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Light emission from InyGai_xN pl
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The bandgap of InxGaj;_xN spans the whole visible spectrum...
but crystal quality reduced due to large lattice mismatch! J
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Light emission:InyGa;_xN/GaN thin films pl
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InxGai_xN films in GaN
with high In content
and high structural
quality are hard to

achieve, due to large
lattice mismatch
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InyGa1-xN/GaN nanowires: elastic relaxation pli
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Axial InxGai_xN nanowire heterostructures facilitate elastic
relaxation

Image courtesy of M. Hanke, PDI
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Light emission: InyGai1_xN/GaN nanowires
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1 Wolz et al., Nanotechnology 45, 455203 (2012)
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Light emission: InyGai1_xN/GaN nanowires
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It is generally difficult to obtain blue emission from nanowires:
Opposite trend compared to planar system!
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Light emission: InyGai1_xN/GaN nanowires
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It is generally difficult to obtain blue emission from nanowires:
Opposite trend compared to planar system!
Theoretical description of nanowires required

1 Wolz et al.,
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Charge confining mechanisms in nanowires pli

Planar layer
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GaN

@ Bulk band offsets
In,Ga,,N ® ® e

Ey Eq

2 Bocklin et al., Phys. Rev. B 81, 155306 (2010);
Kaganer et al., Phys. Rev. B 85, 125402 (2012)
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Charge confining mechanisms in nanowires pli

Planar layer

@ Bulk band offsets
@ Polarisation

2 Bocklin et al., Phys. Rev. B 81, 155306 (2010);
Kaganer et al., Phys. Rev. B 85, 125402 (2012)
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Charge confining mechanisms in nanowires pli

Nanowire

GaN

@ Bulk band offsets
In,Gay,N @ Polarisation
J— @ Elastic relaxation?

@ Surface potentials:
attractive for holes

GaN

2 Bocklin et al., Phys. Rev. B 81, 155306 (2010);
Kaganer et al., Phys. Rev. B 85, 125402 (2012)
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Finding a suitable formalism pli

Atomistic model
(ETBM, EPM, DFT)
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Finding a suitable formalism pli

Atomistic model
(ETBM, EPM, DFT)

@ Accurate description of
crystal lattice

@ Straightforward treatment
of single-atomistic
features

@ Alloy disorder can be taken
into account
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Finding a suitable formalism

Atomistic model
(ETBM, EPM, DFT)
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Carrier confinement in 11I-V nanowires

Accurate description of
crystal lattice

Straightforward treatment
of single-atomistic
features

Alloy disorder can be taken
into account

Computational effort
depends on number of
atoms

Typical nanowire segment:
d=80nm,|=20nm

— ~ 7.5 million atoms

*]

Continuum approaches
(EMA, k- p)

Computationally cheap

@ Treatment of large

systems straightforward

Neglects atomistic
character of the crystal

Alloys described via
average (local)
composition

@ Treatment of single
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Model nanowire

[0001]

Carrier confinement in 11I-V nanowires

@ Hexagonal nanowire of
diameter d

@ InxGai_xN insertion of
homogeneous In content x and
thickness t

@ Surface potential
For homogeneous distribution
of donor-related charge:
Vsurf & 0g - d2.
04 =10Ycm™3 = max(Vsurf) =
80 mV for a NW of d=80 nm
@ Vary x, t, and d
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Model nanowire ||li

@ Hexagonal nanowire of

—_ diameter d
—
S @ InxGai_xN insertion of
=2 homogeneous In content x and
thickness t
lt """" | E— @ Surface potential
S k __________ For homogeneous distribution
of donor-related charge:
Vsure & 0q - d2.
04 =10Ycm™3 = max(Vsurf) =

80 mV for a NW of d=80 nm
e @ Vary x, t, and d
— Continuum approach favourable
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Employed formalisms

Strain and polarisation
Continuum elasticity theory3

Single-particle electronic properties
eight-band k - p model for wurtzite semiconductors*

Electron-hole overlap
0= gel(r)eno(r)
r

Implementation within plane-wave framework?

3 Povolotskyi et al., Phys. Stat. Solidi (C) 2, 3891 (2005).
4 Chuang et al., Phys. Rev. B 54, 2491 (1999).
5 www.sphinxlib.de;
Boeck et al., Computer Phys. Commun 182, 543 (2011);
Marquardt et al., Comp. Mat. Sci. 95, 280 (2014).
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Interplay of polarisation and surface potential |||i
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Interplay between polarisation and surface potential -
explains reduction of PL intensity with smaller In content or
layer thickness
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Realistic description of doping in nanowires il

For a NW of 80 nm diameter and 20 nm segment length:
04=101"cm~3 corresponds to 8.3 charges’!

