Conclusions

Random walks on Lévy random media

Let $S = (S_n)_{n \in \mathbb{N}}$ be an underlying RW on \mathbb{Z} with i.i.d. centered increments $(\xi_j)_{j \in \mathbb{N}}$ s.t. $\mathbb{E}(\xi_j^2) < \infty$.

- **RW** on a Lévy medium: $Y = (Y_n)_{n \in \mathbb{N}}$ with $Y_n := \omega_{S_n}$. In other words Y_n is the position of scatterer labeled by S_n
- Generalized Lévy-Lorentz gas $X = (X_t)_{t \ge 0}$ is obtained as linear interpolation of *Y*:
 - define the T_n as the length of the walk Y up to jump n,

$$T_n \equiv T_n(\mathcal{S}, \omega) = \sum_{k=1}^n |Y_k - Y_{k-1}|,$$
 collision time

イロト イヨト イヨト

Conclusions

Random walks on Lévy random media

Let $S = (S_n)_{n \in \mathbb{N}}$ be an underlying RW on \mathbb{Z} with i.i.d. centered increments $(\xi_j)_{j \in \mathbb{N}}$ s.t. $\mathbb{E}(\xi_j^2) < \infty$.

- **RW** on a Lévy medium: $Y = (Y_n)_{n \in \mathbb{N}}$ with $Y_n := \omega_{S_n}$. In other words Y_n is the position of scatterer labeled by S_n
- Generalized Lévy-Lorentz gas $X = (X_t)_{t \ge 0}$ is obtained as linear interpolation of *Y*:
 - define the T_n as the length of the walk Y up to jump n,

$$T_n \equiv T_n(S,\omega) = \sum_{k=1}^n |Y_k - Y_{k-1}|,$$
 collision time

• for $t \in [T_n, T_{n+1})$, set $X_t := Y_n + \operatorname{sgn}(\xi_{n+1})(t - T_n)$,

Lévy-Lorentz gas (Barkai, Fleurov,Klafter['00]) corresponds to S simple and symmetric.

≡ ∽ ९ ୯

			iciusions ,
00000000000 0000000	000000	00	0

Goal: Analyze the super-diffusive behavior of $(Y_n)_{n \in \mathbb{N}}$ and $(X_t)_{t \ge 0}$:

- Case $\alpha \in (1, 2]$: Integrable media
- Case $\alpha \in (0, 1]$: Non-integrable media

イロト イヨト イヨト イヨト

Motivations and model Sc	caling limits and moments	Generalized models	Conclusions
000000000000000000000000000000000000000	000000	000000	000

Goal: Analyze the super-diffusive behavior of $(Y_n)_{n \in \mathbb{N}}$ and $(X_t)_{t \ge 0}$:

- Case $\alpha \in (1, 2]$: Integrable media
- Case $\alpha \in (0, 1]$: Non-integrable media

We will consider:

- the quenched law of X and Y, denoted P_ω, for any fixed medium ω.
- the annealed law of X and Y, denoted \mathbb{P} , obtained averaging P_{ω} over the environments.

イロト イヨト イヨト イヨト

Scaling limits and moments

Generalized models

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

3

Conclusions

Integrable media: $\alpha \in (1, 2]$

Scaling limits

• Annealed and quenched CLT: (B., Cristadoro, Lenci, Ligabó ['16]) Set $\mu = \mathbb{E}(\zeta)$, $m = \mathbb{E}(|\xi|)$, and $\sigma^2 = Var(\xi)$ and. For *P*-a.e. ω

•
$$\frac{Y_n}{\sqrt{n}} \xrightarrow{d} N(0, \mu^2 \sigma^2)$$
 w.r.t. P_{ω}
• $\lim_{t \to \infty} \frac{X_t}{\sqrt{t}} \stackrel{d}{=} N(0, \frac{\mu \sigma^2}{m})$ w.r.t. P_{ω}

Scaling limits and moments

Generalized models

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Conclusions

Integrable media: $\alpha \in (1, 2]$

Scaling limits

• Annealed and quenched CLT: (B., Cristadoro, Lenci, Ligabó ['16]) Set $\mu = \mathbb{E}(\zeta)$, $m = \mathbb{E}(|\xi|)$, and $\sigma^2 = Var(\xi)$ and. For *P*-a.e. ω

