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Abstract

In this mini-course we give a state of the art of the phase transition phe-
nomenon for continuum interacting particles system. The model is defined
in the infinite volume regime via the DLR equations which prescribe the
local conditional densities following the Gibbs-Boltzmann formalism. The
equilibrium states are also the thermodynamic limit of finite volume volume
Gibbs models for any boundary condition. Changing the boundary condition
at infinity can change drastically the equilibrium states. We call this phe-
nomenon, phase transition. Two kind of phase transition can appear. The
first one, called liquid-gas phase transition, preserves the symmetries of the
model (translations, rotations, etc) but the density, the energy or the entropy
of particles change abruptly at some values of parameters (in general activity
or inverse temperature). The second one, called symmetry breaking phase
transition, break some symmetries of the model even though the interaction
satisfy these symmetries. Depending on the model, the translation or the
rotation invariance is violated.

This topic has a long history in Physics and Mathematics-Physics. Several
conjectures have been claimed more than fifty years ago and most of them
are still open today. Only few results have been proved rigorously due to
the lack of tractability of models. Moreover, in the continuum setting, the
combinatorial tools, largely used for Gibbs models with bounded spins, is
not really efficient here. However, for some models with well-chosen interac-
tions, it is possible to prove the phase transition phenomena mentioned above.
The proofs are rigorous and are based on several tools in Analysis, Probabil-
ity theory, Geometry. During the mini-course, we will present these results,
we will give partially the proofs and we will present also a large collection
of conjectures provided beautiful challenges for present and probably future
generations.
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