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Number and positions of critical points of a function are important qualitative descriptor.

The geometry of nodal lines, nodal domains, level curves and excursion sets are
closely related to the set of critical points.

Figure: Critical points of a Berry’s Random Plane Wave Model. [Beliaev, C., Wigman, 2019]



Random Plane Wave



Random Plane Wave is a stationary Gaussian field F in R? with covariance kernel
K(z,y) =E[F(z)F(y)] = Jo(lz — y).



Random Plane Wave is a stationary Gaussian field F in R? with covariance kernel
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> point-wise covariances go to zero as points move away from each other
> but the rate is quite slow
» the covariance kernel is as oscillating function

» RPW is a stationary field i.e. F(-) and F(- 4+ z) have the same distribution for
every zor K(z,y) = K(x —y)

The corresponding spectral measure p is the normalized arc-length on the unit circle.
Since the support of p is on the unit circle, the field is an eigenfunction of the Laplacian.
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One can think RPW as (the limiting ensemble of) a random linear combination of plane
waves with the same energy E = k2 travelling in all possible directions
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6; random directions drawn uniformly on the unit circle, ¢; € [0, 27) random phases.

In this sense, one can think RPW is a natural notion of a ‘typical’ eigenfunction of the
Laplacian in R2.

[Berry 1977] proposed to compare eigenfunctions with eigenvalue X to a ‘typical’
instance of an isotropic, monochromatic random wave with wavenumber k& = /A (now
called RPW).



Berry conjectured that high energy behaviour of deterministic eigenfunctions on
generic chaotic surfaces is universal and has statistically the same behaviour as
Random Plane Waves.

This vague relation is subject to many numerical tests with very positive outcomes.

Figure: Nodal domains. Left: eigenfunction of a quarter of the stadium. Right: RPW [Bogomolny
and Schmit 2007]



Figure: Nodal domains. Left: eigenfunction of a quarter of the stadium. Right: RPW [Bogomolny
and Schmit 2007]

Nodal lines (nodal length, boundary intersections, intersections with a test curve...) of
RPW should also model nodal lines of honest eigenfunctions.

Example: we are interested in the nodal length on the torus. We choose a
representative planar domain U C R? (e.g. a rectangle with the same aspect ratio and
area as the torus), and study the distribution of the nodal length of RPW with
wavenumber k = v/ inside U.



Nodal line of F: F~1(0) = {z € U : F(z) = 0}.
Nodal length of RPW with wavenumber k& = +/X inside U (random variable): Ly /x
Via Kac-Rice formula: E[£;. ] ~ const - VA|U|.

In accordance with Yau conjecture [Yau 1982]: for any smooth M, the nodal length of
the eigenfunctions ¢, is commensurable to |/
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where the constants cy4 and C'x¢ depend on M. Yau conjecture was proved under the
assumption that the metric is real analytic (e.g. flat torus) [Donnelly and Fefferman
1988]. More recently the optimal lower bound [Logunov 2018] and polynomial in A
upper bound [Logunov 2018] were established for the more general, smooth, case.



Kac-Rice Formula



One-dimensional case: level sets are isolated points and excursion sets are intervals
between them.

/

The number of level crossings is a local observable: the number of level crossings in a
disjoint union of two sets is equal to the sum of level crossings inside these sets.

This allows writing an integral formula for moments of the number of level crossings.
This formula is now known as Kac-Rice formula.



f Gaussian process on an interval I, f has C'-paths (f € C'* with probability one).
For pairwise distinct points ¢1, . .., ¢, € I the joint distribution of (f(¢1), ..., f(tx)) is
non-degenerate. Let N, be the number of points where f(t) = u

E[Ny(Ny — 1) -+ (Ny — k + 1)]
k
= [LE[TTIF @l =+ = 1) = u]per oy (it -t
) =1
Dty,....t5, joint density of (f(t1), ..., f(tk))-
Example: f is a centred stationary process with covariance kernel K
E[Ny| = E||f = dt.
v = [E[lr I = u]pa

The law of (f/(t), f(t))
» does not depend on ¢
> is centred
» its covariance matrix is

(07 k)



Example: f is a centred stationary process with covariance kernel K
BN = [ B[ @] 10) = ulpiwpa.

