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1. The Problem: a Cacophony of Sound



The Complexity of Hearing

* The input signal to the auditory
system is a set of two one-
dimensional time series, one hitting
each ear drum.

* |[n natural environments, the time
series represent the superposition of
multiple overlapping sound sources.

* From this time series data the
auditory system is able to extract vast
amounts of information

» Separation of sound sources
* Location of each source in 3D
* Assignation of meaning to each source
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The Problem of Time

* Frequency is represented in
tonotopic maps in the auditory
system.

* Sound meaning is completely
context-dependent.

* How is information integrated
over time? Some kind of
memory is required, but what?
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Animal and Human Data
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2. Model of Auditory Cortex & Recent Results



The Column: Computational Unit

Column 1

)

Column 2

®
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* The cortex has granular, column
structure.

* A column is a complex, local
(vertical) collection of neurons
which have similar response
properties.

* We cut though the complexity, and
model the column in the simplest
possible way.

i: inhibitory population
e: excitatory population
Wee' Wie' Wie
connectivity matrices
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Neural Dynamics

Equations describing neural interactions: LIN firing rate model
Hopfield & Tank, 1986; May et al. 2010, 2013, 2015

du(t
Tm d(t ) = _u(t) + Aee(t)-* ee- g[u(t)] _ Wei-g[v(t)] + Iaff(t)
dv(t
Tm d(t ) = —‘U(t) + Aie(t)-* VVie- g[u(t)]
u state variable of excitatory cell population
v state variable of inhibitory cell population
T, membrane time constant
g firing rate — nonlinear function of u and v
Lt afferent input from auditory pathway
W, W,, W, connectivity matrices
Ace A synaptic plasticity (adaptation) terms
t time
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Belt Parabell

Model Construction
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* AC has multiple fields (each = : "}w:'s\‘g\m‘:

. . a N - -
defined by tonotopic map) o "‘x:;\

* Multiple Core-Belt-Parabelt \ “a A
streams: feedforward activation = at \\ . s
progresses serially from coreto @ "“..,; 'ﬁf \.‘;
belt to parabelt fields along Vo 7"'\ '-\"
many, parallel routes. | IR LY

* This structure can be translated = X, :t" . R \
into the weight matrices W, @{ : ""’o\’*a,_\\‘ . ‘ :
Wie, and W, i 1,2,3. SO ) s
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Simulations

Major advantage over real experiments: Modelling allows us to simulate non-invasive
MEG (summed activity of columns) and to simultaneously observe ”invasive” activity on
the single-column level.

Single-column (firing rate) observations: MEG (summed activity) observations:

* Forward masking: stimulus repetition * Adaptation: stimulus repetition leads to
leads to suppressed responses. suppressed responses.

* Stimulus-specific adaptation (SSA): * Mismatch responses: Statistical structure
response recovery by stimulus change of stimulation is reflected in response
(i.e,. supression in not generalized). amplitude.

* Two-tone facilitation: With AB tone * Temporal intergration: mismatch
pairs, response to tone B is enhanced if responses also when tones are replaced
preceeded by tone A by more complex stimuli.

* Temporal intergration: tuning to the * These MEG effects can be traced back to
temporal structure of tone sequences, single-column behaviour

speech stimuli, and monkey calls.
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Temporal Binding
of Tone Pairs

Columns are tuned to the
temporal structure of
stimulation.

Combination sensitivity (CS):
selectivity to pair AB vs. (1)
reveresed pair BA, (2) isolated
tones (A or B).

This phenomenon has mystified
auditory neuroscientists.

Explanation: CS is due to synaﬁtic
depression (adaptation) and the
serial structure of AC (May &
Tiitinen, 2013; May et al. 2015).

Similar CS for four-tone
sequences, speech sounds, &
monkey calls
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MEG Examples 40 Deviant —|

Presenting a stimulus (A) repeatedly leads
to attenuated MEG responses

When the series of repeated stimuli is
interrupted by a stimulus with a different
structure (B), the MEG response is much
larger.
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This phenomenon is the so-called
mismatch response, and its neural origins 0O
have been hotly debated for two decades.

Our computational approach has provided
an adaptation-based explanation which
re]places a previous, more complex, O
information-processing models (May & f, [ O

Tiitinen, 2010). N = . =

Time (ms)
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3. Ongoing and Future Pursuits



Analytical Approach

Tm

du(t)
dt

—u(t) + Aee(t).*x Wee. glu(t)] — Wei. glv(t)] + Ige(t)




Analytical Approach

Linearization (slow adaptation, quasi-static) ﬁ’fffﬁ;l W ;.
3 ) W W —W. W W=l — 02
u(t) +2la(t) + ﬂgu(t) = q(?) WL, — WL W, = 02

WaWaWI L (1) — WaLi(t) + L.(1) = q(1)

Diagonalization & Uncoupling uy(t) = T_lu(t)
4(t) = :

: uncoupling
TFdT_l — ' damping

TQEHT_l = Q2 normal frequency uq(t) 4 2Laua(t) + di“d (t) = qal(?)

Solution: normal modes are damped oscillators

uy(t) = exp(—yat)(ay, sin(dst) + b,, cos(dat)) + fug
Wei wp , Heiwiew] Wi +Wee w; g‘”; |

Ay, = ;g;—:%fi(t) + d—ngdad—Ic(t) + — 5, g — 2o g .

E 0.05|

by, = Yei[.(t) — BT (t)+u
d ;[2];() ;3: (t) +uo

— Weai Wiy
Joa = —;Drdfi(f) + ;g:fc(f)s e

2
Time [s]

Coupling: linear combination of normal modes, can explain any waveform

u(t) = Tuy(t)




Analytical Approach

 Fast, precise, memory efficient

* Well defined dynamical building blocks ->
allows the study of damping, oscillations,
resonances

* Coupling -> allows the study of hierarchical

(core-belt-parabelt) activations on the

single-column level
e Approximates MEG data well.
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Other Ongoing Projects

=
* Working memory §
experiments: Linking human 2
and monkey results in v
cognitive tasks : W
* Extension of the model to AR W o v g
subcortical processing (using Time (ms)
rat model) 5 | il e
* Modelling auditory scene gn_l!j
analysis: separating sound ¢ - _
sources from each other & 55— 4+ T oo
Time (ms) Time (ms)
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Conclusions

* We are studying the auditory system in a computational model
based on the anatomical structure of auditory cortex.

* The motivation is to link single-cell observations with MEG

 The model provides explanations for several basic phenomena
in auditory neuroscience which have lacked an explanation.

 Fast (firing rate) and slow (synaptic plasticity, adaptation)
dynamics coupled with serial stucture of auditory cortex seems
to be the explanation.

* We are still a long way from understanding what goes on at a
cocktail party.



Thank You
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