•
$$\frac{Y_n}{\sqrt{n}} \stackrel{d}{\longrightarrow} N(0, \mu^2 \sigma^2)$$
 w.r.t. P_{ω}

•
$$\lim_{t\to\infty} \frac{X_t}{\sqrt{t}} \stackrel{d}{=} N(0, \frac{\mu\sigma^2}{m})$$
 w.r.t. P_{ω}

 \longrightarrow convergence of finite-dimensional distributions follows

 \longrightarrow The annealed CLT (w.r.t $\mathbb P)$ then follows trivially

Scaling limits and moments

Generalized models

・ロト ・部ト ・ヨト・ヨト

Conclusions

Integrable media: $\alpha \in (1, 2]$

Scaling limits

- Annealed and quenched CLT: (B., Cristadoro, Lenci, Ligabó ['16]) Set $\mu = \mathbb{E}(\zeta)$, $m = \mathbb{E}(|\xi|)$, and $\sigma^2 = Var(\xi)$ and. For *P*-a.e. ω
 - $\frac{Y_n}{\sqrt{n}} \xrightarrow{d} N(0, \mu^2 \sigma^2)$ w.r.t. P_{ω} • $\lim_{t \to \infty} \frac{X_t}{\sqrt{t}} \stackrel{d}{=} N(0, \frac{\mu \sigma^2}{m})$ w.r.t. P_{ω} \longrightarrow convergence of finite-dimensional distributions follows \longrightarrow The annealed CLT (w.r.t \mathbb{P}) then follows trivially
- f-CLT for Lévy-Lorentz gas: (Magdziarz, Szczotka ['18]) Set $Y_t^{(n)} := \frac{Y_{[nt]}}{\sqrt{n}}$, for $t \ge 0$. Then, w.r.t to \mathbb{P} ,

$$(Y_t^{(n)})_{t\geq 0} \xrightarrow[n\to\infty]{w} \mu B \quad \text{in} (D(\mathbb{R}^+,\mathbb{R}),J_1)$$

where *B* is the standard Brownian motion on \mathbb{R} .

Generalized models

・ロト ・部ト ・ヨト・ヨト

3

Conclusions იიი

Integrable media: $\alpha \in (1, 2]$

Moments

 Quenched moments of *Y*: (B., Cristadoro, Lenci, Ligabó ['16]) The quenched moments of *Y_n* and *X_t* scale diffusively for α ∈ (1, 2].

Scaling limits and moments

Generalized models

Conclusions

Integrable media: $\alpha \in (1, 2]$

Moments

- Quenched moments of *Y*: (B., Cristadoro, Lenci, Ligabó ['16]) The quenched moments of *Y_n* and *X_t* scale diffusively for α ∈ (1, 2].
- Annealed moments of the Lévy-Lorentz gas: (Burioni, Caniparoli, Vezzani ['10], based on simulations and heuristic arguments)

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{2+2\alpha-\alpha^2}{1+\alpha}} & \text{if } \alpha \in (0,1) & \text{su} \\ t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in [1,\frac{3}{2}] & \text{su} \\ t & \text{if } \alpha \in (\frac{3}{2},2) & \text{di} \end{cases}$$

superdiffusive behavior superdiffusive behavior diffusive behavior

イロト イボト イヨト イヨト

Scaling limits and moments

Generalized models

Conclusions იიი

Integrable media: $\alpha \in (1, 2]$

Moments

- Quenched moments of *Y*: (B., Cristadoro, Lenci, Ligabó ['16]) The quenched moments of *Y_n* and *X_t* scale diffusively for α ∈ (1, 2].
- Annealed moments of the Lévy-Lorentz gas: (Burioni, Caniparoli, Vezzani ['10], based on simulations and heuristic arguments)

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{2+2\alpha-\alpha^2}{1+\alpha}} & \text{if } \alpha \in (0,1) & \text{superdiffusive behavior} \\ t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in [1,\frac{3}{2}] & \text{superdiffusive behavior} \\ t & \text{if } \alpha \in (\frac{3}{2},2) & \text{diffusive behavior} \end{cases}$$

• Moments of the Lévy-Lorentz gas: (Zamparo ['22]) As an effect of averaging over the environment,

$$\mathbb{E}(X_t^2) \sim \begin{cases} t^{\frac{5}{2}-\alpha} & \text{if } \alpha \in (1, \frac{3}{2}] \\ t & \text{if } \alpha \in (\frac{3}{2}, 2) \end{cases}$$

superdiffusive behavior diffusive behavior

イロト イボト イヨト イヨト

Non-integrable media: $\alpha \in (0, 1)$ - Process Y

Theorem 1 (B., Lenci, Pène '20).

