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background

high marker densities technically available at low cost => more similarities 
    between ajacent marker genotypes

covariance matrices between marker effects:
 - summarize knowledge on genetic maps (order and distance of markers)
 - are specific for type of experiment and type of effect  
 - have been derived by our group

question: are there any benefits from including such matices in QTL-analyses?

treating marker effects as independent versus correlated compared by simulation

simulations considered the case of a backcross-experiment between inbred lines 



outline

backcross-design

covariance matrices between marker effects

Baysian models: independent, dependent and „adaptively dependent“  marker effects 

simulated data

results: comparisons between models  



gametes:
variability due to recombination

F1-cross: parents

two inbred lines

backcross to founder line: no 
variation between gametes

progeny: all variation from F1-parents 
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marker coding indicates line origin

backcross-effect at each marker : difference between 1,1 and 1,2



double haploids

F1-cross

two DH lines

DH tester line (example)

final progeny

equivalent back-cross 

genotype 

(F1 back-crossed to first 

founder line)
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Equivalent Design with doubled Haploids (DH)



Backcross-experiment
marker coding indicates line origin

genotype     x1   x2
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concordant marker genotypes are 
frequent at adjacent loci 

discordant marker genotypes are rare at 
adjacent loci 

:       backcross-effects at first and second marker : difference between 1,1 and 1,2 genotypes1 2m ,m
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backcross-effects

pairwise interactions

covariance of marker effects

is a block-diagonal matrix (when effects are suitably ordered) 

without interactions: one block per chromosome

can directly be set up from a marker map 

represents prior knowledge on the genetic map of a certain species

2 cromosomes a´ 4 markers
1 block per chromosome

with 2 2hromosomes:  3 blocks

represents prior knowledge on parental diplotypes - depends on type of experiment

depends on type of experiment and type of effect



inverse covariance matrix

is sparse

can directly be set up from a marker 
map 

represents prior knowledge about 
genetic map of a species ….

assuming Haldane‘s map function

inverse for backcross-effects:
autoregressive covariance structure 

 1
2 1 2 100exp( d / ) = − −



decomposition of inverse covariance matrix 
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L can also be computed from the genetic map



multiple regression model

 1,..., ,...k C=m m m m vector of marker effects with subvectors mk

each subvector contains all marker effects of a chromosome
in the order of their position

each subvector has a corrsponding block Rk in R

C: number of chromosomes

y = Xb +Zm+e

general mean

vector of marker effects

residual

design matrices

b

m

e

X,Z

vector of observationsy



three kinds of prior (in-)dependence

(0, ):k kNm D

changing  (marker-specific) variances on each chromosome, independent marker effects

 2

,= k jdiagD

k, j: indicate chromosome and marker within chromosome 

2(0, ):k kNm R
general variance of marker effects 

2

kR is the kth diagonal block in R

IN

DE constant variance across all chromosomes, dependent marker effects

as described by Xu, Genetics 2003

AD changing variance on each chromosome, dependent marker effects

Bayesian mixed model

2(0, ):k k k k kNm L G L =k k kR L Luses Choloesky-decomposition 

similar to Lang, Fronk, and Fahrmeir , 2001 

 ,=k k jdiagG



Gibbs sampler

• marker effects drawn from normal distributions  (e.g. Wang et al., GSE 1994)  

• block sampling necessary for convergence  (-> as known from Gaussian Markov Random Fields)

• variance parameters
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CHROMOSOME 1:
position 21, Effekt 1.0
position 34, Effekt 1.0
position 96, Effekt 0.5

CHROMOSOME 2:
position 6, Effekt 0.5
position 51, Effekt 0.5
position 60, Effekt 0.25
position 67, Effekt 0.5

CHROMOSOME 3:
position 40, Effekt 0.1
position 67, Effekt 0.25
position 81, Effekt 0.1

CHROMOSOME 4:
position 34, Effekt -0.25
position 51, Effekt 0.25

simulated QTL

12 linked QTL on 4 chromosomes, or

12 unlinked QTL on 12 chromosomes

number of QTL and size of their individual effects are 
equal in all cases

genetic variance differs due to linkage

total number of chromosomes: 20



18 different simulated scenarios
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3 0.17 12 1 3.27 16.0  

6  4 1 6.5364 31.93  

9 0.29 12 1 3.27 8.01  

10  4 10 6.5364 16.0  

11   5 6.5364 16.0  

12   1 6.5364 16.0  

15 0.70 12 1 3.27 1.4  

18  4 1 6.5364 2.8  

 

heritabilities of 17%, 29% and 70%

marker spacings:
 10 cM – 210 effects
 5   cM – 420 effects
 1    cM – 2020 effects
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corresponds to:
 p << n
 p < n 
 p >> n
 

20 chromosomes of equal length (100cM), 8 (16) of them empty

200 experiments per scenario

500 observations per experiment, normal errors



criteria of comparison

average (true) variance of estimated genetic effects (ability to quantify genetic variability)
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( ),
ˆ 0 0.95 or k jp m posterior probability of a positive marker effect  

exceeds 95% or is below 5%, evaluated at each marker

evidence for a non-zero marker effects = evidence for a QTL  (ability of QTL detection)
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with covariance matrix: curve of marker effcts along the chromosome

independent marker effects: „needles“

 „needles“ indicate QTL

 series of smaller effects 
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picture of estimated marker effects

DE AD

IN



picture of estimated marker effects

AD IN

posterior means averaged over experiments



Evidence for QTL



Comparison of methods: evidence for a QTL

Models including covariances  (DE und AD) in average (over all simulated 
experiments) exhibit a higher QTL detection probability compared to models 
without (IN) 

High marker density (p>>n) in combination with models assuming 
independence (IN) leads to a breakdown of the ability to detect QTL 

Same phenomenon, but weaker for adaptive models  (AD) 



comparison: estimated genetic variance



comparison: estimated genetic variance

Inclusion of covariances (DE or AD) in case of (p>>n) always results in more realistic 
estimates of the genetic variance, irrespective of the localisation of QTL

Estimates of genetic variability (and residual variance)  hardly affected with method DE, 
tendency for a weak underestimation

Independent marker effects (IN) in the case of p>>n leads to a heavy overestimation of 
the genetic variance   

Same tendency in the case of p>>n with method AD, but less severe



conclusions and outlook

more realistic  estimates of genetic variation when covariances are included 

superior ability of QTL detection when covariances are part of the model 

covariance-models obviously better cope with a growing number of parameters 

further research: 
 other types of families 
                  other types of effects (dominance, interactions)
 fine-tuning of models 



Thank you for listening !
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