Asymptotic probability of energy non-conserving paths for binary collision stochastic models

Giada Basile

University of Rome La Sapienza

(jointly with D. Benedetto, L. Bertini and E. Caglioti)

Berlin, August 2023

Contents

- ► Introduction
- ► Binary collision models
- ► Large deviations
- Asymptotic probability of energy non-conserving paths
- Condensation phenomena

Introduction

General framework: microscopic (stochastic) dynamics with energy/momentum conservation.

Large deviations: asymptotic probability of "atypical" paths, exponentially small with the size of the systems.

Asymptotic probability of paths that violate the conservation laws?

The Kac's walk

 $\{v_1,...,v_N\}$, $v_i \in \mathbb{R}^d$. At exponentially distributed random times

$$(v_i, v_j) \rightarrow (v'_i, v'_i)$$

with
$$v_i + v_j = v_i' + v_j'$$
 and $|v_i|^2 + |v_j|^2 = |v_i'|^2 + |v_j'|^2$

The Kac's walk

 $\{v_1,...,v_N\}$, $v_i\in\mathbb{R}^d$. At exponentially distributed random times

$$(v_i, v_j) \rightarrow (v_i', v_j')$$

with
$$v_i + v_j = v_i' + v_j'$$
 and $|v_i|^2 + |v_j|^2 = |v_i'|^2 + |v_j'|^2$

Continuous time Markov chain on $\left(\mathbb{R}^d\right)^N$

$$\mathcal{L}_{N}G(\boldsymbol{v}) = \frac{1}{N} \sum_{\{i,j\}} \int_{\mathbb{S}_{d-1}} d\omega \, B(v_{i} - v_{j}, \omega) \big[G(T_{i,j}^{\omega} \boldsymbol{v}) - G(\boldsymbol{v}) \big]$$

$$(T_{i,j}^{\omega}\mathbf{v})_{i} = v_{i} + (\omega \cdot (v_{j} - v_{i}))\omega, (T_{i,j}^{\omega}\mathbf{v})_{j} = v_{j} - (\omega \cdot (v_{j} - v_{i}))\omega$$

Kinetic limit

Empirical measure
$$\pi_t^N(du) = \frac{1}{N} \sum_{i=1}^N \delta_{v_i(t)}(du)$$

Initial distribution $F_0^N = f_0^{\otimes N}$. As $N \to \infty$
(LLN) $\mathrm{d}\pi^N \to f\,\mathrm{d}v$ f solution to the HBE

$$\partial_t f_t(v) = \frac{1}{2} \int_{\mathbb{R}^d} dv_* \int_{S_{d-1}} d\omega \, B(v - v_*, \omega) \big[f_t(v') f_t(v_*') - f_t(v) f_t(v_*) \big]$$

- ► (Kac'56) bounded collision kernel.
- (Sznitman'84) hard sphere collision kernel $B = \frac{1}{2} |(v_i v_j) \cdot \omega|$, initial distribution with finite > 2 moment.

Kinetic limit

Empirical measure
$$\pi_t^N(du) = \frac{1}{N} \sum_{i=1}^N \delta_{v_i(t)}(du)$$

Initial distribution $F_0^N = f_0^{\otimes N}$. As $N \to \infty$
(LLN) $\mathrm{d}\pi^N \to f\,\mathrm{d}v$ f solution to the HBE

$$\partial_t f_t(v) = \frac{1}{2} \int_{\mathbb{R}^d} dv_* \int_{S_{d-1}} d\omega \, B(v - v_*, \omega) \big[f_t(v') f_t(v'_*) - f_t(v) f_t(v_*) \big]$$

- Uniqueness in the class of energy conserving solutions (Mischler, Wennberg'99).
- ▶ ∃ weak solutions with increasing energy (Lu, Wennberg'02)

Discrete energy model

$$\{\epsilon_1,..,\epsilon_N\},\ \epsilon_i\in\mathbb{N}$$

Collision
$$(\epsilon_i, \epsilon_j) \rightarrow (\epsilon_i', \epsilon_j')$$
, with $\epsilon_i + \epsilon_j = \epsilon_i' + \epsilon_j'$