For $n \in \mathbb{N}$, let $ilde{Y}^{(n)} = (ilde{Y}^{(n)}(t))_{t \geq 0}$ such that

$$ilde{Y}^{(n)}(t) := rac{{\sf Y}_{[nt]}}{n^{1/2lpha}}, \quad {\it for all } t \geq 0\,.$$

Under \mathbb{P} and taking $n \to \infty$, the finite-dim. distributions of $\tilde{Y}^{(n)}$ converge to those of $Z \circ B$.

Remark:

- The process Y displays superdiffusive behavior with scaling exponent $1/2\alpha$.
- The result can not be extended to a functional limit theorem w.r.t to the Skorokhod topology as Z

 B has discontinuities without one-sided limits.

Motivations and model	Scaling limits and moments	Generalized models	Conclusions
0000000000	0000000	000000	000

•
$$\tilde{\omega}^{(n)} = \left(\frac{\omega_{[nx]}}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z$$

 α – stable process

•
$$\tilde{S}^{(n)} = \left(\frac{S_{[nt]}}{n^{\frac{1}{2}}}\right)_{t \ge 0} \xrightarrow{w} B$$

invariance principle

イロト イヨト イヨト イヨト

Motivations and model	Scaling limits and moments	Generalized models	Conclusions
00000000000	0000000	000000	000

•
$$\tilde{\omega}^{(n)} = \left(\frac{\omega_{[nx]}}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z$$

 α – stable process

•
$$\tilde{S}^{(n)} = \left(\frac{S_{[nt]}}{n^{\frac{1}{2}}}\right)_{t \ge 0} \xrightarrow{w} B$$

invariance principle

イロト イヨト イヨト イヨト

$$\implies \tilde{Y}^{(n)}(t) := \frac{Y_{[nt]}}{n^{1/2\alpha}} = \tilde{\omega}^{(\sqrt{n})} \circ \tilde{S}^{(n)}(t) \qquad \boxtimes$$

Motivations and model	Scaling limits and moments	Generalized models	Conclusions
	0000000		

•
$$\tilde{\omega}^{(n)} = \left(\frac{\omega_{[nx]}}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z$$

 α – stable process

イロト イヨト イヨト イヨト

•
$$\tilde{S}^{(n)} = \left(\frac{S_{[nt]}}{n^{\frac{1}{2}}}\right)_{t \ge 0} \xrightarrow{w} B$$
 invariance principle

$$\implies \tilde{Y}^{(n)}(t) := \frac{Y_{[nt]}}{n^{1/2\alpha}} = \tilde{\omega}^{(\sqrt{n})} \circ \tilde{S}^{(n)}(t) \qquad \boxtimes$$

Back to the process X: Recall that $X_t := Y_n + \operatorname{sgn}(\xi_{n+1})(t - T_n)$ for $t \in [T_n, T_{n+1})$.

Motivations and model	Scaling limits and moments	Generalized models	Conclusions
	0000000		

•
$$\tilde{\omega}^{(n)} = \left(\frac{\omega_{[nx]}}{n^{\frac{1}{\alpha}}}\right)_{x \in \mathbb{R}} \xrightarrow{w} Z$$

$$\alpha$$
 – stable process

イロト イヨト イヨト イヨト

•
$$\tilde{S}^{(n)} = \left(\frac{S_{[nt]}}{n^{\frac{1}{2}}}\right)_{t \ge 0} \xrightarrow{w} B$$
 invariance principle

$$\implies \tilde{Y}^{(n)}(t) := \frac{Y_{[nt]}}{n^{1/2\alpha}} = \tilde{\omega}^{(\sqrt{n})} \circ \tilde{S}^{(n)}(t) \qquad \boxtimes$$

Back to the process X:

Recall that $X_t := Y_n + \text{sgn}(\xi_{n+1})(t - T_n)$ for $t \in [T_n, T_{n+1})$. For a suitable scaled process $(\tilde{T}^{(n)}(t))_{t \ge 0}$ [to be given!], we get

$$ilde{X}^{(n)}(t) := rac{X_{[nt]}}{n^{1/(lpha+1)}} \simeq ilde{\omega}^{(\sqrt{k_n})} \circ ilde{S}^{(k_n)} \circ (ilde{T}^{(n)}(t))^{-1}$$

