
Learning Stiff Atmospheric Chemical Kinetics: The Regional Atmospheric
Chemistry Mechanism (RACM)
Levin Rug
Leibniz-Institute for Tropospheric Research, Leipzig, Germany

rug@tropos.de

We want to train a neural network to predict the concentrations of chemical compounds in the atmosphere.

Chemical Mechanism (Example: Robertson Mechanism)

A k1−→ B =k1 = 4 × 10−2

2B k2−→ B + C =k2 = 3 × 107

B + C k3−→ A + C =k3 = 1 × 104

System of Ordinary Differential Equations

∂
∂t [A] = −k1[A] + k3[B][C]

∂
∂t [B] = k1[A] − k2[B]2 − k3[B][C]

∂
∂t [C] = k2[B]2

Trajectories of Predicted Concentrations

Chemical Mechanisms of the atmosphere describe, how the ox-
idation of Volatile Organic Compounds (VOCs) and their interac-
tion with NOx produces the air pollutant ozone, but also higher
oxidised VOCs that are important for production of aerosol par-
ticle mass. Being able to consider accurate information about
aerosols and chemical processes in the troposphere has direct
impact on the quality of weather, climate and air quality predic-
tions and research. While solvers remain slow, accurate mecha-
nisms consistently gain in number of species and reactions (like
the Master Chemical Mechanism: 6700 species, 17000 reac-
tions, http://chmlin9.leeds.ac.uk/MCM/project.htt).

By simple transformations, we can write down a system of or-
dinary differential equations (ODEs) representing the mecha-
nism. If we find a solution to this system, given initial condi-
tions like measurements of chemical compounds in the tropo-
sphere, we can calculate future atmospheric conditions, which
is done numerically in models. These equations are non-linear,
with polynomial right hand sides. Together with reaction rates
(ki, i = 1, 2, 3) and concentrations in multiple magnitudes, this
becomes a stiff system. In order to achieve accurate, stable so-
lutions, we need to apply implicit solvers like Rosenbrock meth-
ods or LSODE. Those are sophisticated and efficient solvers, but
still slow. They cause the chemistry bottleneck in big models.

B has its relevant behaviour in a time span of the first millisec-
onds, while A and C change in time spans of tens to hundreds
of seconds. This is hard for both numerical solvers, as the step
size has to be chosen very carefully, and for neural networks, be-
cause they have to treat all of those species, where small abso-
lute errors can have huge impact on the solution, also regarding
the chaotic nature of atmospheric processes. Our neural net-
work is supposed to recreate very similar trajectories, by taking
as input concentrations and meteorological data and giving as
output the next time step of concentrations, i.e. exactly what a
numerical integrator does. But, neural networks can be evalu-
ated much faster.

What’s the matter?

Training

Training a neural network in our case can achieve some satisfying
accuracy for single time steps if it is trained long enough. More
complicated is the long-term prediction performance, i.e. when
erroneous output is fed through the network again and again. In
practice, this is important, because we don’t want to look one time
step into the future, but hours or days or even more. Below, per-
formance of single time steps is indicated by blue lines, long-term
predictions by green lines.

Input: vector of concentrations at a time (C(t)), daytime and vector
of emissions (E(t)) → 95+1+6=102 values
Output: vector of concentrations at next time: Ct+∆t → 95 values
Loss Function: Mean Squared Error, i.e. ||C(t + ∆t) − Ct+∆t||2
Optimizer: Stochastic Gradient Descent (batch size = 1)
Network Size: 3 Layers á 3000 neurons
Data Set Size: 36000 hourly concentrations of 750 simulations with
individual initial concentrations and emission profiles
Training Time: 1h 14min on RTX8000 GPU (48GB memory)

The above figure shows several evaluations of the trained network.
The top five rows show test data, i.e. data which was never used
in training. We see some important species’ trajectories for each
of the test simulations. Blue lines (”NN hourly”) indicate, what the
neural network predicts, if the previous time step is fed into the net-
work. Green lines (”NN full”) show the result for feeding the initial
condition into the network and then put the output into the network
again 47 times. We get more or less accurate 48 hour predictions
from the neural network. Black lines are the reference solutions.
The sixth row displays relative error of the above species in de-
pendence of daytime. Red lines indicate 10% relative error.
The seventh row has a plot of all values occuring in the validation
data set for each species and their predictions, with color indicat-
ing density of values from blue=low density to yellow=high density.
The eighth and ninth row show how some error measures de-
creased during training. The jagged line in row nine is an indicator
for the low-regularity behaviour of our loss function.

The Network
The Curse of Dimensionality

The most common way to generate data is random sampling. Enough samples form a good covering of the input space and followingly, the
network will be trained on most of the possible scenarios.
But, a sufficiently large number of samples is needed. Otherwise there are random gaps, where the network is doomed to perform more poorly
than elsewhere. So, what is a sufficiently large number?
This is no trivial question, but simplified, we can assume to have a similar absolute amount of prediction quality when we have n input values
sampled randomly as we have when we choose to create a grid of n points as input values, say a cartesian product. (Note, that the random
samples are better for large n, because the prediction quality is more distributed.)
The curse of dimensionality strikes now: A fine grid would be the best to cover the space thoroughly. But, only imagining an n-dimensional
cube, i.e. a cartesian product of 2 values per species, we would have to train on 2dim(input) = 2102 ≈ 5 × 1030 values. Beside that being completely
out of reach, a cube is still an extremely poor grid! Random samples are simply infeasible, because a random sampled equivalent of a cube
always has huge, random gaps in its space.

The left hand side figure should work as an example of the curse
of dimensionality. We see three methods of creating samples in a
2-dimensional space: completely random, uniform grid and distorted
uniform grid. The coloured background indicates density of the tuples,
which we want to be constant at best. For a low number of samples,
the second method performs best. The reason why it should still be
avoided can be seen in the projections to one dimension (1D), the
blue dots outside the color plot: the whole training would only provide
5 seperate values per species! The network is supposed to learn the
complete behaviour, not 5 values over and over. In 1D projections,
random looks best, but it is infeasible - the third method is a good
combination, taking advantage of both randomness and structure.

Individual Data

The data for each problem is obviously very individual. Since we aim
to use the network for atmospheric conditions, we can further individ-
ualize the data up to daytime-specific ranges for every single species.
This is beneficial, since it tightens the, as outlined above, exceedingly
large input space. Additionally, training on irrelevant data is prohibitive
in multiple ways.
Luckily, we can use the mechanism to tell us the specific ranges for
the species. We vary the most valuable influences on the system, i.e.
emissions and our observable O3 and in this way, possible and rele-
vant simulations are generated. The right hand side figure shows the
specific ranges for each species in dependence of daytime, with colour
depending on density of values.

The last step until our data is ready to train the network successfully
is scaling. As mentioned before, the individual species can have con-
centrations in very different magnitudes and also, some change their
magnitude very rapidly. But still, every little change in concentration
can be of arbitrary importance for the stiff system. A neural network
has a hard time learning one input value being sensitive in regions
of 1013 and the other in 103 and the next from 106 to 1014, especially
when the species’ behaviour is indeed logarithmic. The figure to the
left shows six common ways of scaling data. The plots are histograms
of the whole data generated for various species, colour indicates mag-
nitude of values. The rightmost column shows, in comparison, very
similarly distributed data for all species, which is why we use this way
of scaling.

The Data