Uniform collision kernel (bounded)

$$B(\epsilon, \epsilon_*, \epsilon', \epsilon'_*) = \frac{1}{\epsilon + \epsilon_* + 1} \mathbb{I}_{\left\{\epsilon + \epsilon_* = \epsilon' + \epsilon'_*\right\}} \mathbb{I}_{\left\{\left\{\epsilon, \epsilon_*\right\} \neq \left\{\epsilon', \epsilon'_*\right\}\right\}}$$

LLN for the empirical measure: discrete HBE

$$\partial_t f_t(\epsilon) = \sum_{\epsilon_*, \epsilon', \epsilon'_*} B(\epsilon, \epsilon_*, \epsilon', \epsilon'_*) [f_t(\epsilon') f_t(\epsilon'_*) - f_t(\epsilon) f_t(\epsilon_*)].$$

LDP

Probability of "atypical paths"

$$P(\pi^N \sim \pi) \sim e^{-N\mathcal{I}(\pi)}$$

Rate function $\mathcal{I}(\pi) = \mathcal{E}(\pi_0) + \mathcal{J}(\pi)$

- $\mathcal{E}(\pi_0)$ "static contribution " (the initial distribution is not the prescribed one).
- $ightharpoonup \mathcal{J}$ "dynamical contribution" (the path is not the solution to HBE). The zero level set is the set of solutions to HBE.

Large deviation results

- C.Léonard (1995): LD upper bound for Kac's walk
- ► F.Rezakhanlou (1998): LDP for non-homogeneous case, finite set of velocities (conservation of momentum, not of energy)
- ▶ B.B., D.Benedetto, L.Bertini, C.Orrieri (2021): LDP^(*) for a Kac's like walk (conservation of momentum, not of energy)
- ▶ D.Heydecker (2022): LDP^(*) for Kac's walk;
- ▼ T.Bodineau, I.Gallagher, L.Saint-Raymond, S.Simonella (2020): newtonian dynamics (hard sphere interaction)

Rate function

Fix a one-particle distribution m. Léonard rate function

$$\mathcal{I}(\pi) = \operatorname{Ent}(\pi_0|m) + \mathcal{J}(\pi)$$

- ► Ent relative entropy
- J dynamical rate function (variational formula); the zero level set is the set of solutions to HBE.
- I is zero on the Lu-Wennberg solutions, while the probability of these paths is exponentially small with the number of particles N (Heydecker'22).

LDP in microcanonical ensemble

Static case

$$(v_1,...,v_N) \in \mathbb{R}^N$$
 uniformely distributed on

$$\Sigma_{e,0}^{N} := \left\{ \sum_{i=1}^{N} v_i^2 = Ne, \quad \sum_{i=1}^{N} v_i = 0 \right\}$$

$$(\mathsf{LLN}) \quad \pi^{\mathsf{N}}(\mathsf{d} u) := rac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \delta_{\mathsf{v}_i}(\mathsf{d} u)
ightarrow M_{e,0}$$

Sanov theorem for microcanonical ensemble

(LDP)
$$P(\pi^N \sim \tilde{m}) \sim e^{-NH_{e,0}(\tilde{m})}$$

where

$$H_{e,0}(\tilde{m}) = egin{cases} Ent(\tilde{m}|M_{e,0}) + rac{1}{2e}[e-\tilde{m}(v^2)] & ext{if } ilde{m}(v) = 0, ilde{m}(v^2) \leq e \\ +\infty & ext{otherwise} \end{cases}$$

[Chatterjee '17], [Kim, Ramanan '18], [Nam '20]

Kac's walk, empirical observable

Kac's walk on $\Sigma_{e,u}^N$.

emprirical observable: empirical measure and flow;

 $\{ au_k^{(i,j)}\}_{k\geq 0}$ random collision times of the pair (v_i,v_j)

empirical flow: map $Q^N \colon D([0,T] \to \Sigma^N_{e,u}) \to \mathcal{M}$ defined by

$$Q^{N}(F) := \frac{1}{N} \sum_{\{i,j\}} \sum_{k \geq 1} F(\tau_{k}^{i,j}; v_{i}(\tau_{k}^{i,j}-), v_{j}(\tau_{k}^{i,j}-), v_{i}(\tau_{k}^{i,j}), v_{j}(\tau_{k}^{i,j}))$$

 Q^N records the collision

Balance equation

$$\forall \phi \in C_b(\mathbb{R}^d)$$

$$\pi_T^N(\phi_T) - \pi_0^N(\phi_0) - \int_0^T \mathrm{d}t \, \pi_t^N(\partial_t \phi_t) - \int Q^N(\bar{\nabla}\phi) = 0,$$
where $\bar{\nabla}\phi := \phi(v') + \phi(v'_*) - \phi(v) - \phi(v_*).$

LDP for microcanonical initial data

Initial distribution.