The law of (f/(¢), f(t))
» does not depend on ¢
> is centred
> its covariance matrix is

(07 k)

So f/(0) and f(0) are independent, and
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Critical points of RPW



Expected number of critical point



Critical points lying in a ball or radius R

Cp(B(R)) = {z € B(R) : VF(z) = 0}.

F smooth Gaussian = set of critical points is a point process on R2.

F stationary = it is possible to employ Kac-Rice method to count the zeros of the
map x — VF(z): if VF(z) is nonsingular for all z € B(R)

E[#Cr(B(R))] = /B<R) OV F(2)(0) - El|det Hp (2)| [VF(z) = 0]da.

F isotropic = E[#Cp(B(R))] = VOI(B(R))QWI\/?




Compare RPW with two very well known translation invariant processes.

Figure: Left: Critical points of a Random Plane Wave. Centre: Poisson point process. Right:
Ginibre ensemble.

The number of critical points in a square of side-length n is ¢ - n2 where ¢ = W is
the natural intensity of critical points.

The other two point processes are rescaled to have the same intensity.



Fluctuations of the number of critical points



The second factorial moment of the number of critical points is
E[#Cr(B(R)) - (#Cr(B(R)) — 1)] = K (@, y)dzdy,
B(R)xB(R)

where the 2-point correlation function K»(z,y) = K2(x — y) of the critical point
process can be derived via the Kac-Rice formula

KQ(xr y)

. 1
= el,lelén—m Vol(B(e1)) 'Vol(B(GQ))E[#CF(BI(GI)) #Cr(By())]

= ¢(VF(2),vF(y)(0,0) - E [|det Hp(z) - det Hp (y)| |VF(z) = VF(y) = 0] .

F isotropic =— Ko (z,y) is a function of the Euclidean distance r = ||z — y||.



Fluctuations of the number of points in a square depend a lot on the point process.

Figure: Left: Critical points of a Random Plane Wave. Centre: Poisson point process. Right:
Ginibre ensemble.

» When Cr(r) decays sufficiently rapidly, the long range asymptotics of Ka(r),
r — oo yields the asymptotic variance of the number of critical points in large
balls. From random spherical harmonics (equivalent to RPW in the scaling limit),
variance for the number of critical points scales like n? log n [CMW 2016] and [CW
2017].

» Poisson: variance is asymptotic to c - n?.
» Ginibre ensemble: variance is of order n.



Attraction and repulsion



The short range asymptotics of K2 (r), r — 0 yields the asymptotic second factorial
moment of the number of critical points in a small balls.

Informally, for R small,

IP(one critical points in B(R)) ~ R?

P(two critical points in B(R)) ~ // Ka(z,y)dzdy.
B(R)x B(R)

> We say that the critical points attract each other if K2(r) — ccasr — 0, i.e.

{P(one critical points in B(R))}* < P(two critical points in B(R)).

» We say that the critical points repel each other if K2(r) — 0asr — 0, i.e.

PP(two critical points in B(R)) < {P(one critical points in B(R))}2.



Figure: Left: Critical points of a Random Plane Wave. Centre: Poisson point process. Right:
Ginibre ensemble.

> Ginibre ensemble: P(two points in B(R)) ~ RS, points repel each other.
» For Poisson process (or a finite collection of independent points) on the plane

1
P(two points in B(R)) = 5(mRz)ze*”R’/2 ~ R4

» Critical points of RPW: P(two points in B(R)) ~ R*! Critical points exhibit no
repulsion nor attraction [Beliaev, C., Wigman 2019].

The minor difference (by a constant) does not explain the big difference in the
appearance of Poisson and critical points (highly regular).



Theorem (Beliaev, C., Wigman 2019 and 2020)
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Proof:
» 2-point correlation function K : B(p) x B(p) — R

Ko (z,w) = ¢(vw(z),ve(w)) (0, 0)E[|det Hy (2)] - [det Hy (w)]|V¥(2) = V¥ (w)

» (VU(z), V¥(w)) non degenerate for all z # w,

BNV -] = [ Koz, w)dzduw.
e B(p)x B(p)

» 2-point correlation function K> depends onr = |z — w|

0.



