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Motivation

� Meshes are backbone in 3d applications.

� The Problem: How to generate a "good"mesh?

Courtesy: David Gu, Uni. Stonybrook

Computer Graphics
Courtesy: DreamWorks Pictures

Computer Animation

Courtesy: (L) Uni Stanford (R) Water Cube Stadium in Beijing

Architecture Design
Courtesy: (L) Uni Utah (R) www.dlr.de

Numerical Simulation
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Motivation

� Meshes are backbone in 3d applications.

� The Problem: How to generate a "good"mesh?

In 2001, H. Edelsbrunner wrote:

... Mesh generation is a topic in which a meaningful combination of

different approaches to problem solving is inevitable.
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TetGen, a Delaunay-based tetrahedral mesh generator

� A research project of WIAS since 2002.

� The goal is two-fold:

� to study the underlying mathematical

problems; and

� to develop robust and efficient algorithms

and softwares.

� It is freely available at

http://www.tetgen.org.

� latest version 1.5 (released in Nov. 2013).

� about 10,000 downloads (Nov. 2013 - now).

� about 20+ commercial licenses.
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Challenge: Anisotropic Mesh Generation

� Anisotropic meshes are very important in many numerical simulations

to capture the physical behavior of a complex phenomenon at a

reasonable computational cost.

� It is a very complex and challenging problem.

Anisotropy

Flow features:

• Phenomena concentrated in small regions, mesh size is important

• Anisotropic phenomena: shock waves, boundary layers,...

the mesh is not optimal w/r directions

• Regions move when unsteady phenomena

uniformely fine mesh everywhere

(→ general framework)

14th Int. Meshing Roundtable, San Diego, CA, USA September 11-14, 2005 61/ 61

CFD simulations

Adapted meshes and density fields (iter. 0, 9).

14th Int. Meshing Roundtable, San Diego, CA, USA September 11-14, 2005 48/ 61

Courtesy: A. Davidhazy Courtesy: P. Frey
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Description of Anisotropy

� Anisotropy is due to that the “space” is not flat, i.e., its geometry is

non-Euclidean.

� Anisotropy can be described through a fieldM of metric tensors

associated with a space domain Ω ⊆ Rd, where each metric tensor

M(x) ∈M,x ∈ Ω is a d× d symmetric positive definite matrix.

� A metric tensor M can be geometrically represented by an oriented

ellipse defined by its eigenvalues and eigenvectors.

�
r1

r2

Figure 8: Ellipse

The specification of anisotropy requires three parameters: a major radius r1, minor radius r2, and angle θ (Figure 8),
defining the desired edge length as a function of orientation and position. The corresponding tensor is:

M = R""RT =
⎧
⎪⎪⎪⎩
cos θ − sin θ

sin θ cos θ

⎫
⎪⎪⎪⎭

⎧
⎪⎪⎪⎩
1/r21 0

0 1/r22

⎫
⎪⎪⎪⎭

⎧
⎪⎪⎪⎩
cos θ sin θ

− sin θ cos θ

⎫
⎪⎪⎪⎭ (3)

Inversely, given a metric tensor, its eigenvalues and eigenvectors define the inverse squares of the major and minor
radii and the directions of the axes, respectively.

Using this tensor, the distance between two points x and y is computed as

d(x,y) =
√

(x−y)TMavg(x−y) (4)

whereMavg=
(
M(x)+M(y)

)
/2. This is equivalent to measuring distance in a normalized space where the ellipse is

mapped to a unit circle using the rotation and scaling transformation""1/2RT . A more rigorous definition of distance
would require integration [22, p. 30]; by assuming the metric to be locally constant, we achieve the less expensive
formula above [4, 3]. In a mesh conforming to this metric, the neighbors of node i lie close to the ellipse d(p i,y)=1.
They lie exactly on the ellipse if the metric is locally constant.

