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Introduction

General framework: microscopic (stochastic) dynamics with
energy/momentum conservation.

Large deviations: asymptotic probability of “atypical” paths,
exponentially small with the size of the systems.

Asymptotic probability of paths that violate the conservation laws?



The Kac's walk

{vi,...,vn}, v; € RY. At exponentially distributed random times

(vi, vi) = (v}, v))

with v; +v; = v/ + v/ and vil2 + vj|? = |VI|* + |v’|2



The Kac's walk

{vi,...,vn}, v; € RY. At exponentially distributed random times
! /
(vi, vi) = (Vi v})

with v; +v; = v/ + v/ and vil2 + |vj|? = |v! |2—|—|v |2

Continuous time Markov chain on (Rd)N
LyG(v N{Z:} . de vj,w)[G(ﬂ’,j-v)—G(v)]
i

(Tegw), = vit (- (= v (TE5w); = vy = (- (= W)



Kinetic limit

Empirical measure ¥(du) = & Z,N:1 dy,(¢)(du)
Initial distribution F = £*N. As N — oo

(LLN) dzN — fdv  f solution to the HBE

Oife(v) = ;/]Rd dv*/S dw B(v — vy, w) [fe(V') fe(vi) — Fe (V) e (vi) ]

> (Kac'56) bounded collision kernel.

> (Sznitman'84) hard sphere collision kernel B = %|(v; — v}) - w,
initial distribution with finite > 2 moment.



Kinetic limit

Empirical measure 7¥(du) = & SV, dyv,(¢)(du)
Initial distribution F)Y = fO®N. As N — oo

(LLN) dxN — fdv  f solution to the HBE

Oife(v) = ;/]Rd dv*/s dw B(v — vy, w) [fe (V) (VL) — fe(v) e (w)]

» Uniqueness in the class of energy conserving solutions
(Mischler, Wennberg'99).

» 3 weak solutions with increasing energy (Lu, Wennberg'02)



Discrete energy model

{61, ..,EN}, € € N
Collision (e, €;) — (e}, €), with € + ¢ = € + €
Uniform collision kernel (bounded)

1

B * ' =—1 Ry |
(6,6 7676*) cte+1 {eter=€'+€.} {{e,e*};«é{e’,e;}}

LLN for the empirical measure: discrete HBE

0ufc) = 3 Bleen & )[AOA) — le)fuler)]:

’
€x,€ €l



LDP

Probability of “atypical paths”
P(?TN ~ )~ )
Rate function Z(7) = E(mo) + J(7)

» E(mp) “static contribution “ (the initial distribution is not the
prescribed one).

» 7 “dynamical contribution” (the path is not the solution to
HBE). The zero level set is the set of solutions to HBE.



Large deviation results

v

C.Léonard (1995): LD upper bound for Kac's walk
F.Rezakhanlou (1998): LDP for non-homogeneous case, finite
set of velocities (conservation of momentum, not of energy)
» B.B., D.Benedetto, L.Bertini, C.Orrieri (2021): LDP®™) for a
Kac's like walk (conservation of momentum, not of energy)
D.Heydecker (2022): LDP™) for Kac's walk;

T.Bodineau, I.Gallagher, L.Saint-Raymond, S.Simonella
(2020): newtonian dynamics (hard sphere interaction)

v

vy



Rate function

Fix a one-particle distribution m. Léonard rate function

Z(7) = Ent(mo|m) + J(7)

> Ent relative entropy
» J dynamical rate function (variational formula); the zero level
set is the set of solutions to HBE.

» 7T is zero on the Lu-Wennberg solutions, while the probability
of these paths is exponentially small with the number of
particles N (Heydecker'22).



LDP in microcanonical ensemble



Static case

(vi, ..., vy) € RN uniformely distributed on

eo'—{Zv = Ne, Zv,-zo}

(LLN)  «"(du) : Zav,(du — Mey
i=1



Sanov theorem for microcanonical ensemble

(LDP)  P(xN ~ ) ~ e~ NHeo()

where

by Ent(m|Meo) + o [e — m(v?)] if m(v) =0,m(v?) <e
eo() = 400 otherwise

[Chatterjee '17], [Kim, Ramanan "18], [Nam '20]



Kac's walk, empirical observable

Kac's walk on Zé\{u.

emprirical observable: empirical measure and flow;

{Tk }k>0 random collision times of the pair (v;, vj)

empirical flow: map QV: D([0, T] — Ze,u) — M defined by

Z S F(vind =), vl =), v, ()

N7

QN records the collision



Balance equation

Vo € Cb(Rd)
(o) — il (60) - /O dexd(@:00) - [ @"(T9) =0,

where V6 := 6(v/) + 6(v/) — 6(v) — B(v.).