 $m \in P(\mathbb{R}^d)$ such that $m(e^{\gamma_0|v|^2}) < +\infty$ for $\gamma_0 \in (-\infty, \gamma_0^*)$ and $\lim_{\gamma_0 \to \gamma_0^*} m(e^{\gamma_0|v|^2}) = +\infty$.

$$u^{N}(\cdot) = m^{\otimes N}(\cdot | \sum_{i=1}^{N} v_i = Nu, \quad \sum_{i=1}^{N} |v_i|^2 = Ne)$$

tilted measure

$$m_{e,u}(\mathrm{d}u) = \frac{m(\mathrm{d}u)e^{\gamma_0(e,u)|v|^2 + \gamma(e,u)\cdot v}}{m(e^{\gamma_0(e,u)|v|^2 + \gamma(e,u)\cdot v})}$$

with $\gamma_0(e, u), \gamma(e, u)$ s. t $m_{e,u}(v) = u, m_{e,u}(|v|^2) = e$.

LDP for microcanonical initial data

 $\mathrm{d} Q^\pi := frac{1}{2}\,\mathrm{d}\pi\otimes\mathrm{d}\pi\,B\,\mathrm{d}\omega\,\mathrm{d}t$ "typical flow"

 $J(\pi,Q)$: relative entropy of Q with respect to Q^{π}

$$J(\pi,Q) = \int \Big\{ dQ \log rac{\mathrm{d}Q}{\mathrm{d}Q^\pi} - \mathrm{d}Q + \mathrm{d}Q^\pi \Big\}.$$

Theorem (B., Benedetto, Bertini, Caglioti (2022)) $LDP^{(*)}$ with rate function

$$I_{e,u}(\pi,Q) := H_{e,u}(\pi_0) + J_{e,u}(\mu,Q),$$

where $J_{e,u}(\pi, Q) = J(\pi, Q)$ if $\pi_t(|v|^2) \le e$ and $\pi_t(v) = u$, while $J_{e,u} = +\infty$ otherwise.

Remarks

- ▶ LB for paths s.t. $Q(|v|^2 + |v_*|^2 + |v'|^2 + |v_*'|^2) < +\infty$ (non varying energy paths)
- ▶ the zero level set of $I_{e,u}$ is (π, Q^{π}) with $\pi_0 = m_{e,u}$ and $d\pi = f dv$, with f the unique energy conserving solution to the homogeneous Boltzmann equation with initial value $dm_{e,u}/dv$.
- $J(\pi,Q)$ (without constrain) is the one obtained in Léonard, and J=0 on any solution to the homogeneous Boltzmann equation
- ► Same results for the discrete energy model.

Kac's walk: increasing energy solutions

Construction of Lu and Wennberg solutions. Sequence of initial densites f_0^n :

- $ightharpoonup f_0^n o f_0$ weakly
- ► $\lim_{n\uparrow+\infty} \int f_0^n(v)|v|^2 dv = e > \int f_0(v)|v|^2 dv$ (a fraction of energy evaporates at $+\infty$)

 f_t evolves following the Boltzmann equation (typical behavior). $\mathcal{E}(0^+)=e$, i.e. energy has a jump at t=0.

