

Weierstrass Institute for Applied Analysis and Stochastics

Anisotropic Finite Element Mesh Adaptation through High-Dimensional Embeddings

Franco Dassi, Hang Si, Simona Perotto and Timo Streckenbach

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de MMSDays 2016

Meshes are backbone in 3d applications.

Courtesy: David Gu, Uni. Stonybrook Computer Graphics

Courtesy: DreamWorks Pictures Computer Animation

 $\begin{array}{c} \text{Courtesy:} \text{ (L) Uni Utah (R) www.dlr.de} \\ Numerical Simulation \end{array}$

Motivation

Meshes are backbone in 3d applications.

The Problem: How to generate a "good"mesh?

Courtesy: David Gu, Uni. Stonybrook Computer Graphics

Courtesy: DreamWorks Pictures Computer Animation

Courtesy: (L) Uni Utah (R) www.dlr.de Numerical Simulation

Meshes are backbone in 3d applications.

The Problem: How to generate a "good"mesh?

In 2001, H. Edelsbrunner wrote:

... Mesh generation is a topic in which a meaningful combination of different approaches to problem solving is inevitable.

- A research project of WIAS since 2002.
- The goal is two-fold:
 - to study the underlying mathematical problems; and
 - to develop robust and efficient algorithms and softwares.
- It is freely available at
 - http://www.tetgen.org.
 - Iatest version 1.5 (released in Nov. 2013).
 - about 10,000 downloads (Nov. 2013 now).
 - about 20+ commercial licenses.

- Anisotropic meshes are very important in many numerical simulations to capture the physical behavior of a complex phenomenon at a reasonable computational cost.
- It is a very complex and challenging problem.

Courtesy: A. Davidhazy

Courtesy: P. Frey

- Anisotropy is due to that the "space" is not flat, i.e., its geometry is non-Euclidean.
- Anisotropy can be described through a field \mathcal{M} of metric tensors associated with a space domain $\Omega \subseteq \mathbb{R}^d$, where each metric tensor $M(\mathbf{x}) \in \mathcal{M}, \mathbf{x} \in \Omega$ is a $d \times d$ symmetric positive definite matrix.
- A metric tensor M can be geometrically represented by an oriented ellipse defined by its eigenvalues and eigenvectors.

In the majority of works concerning anisotropic mesh generation, a (discrete) metric tensor field *M* (e.g., defined on the vertices) is used to describe the anisotropic feature of the domain. Then, a *uniform mesh* with equal (geodesic) edge length with respect to the metric tensor field *M* is sought. This will produce an anisotropic mesh of that domain.

In the majority of works concerning anisotropic mesh generation, a (discrete) metric tensor field *M* (e.g., defined on the vertices) is used to describe the anisotropic feature of the domain. Then, a *uniform mesh* with equal (geodesic) edge length with respect to the metric tensor field *M* is sought. This will produce an anisotropic mesh of that domain.

In this work, we propose a new mesh adaptation approach, in which no metric tensor fields are involved.

Question 1: How to approximate a surface $\Gamma \subset \mathbb{R}^3$ with a small number of mesh elements.

· MMSDays 2016 · Page 7 (32)

The Idea: Use additional dimensions to resolve the anisotropy.

(Courtesy of B. Lévy)

This example shows that an anisotropic mesh in \mathbb{R}^2 corresponds to an isotropic mesh in \mathbb{R}^3 .

Let Γ be a surface in \mathbb{R}^3 . Let $\phi: \Gamma \subset \mathbb{R}^3 \to \mathbb{R}^6$ be a map defined as,

where A is a point in surface Γ whose coordinates are x, y and z, respectively, and n_x , n_y and n_z are the components of the normal to the surface Γ at the point p.

The constant $s\in(0,+\infty)$ is a parameter for capturing the anisotropy.

Question 2: How to generate an uniform mesh for the surface $\phi(\Gamma)$ in \mathbb{R}^6 .

- Directly generalizing the existing algorithms in \mathbb{R}^3 is impractical due to the memory limitations.
- The vorpaline algorithm [Lévy and Bonneel 2012] optimizing an d-dimensional Centroidal Voronoi Tessellation (CVT).
 - ...our approach.

Define the scalar product in \mathbb{R}^6 to be:

$$(A,B)_{\rm 6d} = \underbrace{x_A x_B + y_A y_B + z_A z_B}_{I} + s^2 (\underbrace{n_x w_x + n_y w_y + n_z w_z}_{II}).$$

This parameter will balance the contribution of the quantities I and II on whole value of $(A, B)_{\text{ed}}$. Since $I \in [-d^2, d^2]$ and $II \in [-1, 1]$, where d is the measure of the diagonal of the bounding box of Γ , we need an additional constant to make I and II almost comparable. We decide to modify $(A, B)_{\text{ed}}$ in such a way

$$(A,B)_{\rm 6d} = x_A x_B + y_A y_B + z_A z_B + (h_{\Gamma} s)^2 \left(n_x w_x + n_y w_y + n_z w_z \right) \,.$$

where

$$h_{\Gamma} = \frac{d_x + d_y + d_z}{3} \,,$$

here d_x , d_y and d_z are the dimension of the bounding box of Γ .

