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. Introduction . Ultimate Aim

« The auditory cortex (AC) creates representations of sound sequences by adjusting » Fitting the model to experimental data was : o o
its dynamics for processing incoming stimuli according to stimulus history. This done by trial and error, which is very slow '—'”Eﬁ;‘zig‘fg of %?ZZ?:IT;’:;;”
process is termed temporal binding. and sparse. Thus, mostly qualitative g P

« Previous studies have suggested that the underlying mechanism of temporal simulations were performed so far.
binding Is short-term synaptic depression (STSD) which can be summarized inone . \we aim for an approximated version of the

central parameter 7, the time constant of recovery from synaptic depression. original  non-linear model  (linearized/
« We want to investigate how ... might be reflected in classical N1m adaptation simplified) which retains relevant features Analvtical
phenomena and temporal binding, with a view of exploring whether adaptation (network structure, presynaptic adaptation). Fit to real data e

could predict temporal binding from the perspective of dynamical neural networks.

« By means of analytical solutions of the

: model, we aim to vastly improve fitting the
. Computatlonal model model to experimental data (MEG on

. . . humans, single-cell observations on
Model of information processing in AC based on STSD (May et al. 2010, 2013, 2015) monkeys), ang, thus, obtain e.g. more v Implementation

detailed and subject-specific information on parameters in the nc(:jnllinear
auditory processing. mode

Structure

« Hierarchical organization of monkey AC:
3 core, 8 belt, 2 parabelt fields (Hackett
et al., 1998; Kaas & Hackett, 2000).

« Serial feedforward activation from core to
belt and to parabelt fields along many
parallel routes.

« Each field consists of n columns.

Our approach

We first linearize the spiking rate and assume that excitatory to excitatory connections
(W,.) are symmetric, and all other connection matrices (W, W,, W;) are diagonal. We
can find analytical solutions as a mixture of damped harmonic oscillators (normal
modes).

T X7hu(t) = =T ha(t) + Weeg Y hu(t) — Weig Y (t) + Y L
Hackett et al. (1998) J. Comp. Neurol

T Y7 (t) = Wieg Y tu(t) — YT 1v (1)

: . Column 1 Column 2
Computational Unit: The Column wa(t) = exp(—at)(au, sin(at) + bu, cos(at)) + fu,

* A column is a complex, local collection of
neurons with similar response properties.
« We model the column in the simplest
possible way: Each column consists of an
excitatory (e) and an inhibitory (i) cell
population each described by one state

va(t) = exp(—~at) (@, sin(dat) + by, cos(dat)) + foy

Presynaptic adaptation A: release of neurotransmitters is dependent only on the
excitatory activity of preceding column, i.e. A is a matrix with identical rows.
(Ao Wee)u = (Weediag(a))u

: Fresh network Stimulus 1 Partial recovery Stimulus 2 ~Full recovery
variable. - . - . . i
« Connections within and between columns transmitters
are expressed by W, W, and W,.
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s 1 ™ ' Thus, excitatory connection strengths become asymmetric, but we still can solve the
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Dynamics Adaptation has a fast onset and a slow recovery phase. We approximate it with an

Infinitely fast decline of the connection strength and a slow exponential recovery.
Coupled differential equations describing neural interactions: leaky integrator neuron

i i da;(t) 1 1—a;(t) da:(t d-: 1 — a:(t
plus presynaptic depression CJlt _ —T—aj(t)g[uj(t)] ] j . ac]z( ) _ Dt )4 a; (t)
0 a t To Tq
Lealcterm Excitatory Inhibitory - Afferent input We assume that the signal decline d; spreads infinitely fast through the network. We

approximate this spread by using the non-symmetric equivalent resistance

Tmu(t) = —u(t) + A(t) o We. - glu(t)] = Wei - g[v(t)] + Lis (conductance) matrix approach (resistances with voltage controlled current sources).
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Standard paradigm to study adaptation: Regular-SOIl experiment o o o -
« Stimuli are presented at regular stimulus-onset intervals (SOIs) in different blocks B
and SOl is varied across blocks. % |
« Averaging single-trial responses per block produces mean response per SOI. S a4 e a1 a4z
« Dependence of mean peak amplitude of the AC response on SOI can be described 8
with an exponentially saturating function with adaptation time constant t,. -g
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2 2 w0 1 « We approximate the original non-linear model while keeping the basic concepts:
E 100 Eao 7 1 network structure, oscillatory behavior, presynaptic adaptation.
“g_mg_ gxo 1  The resulting analytical solutions show a remarkable similarity in excitation and
100 4 adaptation as observed in the non-linear model.
~3%45 0 5 00 150 200 250 300 055 55 : 0 » Are there other possibilities to improve this approximation further?
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