The normalized area of a triangle defined by three points x, y, and z is computed as

A(x,y, z) = 1
2
√
det(Mavg) (y−x) × (z−x) (5)

whereMavg=
(
M(x)+M(y)+M(z)

)
/3, and u× v is the 2-D cross product with scalar value u1v2−u2v1.
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Figure 9: Edge swapping

4.1 Modified Delaunay Criterion

We modify the Delaunay criterion to take anisotropy into account. Let xyz and zwx be two adjacent triangles (Figure
9). Delaunay retriangulation swaps edges to maximize the minimum angle. Equivalently, if ̸ zyx+ ̸ xwz> 180◦ then
swap edge xz for edge yw [2]. For anisotropic Delaunay triangulation, we measure angles in the normalized space
defined by the metric. The generalized rule is to swap edge xz for yw if

[
(z−y) × (x−y)

]
(x−w)TMavg(z−w) + (z−y)TMavg(x−y)

[
(x−w) × (z−w)

]
< 0 (6)
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Related Work – Metric-based Approach

� In the majority of works concerning anisotropic mesh generation, a

(discrete) metric tensor fieldM (e.g., defined on the vertices) is used to

describe the anisotropic feature of the domain. Then, a uniform mesh

with equal (geodesic) edge length with respect to the metric tensor field

M is sought. This will produce an anisotropic mesh of that domain.

Bossen−Heckbert [1996]
Shimada−Yamada−Itoh [1997]

George−Borouchaki [1998]
Li−Teng−Üngör [1999]

Generating Anisotropic Meshes
Heuristic Algorithms for

� In this work, we propose a new mesh adaptation approach, in which no

metric tensor fields are involved.
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Curvature-Adapted Surface Remeshing

Question 1: How to approximate a surface Γ ⊂ R3 with a small number of

mesh elements.
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The Basic Idea

The Idea: Use additional dimensions to resolve the anisotropy.

(Courtesy of B. Lévy)

This example shows that an anisotropic mesh in R2 corresponds to an

isotropic mesh in R3.
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Surface Emending in R6 [Canás and Gortler 2006, Lai et al 2010]

Let Γ be a surface in R3. Let φ : Γ ⊂ R3 → R6 be a map defined as,

φ(A) :=



x

y

z

snx
sny
snz


where A is a point in surface Γ whose coordinates are x, y and z,

respectively, and nx, ny and nz are the components of the normal to the

surface Γ at the point p.

The constant s ∈ (0,+∞) is a parameter for capturing the anisotropy.
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Surface Remeshing in R6

Question 2: How to generate an uniform mesh for the surface φ(Γ) in R6.

� Directly generalizing the existing algorithms in R3 is impractical due to

the memory limitations.

� The vorpaline algorithm [Lévy and Bonneel 2012] – optimizing an

d-dimensional Centroidal Voronoi Tessellation (CVT).

� ...our approach.
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Lengths and Angles in 6d

Define the scalar product in R6 to be:

(A,B)6d = xAxB + yAyB + zAzB︸ ︷︷ ︸
I

+s2(nxwx + nywy + nzwz︸ ︷︷ ︸
II

) .

This parameter will balance the contribution of the quantities I and II on

whole value of (A,B)6d. Since I ∈ [−d2, d2] and II ∈ [−1, 1], where d is

the measure of the diagonal of the bounding box of Γ, we need an additional

constant to make I and II almost comparable. We decide to modify (A,B)6d

in such a way

(A,B)6d = xAxB + yAyB + zAzB + (hΓs)
2 (nxwx + nywy + nzwz) .

where

hΓ =
dx + dy + dz

3
,

here dx, dy and dz are the dimension of the bounding box of Γ.
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Lengths and Angles in 6d

Given two points A and B that lie on the surface Γ, we define the length of

the segment l6dAB as

l6dAB := ||A−B||6d =
√

(A−B,A−B)6d .