イロト イヨト イヨト イヨト

æ

Key point: Scaling analysis of collision times $(T_n)_{n \in \mathbb{N}}$

Alessandra Bianchi University of Padova - Italy RW on Lévy-type random media

Motivations and model	Scaling limits and moments	Generalized models	Conclusions
	0000000		

Key point: Scaling analysis of collision times $(T_n)_{n \in \mathbb{N}}$

$$T_n := \sum_{k=1}^n |Y_k - Y_{k-1}| = \sum_{k \in \mathbb{Z}} \mathcal{N}_n(k) \zeta_k$$

where $\mathcal{N}_{n}(k) = \#\{j \in \{0, ..., n\} : [k, k + 1] \subseteq [S_{j-1}, S_{j}]\}$

= number of times S_n jumps over the edge (k, k + 1)

・ロト ・ 日下 ・ 日下 ・ 日下 ・

 $(T_n)_{n \in \mathbb{N}}$ thought as RW in random scenery on bonds.

Motivations and model	Scaling limits and moments	Generalized models	Conclusions
	0000000		

Key point: Scaling analysis of collision times $(T_n)_{n \in \mathbb{N}}$

$$T_n := \sum_{k=1}^n |Y_k - Y_{k-1}| = \sum_{k \in \mathbb{Z}} \mathcal{N}_n(k) \zeta_k$$

where $\mathcal{N}_{n}(k) = \#\{j \in \{0, ..., n\} : [k, k + 1] \subseteq [S_{j-1}, S_{j}]\}$

= number of times S_n jumps over the edge (k, k + 1)

$(T_n)_{n \in \mathbb{N}}$ thought as RW in random scenery on bonds.

By [Kesten, Spitzer '79], the RWRS on (vertices of) $\ensuremath{\mathbb{Z}}$ is

$$\mathcal{T}_n := \sum_{j=0}^n \zeta_{S_j} = \sum_{k \in \mathbb{Z}} N_n(k) \zeta_k \ , n \in \mathbb{N}$$

where $N_n(k) = \sharp \{j \in \{0, \ldots, n\} : S_j = k\}$ are local times of *S*.

Motivations and model	Scaling limits and moments	Generalized models	Conclusions

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

э

Generalized models

Conclusions

Convergence of RWRS: Kesten-Spitzer process

Theorem 2 (Kesten, Spitzer '79).

Let $lpha \in (0,1)$. Under \mathbb{P} , and taking $n o \infty$, it holds

$$\tilde{\mathcal{T}}^{(n)} := \left(\frac{\mathcal{T}_{[ns]}}{n^{\frac{1+\alpha}{2\alpha}}}\right)_{s \ge 0} \stackrel{\text{w}}{\longrightarrow} \Delta \quad \text{ in } \left(D(\mathbb{R}^+, \mathbb{R}), J_1\right),$$

where $\Delta(t) = \int_{-\infty}^{+\infty} L_t(x) dZ(x)$ Kesten-Spitzer process,

 $L_t = (L_t(x))_{x \in \mathbb{R}}$ is the **local time** of the Brownian motion B and Z is an α -stable process on \mathbb{R} .

Assumption on the underlying RW: $\mathbb{E}(|\xi_1|^{2/\alpha+\varepsilon}) < \infty$.

Proposition 1 (B., Lenci, Pène '20).

Let $\alpha \in (0, 1)$. Under \mathbb{P} , and taking $n \to \infty$, it holds

$$\tilde{T}^{(n)} := \left(\frac{T_{[ns]}}{n^{\frac{1+\alpha}{2\alpha}}}\right)_{s \ge 0} \xrightarrow{w} \Delta \quad \text{in} \left(D(\mathbb{R}^+, \mathbb{R}), J_1\right).$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

Assumption on the underlying RW: $\mathbb{E}(|\xi_1|^{2/\alpha+\varepsilon}) < \infty$.

Proposition 1 (B., Lenci, Pène '20).

Let $\alpha \in (0,1)$. Under \mathbb{P} , and taking $n \to \infty$, it holds

$$\tilde{T}^{(n)} := \left(\frac{\mathcal{T}_{[ns]}}{n^{\frac{1+\alpha}{2\alpha}}}\right)_{s \ge 0} \xrightarrow{w} \Delta \quad \text{in}\left(D(\mathbb{R}^+, \mathbb{R}), J_1\right).$$

Theorem 3 (B., Lenci, Pène '20).