[·] MMSDays 2016 · Page 11 (32)

Given two points A and B that lie on the surface $\Gamma,$ we define the length of the segment l^{6d}_{AB} as

$$l_{AB}^{6d}:=||A-B||_{\rm 6d}=\sqrt{(A-B,A-B)_{\rm 6d}}\,.$$

Given three points $A, B, C \in \Gamma$ we define the **6d-angle** ϑ as

$$\cos_{\rm 6d}\left(\vartheta\right) := \frac{(A - C, B - C)_{\rm 6d}}{||A - C||_{\rm 6d} \, ||B - C||_{\rm 6d}}$$

· MMSDays 2016 · Page 12 (32)

- Starting from an initial mesh of a surface $\Gamma \subset \mathbb{R}^3$
- Evaluate the lengths of the angles of the triangles in \mathbb{R}^6 .
- Perform the standard local mesh adaptation operations to make the mesh as uniform as possible in R⁶.

· MMSDays 2016 · Page 14 (32)

The initial mesh

A resulting mesh

The initial mesh

A resulting mesh

· MMSDays 2016 · Page 16 (32)

· MMSDays 2016 · Page 17 (32)

· MMSDays 2016 · Page 18 (32)

· MMSDays 2016 · Page 19 (32)

· MMSDays 2016 · Page 20 (32)

Consider a flat domain Ω with a Lipschitz smooth boundary and a smooth function $f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$. We define the embedding map $\Phi_f: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^5$ as:

$$\Phi_f(\mathbf{x}) := (x, y, s f(x, y), s g_x(x, y), s g_y(x, y))^t,$$
(1)

here $s \in [0, +\infty)$ is a user-specified parameter, f(x, y), $g_x(x, y)$ and $g_y(x, y)$ are values at the point (x, y) of the function f and its gradient components, respectively.

The Re-Meshing Procedure

an initial mesh Ω_h a desired 5d-length, L_{5d}

Example

$$f_2(x, y) = \tanh(60x) - \tanh(60(x - y) - 30).$$

· MMSDays 2016 · Page 23 (32)

Example

$$f_2(x, y) = \tanh(60x) - \tanh(60(x - y) - 30).$$

Comparison with BAMG

Hecht, F., BAMG: Bidimensional anisotropic mesh generator. www.ann.jussieu.fr/hecht/ftp/bamg,Freefem++.

Uses metric based mesh adaptation method.

BAMG

HDE

Mesh Adaption via HDE

Contrary to the classical mesh adaptation procedure, the proposed adaptation strategy in this paper does not involve both the estimation of an error and the construction of a metric field. In each iteration of the mesh adaptation, we use the following steps:

SOLVE \rightarrow RECOVER GRADIENT \rightarrow ADAPT,

and this process stops when it converges or a desired maximum number of iterations is reached.

· MMSDays 2016 · Page 26 (32)

An Example

$$e_{tot} := \int_{\Omega_h} |u_h - u_{ref}|^2 dx$$
 and $\sigma_{max} := \max_{T \in \Omega_h} \sigma_T$

	BAMG	HDE
Ele.	4438	4337
e_{tot}	4.143e-03	6.650e-03
σ_{max}	6.880e+01	3.456e+02

BAMG

HDE

· MMSDays 2016 · Page 28 (32)

$$\left\{ \begin{array}{rl} \frac{\partial^2 u}{\partial t^2} - \mu \Delta u &= f & \mbox{ in } \Omega \,, \\ u &= 0 & \mbox{ in } \partial \Omega \,, \end{array} \right.$$

here $\mu = 1., f$ discrete Dirac function.

animation

· MMSDays 2016 · Page 29 (32)

 $f(x, y, z) = \tanh(10(\sin(2\pi x)\cos(2\pi y) + \sin(2\pi y)\cos(2\pi z) + \sin(2\pi z)\cos(2\pi z)))$

· MMSDays 2016 · Page 30 (32)

Discrete Metric Tensor Filed

· MMSDays 2016 · Page 31 (32)

- We have presented a method for anisotropic mesh adaptation based on higher dimensional embeddings (HDE).
- Experimental results showed that this method produced meshes are comparable those generated by metric-based mesh adaptation methods.
- HDE tends to capture anisotropy more accurately.
- However, HDE tends to over stretched in some area. The mesh gradation in HDE is less than metric-based method.
- Deep analysis is needed for HDE method.
- A very interesting question is how its relation with metric-based method.