LDP for microcanonical initial data

Initial distribution.
m € P(R?) such that m(e™!V*) < 400 for 7 € (—00,75) and

. 2
I|m70_w§ m(eVOM ) = +o0.

N

N
VN =mNEDY vi=Nu, > i = Ne)
i=1

i=1

tilted measure

m(du)er(enlvi+y(e.u)-v

Me,u(du) = m(en(e (e )

with vo(e, u), (e, u) s. t me y(v) = u, me,u(|v]2) =e.



LDP for microcanonical initial data

dQ™ = % dm ® dw Bdwdt “typical flow”
J(m, Q): relative entropy of Q with respect to Q™

J(m, Q) = / { dQ|og;§T —dQ +dQ’T}.

Theorem (B., Benedetto, Bertini, Caglioti (2022))
LDP™) with rate function

Ie,u(ﬂ'a Q) = He,u(ﬂ-O) + Je,u(lu'v Q),

where Je u(7, Q) = J(m, Q) if m¢(|v|?) < e and 7(v) = u, while
Je,u = +o0 otherwise.



Remarks

> LB for paths s.t. Q(|v|? + |v|? + |V/[2 +|V/|?) < +oo (non
varying energy paths)

» the zero level set of [, is (7, Q™) with 79 = m, , and
dm = f dv, with f the unique energy conserving solution to
the homogeneous Boltzmann equation with initial value
dme ,/ dv.

» J(m, Q) (without constrain) is the one obtained in Léonard,
and J = 0 on any solution to the homogeneous Boltzmann
equation

» Same results for the discrete energy model.



Kac's walk: increasing energy solutions

Construction of Lu and Wennberg solutions.
Sequence of initial densites f;":

> fy — fo weakly
> iMoo [ fP(V)|vPdv =e> [ fo(v)|v[?dv

(a fraction of energy evaporates at +00)

f: evolves following the Boltzmann equation (typical behavior).
E(0T) = e, i.e. energy has a jump at t = 0.



Theorem (B., Benedetto, Bertini, Caglioti,(2022))

Given a non decreasing energy profile E(t) t € [0, T] piecewise
constant, with £(T) < e, there exists a Lu and Wennberg solution
with an energy profile £ and its asymptotic probability is

o~ Nle,u(f dv,QT®F) _ \—NHeu(f dv)

Remark: the cost is due only to the initial distribution



Discrete energy model

Trajectory with modified collision kernel

- 1
Ble e €', €l) = S0eeberes e, [erere e eve | Te g i)

(only particles with the same energy collide; in each collision the
whole energy is transferred to a single particle)

Stationary state
t—oo0 fy — &y, weakly

Condensation to the zero energy state



Condensation in finite time

Time reparametrization: t* € (0, T), a(t) = ﬁ

Fe) = fopy(€) t €0, t%)
‘ 8e.0 te [t T),

flux dQ = dt g,

c_lt(ea (S ela 6;) -



Asymptotic probability

Theorem (B., Benedetto, Bertini, Caglioti,(2021))

P((", QY) ~ (fi(e)de, dQ)) ~ e



Binary collision models with condensation



Non-reversible discrete energy binary collision models

{€1,..,en}, €i € N;  binary collision with €; +¢; = €, + ej’-
Collision kernel, a € [0,1) (a € [0,1]?)
. , 1
Bo=(1+e+e)Miehe—cra); [I{eeem} + I{€;:€+e*}}
Non-reversible dynamics; for a =0 éa ~ B. LLN

Oefe(e) = Y Blesex, @, ) [f()felh) = fe(e)fe(en)]-

€x,€’ €/,

Stationary measure: f = &g



Non-reversible discrete energy binary collision models |l

Collision kernel B = (1 — a)B, + aBy, a € [0, 1], where

By = (1 +te+ E*)_b]l{e—i-e*:e’—‘re;},
Total collision rate A = (1 — a)\; + a)p

Aa = A€, 60) = (1 +e+ 6*)3, Ab = (1 e+t 6*)(1_b)

Preliminary results (B.,D. Benedetto, S. Marchesani):
» No condensation if a+ b < 2 (ex. A,, Ap of the same order)
» Condensation for a= b =1 if @ > a(E), with E initial energy.



Thank you!



