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Dioid theory in a few words

Dioid (or idempotent semiring)

A dioid is a set endowed with two operations ⊕ and ⊗ such that

⊕: associative, commutative, zero element denoted ε

⊗: associative, unit element denoted e

⊗ distributes over the sum: (a⊕ b)⊗ c = a⊗ c ⊕ b ⊗ c and
c ⊗ (a⊕ b) = c ⊗ a⊕ c ⊗ b

Zero element ε is absorbing: a⊗ ε = ε⊗ a = ε

⊕ is idempotent: a⊕ a = a

A dioid admits an order relation � defined by
b � a⇔ a⊕ b = a⇔ a ∧ b = b

Example: (max,+)-algebra Zmax More

Z ∪ {−∞,+∞} endowed with max as ⊕ and + as ⊗. For example,
1⊕ 1 = 1 = max(1, 1) and 2⊗ 1 = 3 = 2 + 1.
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Dioid theory in a few words

Inequality a ⊗ x � b and x ⊗ a � b

In a complete dioid, inequality a⊗ x � b (resp. x ⊗ a � b) admits a
greatest solution, denoted x = a◦\b (resp. x = b◦/a).

Example

In Zmax, inequality 5⊗ x � 3 admits a greatest solution 5◦\3 = 3− 5 = −2.

Fixed-point equation x = ax ⊕ b

Theorem: In a complete dioid, the least solution of x = ax ⊕ b is x = a∗b
with a∗ =

⊕
i≥0

ai = e ⊕ a⊕ a2 ⊕ ... (i.e., a∗ is the Kleene star of a).
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Dioid theory in a few words

Extension to matrix case More

Let A,B two matrices in Zn×n
max

(A⊕ B)ij = Aij ⊕ Bij

(A ∧ B)ij = Aij ∧ Bij

(A⊗ B)ij =
⊕n

k=1 Aik ⊗ Bkj

(A◦\B)ij =
∧n

k=1 Aki ◦\Bkj , where A◦\B is the greatest solution of
AX � B

(B◦/A)ij =
∧n

k=1 Bik◦/Ajk , where B◦/A is the greatest solution of
XA � B

Other extensions

Dioid of formal power series

Quotient dioid
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Modeling in Zmax

Dater [Cohen et al., 85]

Dater: t : Z→ Zmax such that t(k)
is the date of firing k of transition t

Equations of the system

x1(k) = max(1 + u(k), x2(k − 1)) = 1u(k)⊕ x2(k − 1)

x2(k) = 3 + x1(k) = 3x1(k) = 4u(k)⊕ 3x2(k − 1)

y(k) = 3 + x2(k) = 3x2(k)

Matrix equations of the system x(k) =

(
ε e
ε 3

)
x(k − 1)⊕

(
1
4

)
u(k)

y(k) =
(
ε 3

)
x(k)
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Modeling in Zmax

Dater [Cohen et al., 85]

Dater: t : Z→ Zmax such that t(k)
is the date of firing k of transition t

State-space representation{
x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)

Drawback:

The previous input-output relation is not very handy.
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Modeling inMax
in [[γ, δ]]

Operators [Cohen et al., 89]

γ-operator: (γt) (k) = t (k − 1)

δ-operator: (δt) (k) = 1t (k)

The previous operators (and their linear combinations) correspond to
elements in the dioid Max

in [[γ, δ]].

State-space representation{
x = Ax ⊕ Bu
y = Cx

Transfer function matrix H

y = CA∗Bu = Hu
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Modeling inMax
in [[γ, δ]]

Equations of the system in Zmax

x1(k) = 1u(k)⊕ x2(k − 1) = (δu)(k)⊕ (γx2)(k)

x2(k) = 3x1(k) = (δ3x1)(k)

y(k) = 3x2(k) = (δ3x2)(k)

State-space representation and transfer function matrix More x =

(
ε γ
δ3 ε

)
x ⊕

(
δ
ε

)
u

y =
(
ε δ3

)
x

⇒ y = δ7(γδ3)∗u
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Optimal closed-loop control

State-space
representation{

x = Ax ⊕ Bu
y = Cx

Transfer function matrix

H = CA∗B
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Optimal closed-loop control

State feedback

u = Kx ⊕ v

v

K

State-space
representation{

x = (A⊕ BK )x ⊕ Bv
y = Cx

Transfer function matrix

Hcl = C (A⊕ BK )∗B

Objective

Compute the greatest
controller K such that

C (A⊕ BK )∗B � G
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Optimal closed-loop control

