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ML4SIM research agenda

= The applications of machine learning to composite material design

= New mathematical architectures for approximating PDE solutions using a
mixture of neural networks and standard numerical solvers.

= Discovering potential advantages, disadvantages, and future prospects of ML
In the context of composite material modelling.

= New methodologies for multiscale simulation.

= |[nterdisciplinary exchange of ideas and experience between the partners.

Physics-informed neural networks

The knowledge of physics is built into a cost functional as the PDE residuals:

Tr(u,p) = ||[—vAu + Vp — fH[QLz( » 4+ 71|V - UHL2 + 7oflu — gH[ZLQ(f?Q)]Q

The least-squares problem over a class of neural networks 1, is then solved:
inf jT(UH; pH)
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More details: Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics
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= Physics-informed neural networks are meshless and are suitable for handling complex
geometries of composite materials.

= The non-convex nature of the NN optimization often leads to difficulties and limitations and
requires a certain delicacy in analytical and numerical handling

The horizontal velocity component u.: PINN approximation (left), FEM
approximation (center), pointwise error (right).
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The vertical velocity component v: PINN approximation (left), FEM
approximation (center), pointwise error (right).
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Fluid flow in porous media
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Accurate modelling of composites can be challenging due to the complex geometries of composite media -

and the presence of multiple scales with different physics. This requires computational grids with very fine Qr
resolution and imposes severe computational constraints on standard numerical solvers designed to solve » gt

the underlyin.g.equations _(PDES). Homogenization. techniqugs are often usgd to overcome such difficultigs G = el o
and allow efficient extraction or upscaling of material properties from the microscale level for further use in W -G WM
macroscale simulations. In addition, enriching and improving classical composite design methods through

machine learning is a promising research direction. We investigate the applicability of machine learning to .. o |:|pf:|
composite design and the approximation of solutions to continuum media equations arising in this context. 'F“ ke L G e

lllustration of physics at different scales for a liquid composite molding case: An adaptive grid in
a microscopic flow simulation (2D) through a fiber bundle (left), mesoscopic flow simulation in a

representative vol. element model of a textile (middle) and macroscopic simulation of part filling (right)

Governing equations

The Stokes-Brinkman-Darcy equations of fluid flow in porous media depend
on the scale:
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The permeability K is obtained by upscaling using Darcy’s law from a few
simulations of the Stokes problem:

(4 3) == ((0p (wrm) (i k) 0= -

More details: Griebel, M, Klitz, M., 2010. Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Modeling and Simulation .

Hybrid multiscale solver

The hybrid physics-informed neural network for numerical homogenization is
formulated as an optimal control problem with PDE constraints:

inf j7'5( 7p7w) = jT(uap) —|_’7_3jD(’U/,'lU),

(u,p,w
subject to the Stokes-Brinkman equations

K'w—vAw+Vr=finQ,
V-w=0in{),
+ boundary conditions.

The term Jp(w, w) measures the discrepancy between u and w and
couples two scales:

Ip(u, w) = || Bsu — "UH[QB( )25 Bsu(x) y)dy,
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where Bs(z) .= {x : ||z — z||p2 < 0}.

The combination of physics-informed neural networks with robust and efficient

numerical solvers may be a possible way to mitigate the challenges of vanilla
neural network approach