Ka(r) = 3 wame — 2}

1

1
exp {7§xf’A(r)_1x} dx.

1
N
\/detA(r)
» For every r > 0, A(r) is symmetric, we diagonalise A(r)
A(r) = P(r)"A(r)P(r)

i.e. compute the eigenvalues and eigenvectors of A(r).

> Note that
1 1 ta _1 _ 1 1 P th _1
m eXP{*Ex (r)” "x} = W eXP{*E( (r)x)"A(r)” " P(r)x}.

» Change variable: z = P(r)x i.e. x= P(r) 'z



» Finally
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— 1 |f | 1 ¢ 2 d
" (2m)5\/detA(r) ./]RG (r,=) exp 5;'2" ’
1 r? 2 2 13 2 4
T 152v3r% + O(rd) [@ /RG 23 z5 €xp {75 ;zl dz + O(r )]

1 2
——— + O(r?).
96+/3 72 ™)

We believe that the isotropic assumption is not essential, used to reduce the number of variables
and to make explicit computations. In the isotropic case there are no mysterious cancellations,
suggesting the same for the asymptotic behaviour in the generic case.



Left: Extrema only. Right: Saddles only.
Both processes exhibit strong repulsion:
P(2 points in B(p)) ~ p” log1/p.

The apparent ‘rigid’ structure that is observed for the critical points comes from the
regularity of both these point processes.

d > 2: [Azais, Delmas 2022] attraction due to critical points with adjacent indexes and
strong repulsion, growing with d, between maxima and minima.
d = 1: repulsion.



Random spherical harmonics



S2 two-dimensional unit sphere with
the round metric

Ag2 spherical Laplacian
Ag2 f + X f = 0 Helmholtz equation

—A¢ = —L(£+ 1), £ € N eigenvalues

for any eigenvalue choose an arbitrary L2-orthonormal basis {Yz,, (+) } = —e¢
consider random Gaussian eigenfunctions

.....
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z € S?,

fo(z) =

{a¢m } are zero-mean, independent Gaussian.
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Standardised s.t. Var(f;(x)) = 1.

From the addition formula for the Legendre polynomials the covariance kernel is

K@(Izy) = ]E[ff(x)ff(y)] = PZ(COS d(l‘, y))7
Py Legendre polynomial, d(z, y) = arccos(z, y) geodesic distance on the sphere.

From this formula one can immediately see that this is a (spherically) stationary field.
Alternatively, this could be seen from the invariance of the eigenspace and L2 norm
under rotations.



RPW is the scaling limit of random spherical
harmonics



Figure: RPW (left) and random spherical harmonic of degree 100 (right). [Beliaev 2022]

zo € S?, exponential map from the tangent plane to the sphere: exp, : Tu,S* — §?

ge() = fo(expy, (z/£))

rescale by £ ~ /X so the wavelength becomes of order 1.

Elge(x)ge(y)] = Pe(cos 0(expy, (z/€), expg, (y/£)))

Since the exponential map is almost isometry near z, the spherical distance between
images is almost the distance between the points, hence uniformly in z and y the
covariance behaves as

P, (cos @) = Jo(lz —y))

where the limit follows from Hilb’s asymptotics for Legendre polynomials.



Figure: RPW (left) and random spherical harmonic of degree 100 (right). [Beliaev 2022]

RPW also appears as the scaling limit of 'narrow-band’ functions.

It is possible to define a similar field on any compact manifold (with no large
eigenspaces we take a linear combination of order n eigenfunctions around n2-th
eigenfunction).

n2+n
fo@)= D" ardr(x)
k=n2

ay, 1.i.d. Gaussian. [Zelditch 2009] shows that under some mild assumptions of the
manifold, a similarly rescaled field converges to RPW.



Critical points



Number of critical points:

N§ =#{z c$?:Vf(z) =0}

Let I C R be any interval, number of critical points of f, with value in I, number of
critical values:
NE(I) = #{z € S Vie(x) =0, fo(x) € T}.