Given three points A,B,C ∈ Γ we define the 6d-angle ϑ as

cos6d (ϑ) :=
(A− C,B − C)6d

||A− C||6d ||B − C||6d
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Mesh Adaptation in R6

� Starting from an initial mesh of a surface Γ ⊂ R3

� Evaluate the lengths of the angles of the triangles in R6.

� Perform the standard local mesh adaptation operations to make the

mesh as uniform as possible in R6.

· MMSDays 2016 · Page 13 (32)



Example: Implicit Surface Remeshing
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Example: Implicit Surface Remeshing

The initial mesh A resulting mesh
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Example: Implicit Surface Remeshing

The initial mesh A resulting mesh
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The Anisotropy affected by s
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The Anisotropy affected by s
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Example: CAD Surface Remeshing
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Example: CAD Surface Remeshing
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Function Interpolation in 2d

Consider a flat domain Ω with a Lipschitz smooth boundary and a smooth

function f : Ω ⊂ R2 → R. We define the embedding map

Φf : Ω ⊂ R2 → R5 as:

Φf (x) := (x, y, s f(x, y), s gx(x, y), s gy(x, y)) t , (1)

here s ∈ [0,+∞) is a user-specified parameter, f(x, y), gx(x, y) and

gy(x, y) are values at the point (x, y) of the function f and its gradient

components, respectively.
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The Re-Meshing Procedure

an initial mesh Ωh sampling
final mesh

a desired 5d-length, L5d optimization
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Example

f2(x, y) = tanh (60x)− tanh (60 (x− y)− 30) .
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Example

f2(x, y) = tanh (60x)− tanh (60 (x− y)− 30) .
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Comparison with BAMG

� Hecht, F., BAMG: Bidimensional anisotropic mesh generator.

www.ann.jussieu.fr/hecht/ftp/bamg, Freefem++.

� Uses metric based mesh adaptation method.

BAMG HDE

· MMSDays 2016 · Page 24 (32)

www.ann.jussieu.fr/hecht/ftp/bamg


Mesh Adaption via HDE

� Contrary to the classical mesh adaptation procedure, the proposed

adaptation strategy in this paper does not involve both the estimation of

an error and the construction of a metric field. In each iteration of the

mesh adaptation, we use the following steps:

SOLVE→RECOVER GRADIENT→ADAPT,

and this process stops when it converges or a desired maximum number

of iterations is reached.
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An Example 
−µ∆u+

−→
β · ∇u = 0 in Ω ,

u = 1 in ∂Ω1 ,

u = 0 in ∂Ω2 ,

µ∂u
∂n = 0 in ∂Ω3 ,

here µ = 0.05,
−→
β = (x, −y)t.
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An Example

etot :=

∫
Ωh

|uh − uref |2 dx and σmax := max
T∈Ωh

σT

BAMG HDE

Ele. 4438 4337

etot 4.143e-03 6.650e-03

σmax 6.880e+01 3.456e+02
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An Example

BAMG HDE
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Example: Wave

{
∂2u
∂t2
− µ∆u = f in Ω ,

u = 0 in ∂Ω ,

here µ = 1., f discrete Dirac function.

animation
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Anisotropic Tetrahedral Meshes via HDE

f(x, y, z) = tanh(10(sin (2πx) cos (2πy) + sin (2πy) cos (2πz)

+ sin (2πz) cos (2πx)))

The initial mesh An adapted mesh
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Discrete Metric Tensor Filed
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Conclusion

� We have presented a method for anisotropic mesh adaptation based on

higher dimensional embeddings (HDE).

� Experimental results showed that this method produced meshes are

comparable those generated by metric-based mesh adaptation methods.

� HDE tends to capture anisotropy more accurately.

� However, HDE tends to over stretched in some area. The mesh

gradation in HDE is less than metric-based method.

� Deep analysis is needed for HDE method.

� A very interesting question is how its relation with metric-based method.
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