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Innovative automotive industry

DFG Research Center MATHEON Project:
Automatic reconfiguration of robotic welding cells

Problem:
. Robots perform spot welding

tasks on single component
. Some points can only be

processed by specific robots
. Robots must not collide
. Given cycle time
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Modelling

Discrete Part

. task assignment

. sequencing of weld points

Requires

. distances between weld
points

. collision information

Continuous Part

. path planning

. collision detection and
avoidance

Requires

. weld point sequence
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Routing & Scheduling

Vehicle Routing Problem with collision constraints
. Representation as a

graph for each robot:
I nodes ⇔

weld points that can be
visited

I arcs ⇔
paths between two weld
points

. Each arc has a travel
time

Collisions: Certain moves of two robots must not be made at the
same time
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Collisions
Scheduled Tours for the robots:
. A tour with integer start and end times for each arc:

I enda − starta = traversal time of a
I If enda < startb we wait in node v

Collisions between robots at the same time:
. Both robots waiting: node-node collision⇒

. One robot moving and one waiting: node-arc collision⇒

. Both robots moving: arc-arc collision
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Differences

. the distance depends on the orientation
of the robot

. collisions are too restrictive

. slight changes of trajectories to avoid
collisions
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For each feasible scheduled tour t ∈ T there is a 0/1–variable xt

min
∑
t∈T

ctxt (WCP)

s.t.
∑
t∈T

δvtxt = 1 ∀v ∈ V

x is collision free (1)
xt ∈ {0, 1} ∀t ∈ T (2)

Using branch-and-price approach:
. Constraints (1) and (2) are enforced by branching in a branch and

bound framework.
. For (1), conflicting arcs are forced/forbidden in certain time

windows
. Pricing: Elementary shortest path with negative costs and time

windows
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Pricing
Resource Constrained Shortest Path
. Sub-problem for many VRP branch-and-price approaches
. State of the art: Bidirectional labeling algorithms
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Pricing

Drawbacks
. Elementary shortest path is expensive
. Algorithms do note scale very well

Standard dominance criterion does not hold!
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Preprocessing

. Take the collision informaiton into account

. Find conflicting edge-node pairs

. If this leads to an infeasible node for all robots ⇒ delete the edge

. This is a cut for every infeasible robot
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Heuristics

Greedy-partitioning heuristic:
. Assign every node to the closest robot
. Solve the TSP-Problem (approximately) for all robots
. If the cycle time is violated reassign some nodes

LP-rounding heuristic:
. Remove nodes from tours with smaller LP-values
. Concatenate all tours for one robot
. Solve additional sub-MIP to find feasible waiting times:

I Leads to one binary variable for every conflicting
I Even for larger instances (> 35 nodes) solving takes less than 1 second
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Improving Computational Performance

. Penalizing high collision edges

. Efficient data structures for forbidden periods

. Solve the elementary Shortest Path Problem:
Using 2-cycle elimination
Using decremental state-space relaxation

. Use Robust Tours instead of Scheduled Tours:
Reducing the number of variables
Detecting collisions is more complicated

. Solve the pricing problems in parallel on shared memory systems

. Reverse tours in heuristics
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