Under \mathbb{P} , and taking $n \to \infty$, the finite-dimensional distributions of $\tilde{X}^{(n)} := \left(\frac{X_{[nt]}}{n^{1/(1+\alpha)}}\right)_{t \ge 0}$ converge to those of $Z \circ B \circ \Delta^{-1}$.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

Remark: The process *X* displays superdiffusive behavior with scaling exponent $1/(\alpha + 1)$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

Conclusions

Random Walks on Lévy random media (II)

Starting idea: The results of [Kesten, Spitzer '79] on RWRS apply to the following more general setting:

- Scenery on Z: (ζ_k)_{k∈Z} i.i.d. ~ α-stable r.v.'s corresponding to ω = (ω_k)_{k∈Z} with ω_k − ω_{k-1} = ζ_k
- Underlying RW on \mathbb{Z} : $S = (S_n)_{n \in \mathbb{N}}$ with i.i.d. increments $(\xi_k)_{k \in \mathbb{Z}} \sim \beta$ -stable r.v.'s

Conclusions

Random Walks on Lévy random media (II)

Starting idea: The results of [Kesten, Spitzer '79] on RWRS apply to the following more general setting:

- Scenery on Z: (ζ_k)_{k∈Z} i.i.d. ~ α-stable r.v.'s corresponding to ω = (ω_k)_{k∈Z} with ω_k − ω_{k-1} = ζ_k
- Underlying RW on \mathbb{Z} : $S = (S_n)_{n \in \mathbb{N}}$ with i.i.d. increments $(\xi_k)_{k \in \mathbb{Z}} \sim \beta$ -stable r.v.'s

Goal: Scaling limit of Y - RW on the Lévy medium

Remark: The study of X requires a control on collision times T_n , that is missing under these weaker assumptions on the moments of the underlying RW. (open problem)

Scaling limits and moments

Generalized models

Conclusions

RWRM: Results for $\alpha \in (0, 1)$

Recall that $Y_n = \omega_{S_n}$, $n \in \mathbb{N}$, with ω the Lévy medium.

Theorem 4 (B., Bet, Lenci, Magnanini, Stivanello '21).

Let $\alpha \in (0, 1)$ (medium with infinite mean)

- If β ∈ (0, 1) or β ∈ (1, 2] with 𝔼(ξ_k) = 0, then, under 𝒫, the finite-dimensional distributions of (<sup>Y_[ns]/_{n^{1/αβ})}_{s≥0} converge to those of Z^α ∘ Z^β.
 </sup></sub>
- If $\beta \in (1, 2]$ with $\mathbb{E}(\xi_k) = \mu \neq 0$, then, under \mathbb{P} ,

$$\left(\frac{Y_{[ns]}}{n^{1/\alpha}}\right)_{s\geq 0} \xrightarrow[n\to\infty]{w} sgn(\mu)|\mu|^{1/\alpha}Z^{\alpha} \qquad in\left(D(\mathbb{R}^+,\mathbb{R}),J_2\right)$$

Scaling limits and moments

RWRM: Results for $\alpha \in (1, 2]$

Generalized models

イロト イポト イヨト イヨト

Conclusions

Theorem 5 (B., Bet, Lenci, Magnanini, Stivanello '21).

Let $\alpha \in (1, 2]$ with $\nu := \mathbb{E}(\zeta_k)$ (medium with finite mean) :

• If $\beta \in (0, 1)$ or $\beta \in (1, 2]$ with $\mathbb{E}(\xi_k) = 0$, then, under \mathbb{P} ,

$$\left(rac{Y_{[ns]}}{n^{1/\beta}}
ight)_{s\geq 0} \stackrel{w}{\longrightarrow} \nu Z^{\beta} \qquad \text{in} \left(D(\mathbb{R}^+,\mathbb{R}),J_1
ight)$$

• If $\beta \in (1, 2]$ with $\mathbb{E}(\xi_k) = \mu \neq 0$, then, under \mathbb{P} ,

$$\left(\frac{Y_{[ns]}}{n}\right)_{s\geq 0} \xrightarrow[n\to\infty]{w} \nu\mu Id \quad in\left(D(\mathbb{R}^+,\mathbb{R}),J_1\right)$$

Scaling limits and moments

RWRM: Results for $\alpha \in (1, 2]$

Generalized models

Conclusions

Theorem 5 (B., Bet, Lenci, Magnanini, Stivanello '21).