Theorem (B., Benedetto, Bertini, Caglioti, (2022))

Given a non decreasing energy profile $\mathcal{E}(t)$ $t \in [0,T]$ piecewise constant, with $\mathcal{E}(T) \leq e$, there exists a Lu and Wennberg solution with an energy profile \mathcal{E} and its asymptotic probability is

$$e^{-NI_{e,u}(f dv, Q^{f \otimes f})} = e^{-NH_{e,u}(f dv)}$$

Remark: the cost is due only to the initial distribution

Discrete energy model

Trajectory with modified collision kernel

$$\tilde{\mathcal{B}}(\epsilon,\epsilon_*,\epsilon',\epsilon_*') = \frac{1}{2} \delta_{\epsilon,\epsilon_*} \delta_{\epsilon+\epsilon_*,\epsilon'+\epsilon_*'} \left[\delta_{\epsilon',\epsilon+\epsilon_*} + \delta_{\epsilon_*',\epsilon+\epsilon_*} \right] \mathbb{I}_{\left\{ \{\epsilon,\epsilon_*\} \neq \{\epsilon',\epsilon_*'\} \right\}},$$

(only particles with the same energy collide; in each collision the whole energy is transferred to a single particle)

Stationary state

$$t \to \infty$$
 $f_t \to \delta_0$, weakly

Condensation to the zero energy state

Condensation in finite time

Time reparametrization: $t^* \in (0,T)$, $\alpha(t) = \frac{t}{1-t/t^*}$,

$$ar{f}_t(\epsilon) = egin{cases} f_{lpha(t)}(\epsilon) & t \in [0,t^*) \ \delta_{\epsilon,0} & t \in [t^*,T], \end{cases}$$

flux $dar{Q}=\mathrm{d}t\,ar{q}_t$

$$\bar{q}_t(\epsilon, \epsilon_*, \epsilon', \epsilon'_*) = \frac{1}{2} \bar{f}_t(\epsilon) \bar{f}_t(\epsilon_*) \tilde{B}_t(\epsilon, \epsilon_*, \epsilon', \epsilon'_*),$$

Asymptotic probability

Theorem (B., Benedetto, Bertini, Caglioti, (2021))

$$P((\pi^N, Q^N) \sim (\bar{f}_t(\epsilon) d\epsilon, d\bar{Q})) \sim e^{-Nc}$$

Binary collision models with condensation

Non-reversible discrete energy binary collision models

 $\{\epsilon_1,..,\epsilon_N\}, \ \epsilon_i \in \mathbb{N};$ binary collision with $\epsilon_i + \epsilon_j = \epsilon_i' + \epsilon_j'$ Collision kernel, $a \in [0,1)$ $(a \in [0,1]?)$

$$\tilde{\mathcal{B}}_{a} = \left(1 + \epsilon + \epsilon_{*}\right)^{a} \mathbb{I}_{\left\{\epsilon + \epsilon_{*} = \epsilon' + \epsilon'_{*}\right\}} \frac{1}{2} \left[\mathbb{I}_{\left\{\epsilon' = \epsilon + \epsilon_{*}\right\}} + \mathbb{I}_{\left\{\epsilon'_{*} = \epsilon + \epsilon_{*}\right\}}\right]$$

Non-reversible dynamics; for a = 0 $\tilde{B}_a \sim \tilde{B}$. LLN

$$\partial_t f_t(\epsilon) = \sum_{\epsilon_*, \epsilon', \epsilon'_*} \tilde{B}(\epsilon, \epsilon_*, \epsilon', \epsilon'_*) [f_t(\epsilon') f_t(\epsilon'_*) - f_t(\epsilon) f_t(\epsilon_*)].$$

Stationary measure: $ar{f}=\delta_0$

Non-reversible discrete energy binary collision models II

Collision kernel $B = (1 - \alpha)\tilde{B}_a + \alpha B_b$, $\alpha \in [0, 1]$, where

$$B_b = (1 + \epsilon + \epsilon_*)^{-b} \mathbb{1}_{\{\epsilon + \epsilon_* = \epsilon' + \epsilon'_*\}},$$

Total collision rate $\lambda = (1 - \alpha)\lambda_a + \alpha\lambda_b$

$$\lambda_a = \lambda_a(\epsilon, \epsilon_*) = (1 + \epsilon + \epsilon_*)^a, \qquad \lambda_b = (1 + \epsilon + \epsilon_*)^{(1-b)}$$

Preliminary results (B.,D. Benedetto, S. Marchesani):

- No condensation if a + b < 2 (ex. λ_a , λ_b of the same order)
- ▶ Condensation for a = b = 1 if $\alpha > \alpha(E)$, with E initial energy.

Thank you!