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Innovative automotive industry

DFG Research Center MATHEON Project:
Automatic reconfiguration of robotic welding cells
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Innovative automotive industry

DFG Research Center MATHEON Project:
Automatic reconfiguration of robotic welding cells

Problem:

> Robots perform spot welding
tasks on single component

> Some points can only be
processed by specific robots

> Robots must not collide

> Given cycle time
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Ly Modelling

Discrete Part Continuous Part
> task assignment > path planning
> sequencing of weld points > collision detection and
avoidance
Requires Requires
> distances between weld > weld point sequence
points

> collision information
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Ay Routing & Scheduling

Vehicle Routing Problem with collision constraints

> Representation as a
graph for each robot:
» nodes &
weld points that can be
visited
> arcs &
paths between two weld
points
> Each arc has a travel
time

Collisions: Certain moves of two robots must not be made at the
same time
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Ly Collisions

Scheduled Tours for the robots:
> A tour with integer start and end times for each arc:

» end, — start, = traversal time of a
» If end, < start, we wait in node v

Collisions between robots at the same time:
> Both robots waiting: node-node collision

> One robot moving and one waiting: node-arc collision

> Both robots moving: arc-arc collision

N
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% Differences

> the distance depends on the orientation
of the robot

> collisions are too restrictive

> slight changes of trajectories to avoid
collisions
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For each feasible scheduled tour t € 7 there is a 0/1-variable x;

min Z CeXt (WCP)
teT

s.t. Z 6tht =1 YveVv
teT
x is collision free (1)
x¢ € {0,1} Vte T (2)
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For each feasible scheduled tour t € 7 there is a 0/1-variable x;

min Z CeXt (WCP)
teT

s.t. Z Ovixe = 1 YveVv
teT
x is collision free (1)
xr € {0,1} vteT (2)

Using branch-and-price approach:
> Constraints (1) and (2) are enforced by branching in a branch and

bound framework.
> For (1), conflicting arcs are forced/forbidden in certain time

windows
> Pricing: Elementary shortest path with negative costs and time

windows
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Resource Constrained Shortest Path
> Sub-problem for many VRP branch-and-price approaches
> State of the art: Bidirectional labeling algorithms
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Resource Constrained Shortest Path
> Sub-problem for many VRP branch-and-price approaches
> State of the art: Bidirectional labeling algorithms
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Drawbacks

> Elementary shortest path is expensive

> Algorithms do note scale very well

Standard dominance criterion does not hold!
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% Preprocessing

> Take the collision informaiton into account
> Find conflicting edge-node pairs
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% Preprocessing

> Take the collision informaiton into account
> Find conflicting edge-node pairs
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> If this leads to an infeasible node for all robots = delete the edge
> This is a cut for every infeasible robot
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Greedy-partitioning heuristic:
> Assign every node to the closest robot
> Solve the TSP-Problem (approximately) for all robots

> If the cycle time is violated reassign some nodes

LP-rounding heuristic:
> Remove nodes from tours with smaller LP-values
> Concatenate all tours for one robot

> Solve additional sub-MIP to find feasible waiting times:

» Leads to one binary variable for every conflicting
» Even for larger instances (> 35 nodes) solving takes less than 1 second
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Ay Improving Computational Performance

> Penalizing high collision edges

Efficient data structures for forbidden periods

v

Solve the elementary Shortest Path Problem:
Using 2-cycle elimination
Using decremental state-space relaxation

v

> Use Robust Tours instead of Scheduled Tours:
Reducing the number of variables
Detecting collisions is more complicated

v

Solve the pricing problems in parallel on shared memory systems

Reverse tours in heuristics

v
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