Let $\alpha \in (1, 2]$ with $\nu := \mathbb{E}(\zeta_k)$ (medium with finite mean) :

• If $\beta \in (0, 1)$ or $\beta \in (1, 2]$ with $\mathbb{E}(\xi_k) = 0$, then, under \mathbb{P} ,

$$\left(rac{Y_{[ns]}}{n^{1/eta}}
ight)_{s\geq 0} \stackrel{w}{\longrightarrow}
u Z^{eta} \qquad \text{in} \left(D(\mathbb{R}^+,\mathbb{R}),J_1
ight)$$

• If $\beta \in (1, 2]$ with $\mathbb{E}(\xi_k) = \mu \neq 0$, then, under \mathbb{P} ,

$$\left(rac{Y_{[ns]}}{n}
ight)_{s\geq 0} \xrightarrow[n
ightarrow
u \mu Id$$
 in $(D(\mathbb{R}^+,\mathbb{R}),J_1)$

 \longrightarrow Fluctuations around the mean: scaling and functional limit theorem for $\bar{Y}^{(n)}(t) := Y_{[nt]} - \nu \mu[nt]$.

Generalized models

イロト イヨト イヨト イヨト

Conclusions იიი

First passage time and leapover

In the same general setting, consider:

- Ladder times of $Y: (\tau_n)_{n \in \mathbb{N}_0}$ $\tau_0 = 0, \tau_n \equiv \tau_n(Y) := \min\{k > \tau_{n-1} : Y_k > Y_{\tau_{n-1}}\}, n \in \mathbb{N}$ with τ_1 first passage time on \mathbb{R}^+ .
- Ladder heights of Y: (Y_{τn})_{n∈ℕ0} with Y_{τ1} leapover (first positive value of Y).

Goal: Characterize the law of Y_{τ_n} , $n \in \mathbb{N}$

イロト イポト イヨト イヨト

First passage time and leapover

In the same general setting, consider:

- Ladder times of $Y: (\tau_n)_{n \in \mathbb{N}_0}$ $\tau_0 = 0, \tau_n \equiv \tau_n(Y) := \min\{k > \tau_{n-1} : Y_k > Y_{\tau_{n-1}}\}, n \in \mathbb{N}$ with τ_1 first passage time on \mathbb{R}^+ .
- Ladder heights of Y: (Y_{τn})_{n∈ℕ₀} with Y_{τ1} leapover (first positive value of Y).

Goal: Characterize the law of Y_{τ_n} , $n \in \mathbb{N}$

Remark:

- By construction, the ladder times of Y coincide with those of the underlying RW, S: τ_n(Y) = τ_n(S), n ∈ N.
- The **dependence among the increments** of *Y* makes the analysis of its ladder heights non-trivial.

イロト イヨト イヨト イヨト

Conclusions

Classical results: Ladder times and heights of S

Let *S* be a RW with i.i.d. symmetric increments on \mathbb{R} . Then $(\tau_n)_{n \in \mathbb{N}}$ and $(S_{\tau_n})_{n \in \mathbb{N}}$ have i.i.d. increments with law $\mathbb{P}(\tau_1 > x) \sim cx^{-1/2}$, as $x \to +\infty$

[Sparre-Anderson '53] - cont. jumps; [Mounaix, Majundar, Schehr '20] - discrete jumps.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Conclusions റററ

Classical results: Ladder times and heights of S

Let *S* be a RW with i.i.d. symmetric increments on \mathbb{R} . Then $(\tau_n)_{n \in \mathbb{N}}$ and $(S_{\tau_n})_{n \in \mathbb{N}}$ have i.i.d. increments with law $\mathbb{P}(\tau_1 > x) \sim cx^{-1/2}$, as $x \to +\infty$

[Sparre-Anderson '53] - cont. jumps; [Mounaix, Majundar, Schehr '20] - discrete jumps.

• If the increments of *S* are in the domain of a β -stable law,

$$\mathbb{P}(S_{ au_1} > x) \sim c x^{-eta/2}, \quad ext{as } x o +\infty$$

[Sinai '57]; [Rogozin '64, '71] - without centering; [Greenwood, Omey, Teugels '82], [Greenwood, Doney '93] - for the joint law of (τ_n, S_{τ_n}) .