Synthesis More

C (A⊕ BK )∗B � G ⇔ H(KA∗B)∗ � G

⇔ (KA∗B)∗ � H◦\G

A particular class of model reference

Proposition: If there exists M (with entries in Max
in [[γ, δ]]) such that

G = M∗H, then C (A⊕ BK )∗B � G admits a greatest solution, denoted
K̂ , and given by

K̂ = H◦\G ◦/ (A∗B)
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Optimal closed-loop control

The neutral state feedback

If G = H, i.e., M = Id , the greatest state feedback is

K̂ = H◦\H◦/(A∗B)

This controller delays as much as possible the input, whitout modifying
the input/output behavior.
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Observer: Synthesis

Observer

Sq

Simulator

Objective

Compute the greatest observer L such that

x̂ � x
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Observer: Synthesis

Observer

Sq

Simulator

System equations Matrix S

x = Ax ⊕ Bu ⊕ Sq = A∗Bu ⊕ A∗Sq

y = Cx = CA∗Bu ⊕ CA∗Sq

Observer equations

x̂ = Ax̂ ⊕ Bu ⊕ L(ŷ ⊕ y)

ŷ = Cx̂ .
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Observer: Synthesis

Objective

Compute the greatest observer L such that

(A⊕ LC )∗B � A∗B
(A⊕ LC )∗LCA∗S � A∗S

Optimal Observer

Lopt = ((A∗B)◦/H) ∧ ((A∗S)◦/(CA∗S))
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Observer: Control

Principle

Transfer function matrix

Hcl = H(K (A⊕ LC )∗B)∗
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Observer: Control

Objective

Compute the greatest controller K such that

H(K (A⊕ LC )∗B)∗ � G

Controller K̂

If G = M∗H, then the optimal controller exists and is given by

K̂ = H◦\G ◦/ ((A⊕ LC )∗ B)
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Conclusion

Related works

Application to High-Throughput Screening Systems

Control the system in order to keep the state in a semi-module,
e.g., ensuring that Dx = Ex

and more .......

Software tools

http://www.istia.univ-angers.fr/~hardouin

http://www.scilab.org/contrib/
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Dioid theory in a few words

Back

Sandwiches Algebra [Cohen et al. ]

1 piece of Bread + 1 slice of ham +
1 slice of cheese is equal to 1
sandwich. Another way of counting !
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Dioid theory in a few words

Sum of matrices A⊕ B = C Back(
2 5
3 7

)
⊕
(
e 8
1 3

)
=

(
2 8
3 7

)

Product of matrices A⊗ B = C Back2 5
ε 3
1 8

⊗ (e
1

)
=

2⊗ e ⊕ 5⊗ 1
ε⊗ e ⊕ 3⊗ 1
1⊗ e ⊕ 8⊗ 1

 =

6
4
9


Residuation of matrices A ◦\B is the greatest solution of A⊗ X � B1 2

3 4
5 6

 ◦\
 8

9
10

 =

(
(1◦\8) ∧ (3◦\9) ∧ (5◦\10)
(2◦\8) ∧ (4◦\9) ∧ (6◦\10)

)
=

(
5
4

)
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Modeling in Zmax
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Modeling inMax
in [[γ, δ]]

Back

a series in Zmax[[γ]]

s =
⊕

k∈Z s(k)γk = 1γ ⊕ 4γ2 ⊕ 5γ4 ⊕ 7γ6 ⊕ ....
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Observer: Synthesis

Matrix S and input q: Back

vector q represents a vector of exogenous uncontrollable inputs
(disturbance) which act on the system through matrix S .

These disturbances lead to disable the transition firing, that is they
decrease system performances and delay tokens output.

When matrix S is equal to identity matrix and q = x0 they may
represent the initial state of the system.
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Modeling inMax
in [[γ, δ]]

Back

a periodic series in Zmax[[γ]]

s = (1γ ⊕ 4γ2)⊕ (5γ4 ⊕ 7γ6)(4γ3)∗

The throughput is denoted by σ∞(s) = 3/4
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Optimal closed-loop control

Details :

Recall :

(a⊕ b)∗ = a∗(ba∗)∗

a(ba)∗ = (ab)∗a

Let
C (A⊕ BK )∗B = CA∗(BKA∗)∗B = CA∗B(KA∗B)∗

.

hence :

C (A⊕ BK )∗B � Gref ⇔ (KA∗B)∗ � ((CA∗B)◦\Gref ) .

Back
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