We investigate how much the number of critical points and critical values
characterizes the geometry of the random spherical eigenfunctions in the high
frequency limit, i.e. the excursion sets

Au(fe) ={z €S*: fo(z) > u},

for arbitrary levels u € R.



Geometric functionals



Ao(fe) = {z €S?: fe(z) > 0}

Functionals which describe the
geometry of the excursion sets A, (f¢):

> area L2(u, £) of the excursion sets
> (half of the) boundary length £ (u, £) of the excursion sets
» Euler characteristic £ (u, ¢) of the excursion sets

Relationship between geometric functionals of excursion sets of f, at different levels w:
[Wigman, 2011], [Marinucci-Wigman, 2014], [Marinucci-Rossi, 2015], [Rossi, 2019],
[C.-Marinucci, 2019 and 2020], [C.-Todino, 2022].



Critical points: asymptotic variance



[C.-Marinucci-Wigman, 2016] and [C.-Wigman, 2017] show that as ¢ — oo
The expected number of critical values behaves like
2 V3 2 t2
ENE(T :—52/— 2¢7t +12 —1)e” 2 dt 4+ O(1),
W] = =0 | (2 )e o)

the constant in the O(-) term is universal, i.e. the integral of the error term on any
interval I is uniformly bounded by its value when I = R.

The investigation of the asymptotic variance is more challenging
Var(Ng (1)) = Elve(D)]? + 0(6°/?),
1 2 3,2
v = | —[2—6t2 —et (1 -4 +tYH]le 2 dt, v°R) =0,
= [ = ( ) (®)

for I = R the leading term vanishes and

1
Var(Ng) = .3 Zlog £+ O(£%).

Similar results hold for extrema and saddles. Proof: via (approximate) Kac-Rice
formula for moments.



Interpretation in terms of Wiener chaoses



L2(9) (unique) Wiener-Itd decomposition of the number of critical points into Wiener
chaoses

F(1) = _ N,
q=0

% (I)[q] projection on the g-order chaos component i.e. closed linear subspace of
L4(P) generated by all real, finite, linear combinations of random variables of the form

th(El)'HQQ(EQ)"'qu(ék)v k>1,

Hgy, are Hermite polynomials, ¢; € Ns.t. g1 +--- + qx = gand (&1, ..., &) standard
real Gaussian vector. Wiener chaoses are orthogonal.

A single term dominates the L2(2) chaos expansion of N¢(I) and N¢.

N§(I) is dominated by the projection into the second chaotic component
[C.-Marinucci, 2020].

The asymptotic behaviour of NV is dominated by the projection into the fourth chaotic
component [C.-Marinucci, 2021].

Correlation between N (1) and N is asymptotically zero while the partial correlation,
after controlling the random L?- norm on the sphere of the eigenfunctions, is
asymptotically one [C.-Todino, 2022] .



> Ny and N (I) are asymptotically independent, but, when the effect of random
fluctuations of the norm of f, is properly subtracted, their joint distribution is
completely degenerate and the behaviour of the fluctuations of N (1) is fully
explained by Ny, in the high energy limit.

> As a simple corollary, a quantitative Central Limit Theorem holds for NV (1)
[Nourdin-Peccati 2005] and N [Marinucci-Wigman, 2014].

> While the computation of Af and Ny (1) via Kac-Rice formula requires the
evaluation of gradient and Hessian fields, the dominant terms depend, in the
high frequency limit, only on the second-order and fourth-order Hermite
polynomials evaluated at the eigenfunctions f, (Green’s formula).



Critical values and Lipschitz-Killing
curvatures at u # 0



[Wigman 2011], [Marinucci-Wigman, 2014], [Marinucci-Rossi, 2015], [C.-Marinucci,
2018] show that the three Lipschitz-Killing curvatures are asymptotically fully
correlated: for all u1,u2 # 0 (and u # 1, —1 for the Euler characteristic)

lim Corr(L;(u1,£), Li(u2,£)) =1, 7, k=0,1,2.

£— 00

The number of critical values is then perfectly correlated, as ¢ — oo, with the
area, the Euler characteristic and the boundary length at any nonzero level «

lim Corr(Ly (u, ), N¢(u,)) =1, k=0,1,2.
£— 00



Thank you!
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