Scaling limits and moments

Generalized models

Conclusions

Results: Ladder heights of Y

$$Y_n = \omega_{S_n}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

3

Theorem 6 (B., Cristadoro, Pozzoli '22).

If S has symmetric increments, and for all $n \in \mathbb{N}$,

• If
$$\alpha \in (0,1)$$
: $\mathbb{P}(Y_{\tau_n} > x) \sim c_1 n x^{-\alpha \beta/2}$, as $x \to \infty$

• If
$$\alpha \in (1,2]$$
: $\mathbb{P}(Y_{\tau_n} > x) \sim c_2 n x^{-\beta/2}$ as $x \to \infty$

with c_1 , c_2 explicit constants.

Scaling limits and moments

Generalized models

Conclusions

Results: Ladder heights of Y

$$Y_n = \omega_{S_n}$$

イロト イポト イヨト イヨト

Theorem 6 (B., Cristadoro, Pozzoli '22).

If S has symmetric increments, and for all $n \in \mathbb{N}$,

• If
$$\alpha \in (0,1)$$
: $\mathbb{P}(Y_{\tau_n} > x) \sim c_1 n x^{-\alpha \beta/2}$, as $x \to \infty$

• If
$$\alpha \in (1, 2]$$
: $\mathbb{P}(Y_{\tau_n} > x) \sim c_2 n x^{-\beta/2}$ as $x \to \infty$

with c_1 , c_2 explicit constants.

Proof (ideas):

- Express Y as a suitable RWRS on bonds;
- Derive a simplified formula characteristic function of Y_{τ_n} ;
- Apply a generalized Spitzer-Baxter identity.

Scaling limits and moments

Generalized models

イロト イボト イモト イモト 一日

Conclusions ●೧೧

Open Problem: Process in 2D

Lévy glass: image taken from [Barthelemy, Bertolotti1, Wiersma; Nature '08]

Motivations	model

Scaling limits and moments

Generalized models

イロト イボト イヨト イヨト

Conclusions

- Lévy Lorentz gas as a RW in random media, with collision times = RWRS \longrightarrow convergence to Kesten Spitzer process
- If $\alpha \in (1, 2)$: (integrable media) quenched CLT for discrete and continuous time processes [BCLL'16]. Quenched diffusive behavior.
- If $\alpha \in (0, 1)$: (non-integrable media) annealed functional LT for discrete and continuous time processes [BLP'20]. Annealed superdiffusive behavior.

Motivations	model

Scaling limits and moments

Generalized models

イロト イボト イヨト イヨト

Conclusions

- Lévy Lorentz gas as a RW in random media, with collision times = RWRS \longrightarrow convergence to Kesten Spitzer process
- If $\alpha \in (1, 2)$: (integrable media) quenched CLT for discrete and continuous time processes [BCLL'16]. Quenched diffusive behavior.
- If $\alpha \in (0, 1)$: (non-integrable media) annealed functional LT for discrete and continuous time processes [BLP'20]. Annealed superdiffusive behavior.
 - Generalized RW in random media with α ∈ (0,2] and β ∈ (0,2]. For different ranges of the parameters:
 - Functional limit theorems [BBLMS'21].
 - Tail distributions of the ladder heigths [BCP'22].

Motivations	model	

Scaling limits and moments

Generalized models

イロト イポト イラト イラト

Conclusions

- Lévy Lorentz gas as a RW in random media, with collision times = RWRS \longrightarrow convergence to Kesten Spitzer process
- If $\alpha \in (1, 2)$: (integrable media) quenched CLT for discrete and continuous time processes [BCLL'16]. Quenched diffusive behavior.
- If $\alpha \in (0, 1)$: (non-integrable media) annealed functional LT for discrete and continuous time processes [BLP'20]. Annealed superdiffusive behavior.
 - Generalized RW in random media with α ∈ (0, 2] and β ∈ (0, 2]. For different ranges of the parameters:
 - Functional limit theorems [BBLMS'21].
 - Tail distributions of the ladder heigths [BCP'22].
 - Construction of Lévy media on \mathbb{R}^2 : Open problems:
 - Transience or recurrence when $\alpha \in (1, 2)$.
 - Scaling and limit theorems when $\alpha \in (1, 2)$.

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

э

Thank you for your attention!