7 Corfdir et al., Phys. Rev. B 90, 205301 (2014).
8 Marquardt et al., Nano Lett. 15, 4289 (2015).
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Realistic description of doping in nanowires il

For a NW of 80 nm diameter and 20 nm segment length:
04=101"cm~3 corresponds to 8.3 charges’!
Consider individual, randomly distributed donors in a NW?8

7 Corfdir et al., Phys. Rev. B 90, 205301 (2014).
8 Marquardt et al., Nano Lett. 15, 4289 (2015).
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Realistic description of doping in nanowires il

For a NW of 80 nm diameter and 20 nm segment length:
04=101"cm~3 corresponds to 8.3 charges’!
Consider individual, randomly distributed donors in a NW?8

Can atomistic effects be considered in continuum picture?

7 Corfdir et al., Phys. Rev. B 90, 205301 (2014).
8 Marquardt et al., Nano Lett. 15, 4289 (2015).

Carrier confinement in 1lI-V nanowires MMS Days 2016 11/15



Realistic description of doping in nanowires il

For a NW of 80 nm diameter and 20 nm segment length:
04=101"cm~3 corresponds to 8.3 charges’!
Consider individual, randomly distributed donors in a NW?8

Can atomistic effects be considered in continuum picture?

@ Typical donors: Si, O represent shallow donors in
InxGal_xN
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Realistic description of doping in nanowires il

For a NW of 80 nm diameter and 20 nm segment length:
04=101"cm~3 corresponds to 8.3 charges’!
Consider individual, randomly distributed donors in a NW?8

Can atomistic effects be considered in continuum picture?

@ Typical donors: Si, O represent shallow donors in
InxGal_xN
@ Model individual donors via their Coulomb potential

7 Corfdir et al., Phys. Rev. B 90, 205301 (2014).
8 Marquardt et al., Nano Lett. 15, 4289 (2015).
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Electron and hole confinement ||li

Consider individual, randomly distributed donors in a NW8

8 Marquardt et al., Nano Lett. 15, 4289 (2015).
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Electron and hole confinement

Consider individual, randomly distributed donors in a NW8
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8 Marquardt et al., Nano Lett. 15, 4289 (2015).

Carrier confinement in 1lI-V nanowires

MMS Days 2016

lelluelzllwhlz

12 /15



Energies and electron-hole overlap

Model system configurations

X=5% X =30% X =10% X =30%
t=1nm t=1nm t=5nm t=5nm
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Energies and electron-hole overlap

X =5% X =30% X =10% X = 30%
t=1nm t=1nm t=5nm t=5nm
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@ Variation of emission wavelength unaffected by x and t

@ Energies smaller than for homogeneous charge
distribution and donor-free case
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Energies and electron-hole overlap pl
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Energies and electron-hole overlap
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Ensemble average charge densities pli

ensemble average homogeneous doping charge
(b)

e

@ Average hole state confinement in good agreement with
hole state in homogeneous doping charge model

@ Electron localization governed by dopants - strong
variations
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Summary & next steps pl

@ Continuum model to approach elastic, piezoelectric and
electronic properties of semiconductor nanowires

@ Generalised to arbitrary nanostructures and materials

@ Multiband k- p model can be adjusted to computational
demand and accuracy

@ Treatment of shallow defects possible
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Summary & next steps pl

@ Continuum model to approach elastic, piezoelectric and
electronic properties of semiconductor nanowires

Generalised to arbitrary nanostructures and materials

Multiband k- p model can be adjusted to computational
demand and accuracy

Treatment of shallow defects possible

© O

©

Coupling between strain and piezoelectric potentials

@ Self-consistent simulations to consider excitonic effects
Spatially dependent grid accuracy

@ To which extent can deep defects be taken into account?
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Summary & next steps pl

@ Continuum model to approach elastic, piezoelectric and
electronic properties of semiconductor nanowires

Generalised to arbitrary nanostructures and materials

Multiband k- p model can be adjusted to computational
demand and accuracy

Treatment of shallow defects possible

© O

©

Coupling between strain and piezoelectric potentials

@ Self-consistent simulations to consider excitonic effects
Spatially dependent grid accuracy

@ To which extent can deep defects be taken into account?

Thank you for your kind attention!
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