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1.1 Probabilistic Methods for Communication Systems

Alexander Hinsen and Benedikt Jahnel

The steadily increasing demand for fast and reliable data exchange in communications systems
presents network operators worldwide with major challenges, but also opportunities. A very im-
portant aspect of this state of affairs is the strongly increasing use of connected machines as part
of the internet of things (IoT) as well as smart devices such as mobile phones, tablets, or even
self-driving cars; see Figure 1 (left).Fig. 1: Left: Growth of

communications driven by
machine-to-machine and
smartphone connections.
Right: Network security
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This situation is also reflected in the 5G (5th generation mobile network) specifications as well as
in the negotiations for subsequent standards, which envisage faster connections, higher through-
put, more capacity over enhanced mobile broadband, and highly reliable, low-latency communica-
tions to enable the system to support time-critical applications such as car-to-car communications
as well as inter-machine connectivity.

In this context, device-to-device (D2D) communications is considered one of the key concepts that
permeates a wide range of use cases. On the one hand, D2D systems have the potential to re-
lieve today’s cellular networks of at least some of the system pressure. On the other hand, D2D
communications can provide, for example, faster and more robust connectivity. However, from an
operator’s perspective, D2D systems are much less controllable than traditional cellular networks,
due to their dependence on individual user behavior. This lack of control is exacerbated when
devices are mobile and the system is very dense due to the widespread use of connectable de-
vices. Therefore, to correctly predict the performance and vulnerabilities of D2D systems, detailed
and comprehensive modeling and analysis is essential. Here, a natural approach is to study the
uncertainties of the system using probabilistic methods.

The starting point is the modeling of random locations and movement of the smart devices within
their environment. Based on this information, the transmission mechanism between any pair of
devicesmust be representedwith an appropriate level of detail. Then, already the connection times
in a sparse cellular network that is augmented by D2D communications, with a large but finite
number of allowed D2D hops, is a significant performance indicator for a feasible D2D application;
see below for more details in this direction.

A particularly relevant aspect of D2D networks is the spread of malware through the system. Due
to the lack of central control, proximity-based sabotage software or viruses such as, for exam-
ple, Cabir, CommWarrior, or HummingBad can potentially spread undetected in such networks. In
this context, modeling and analyzing the unchecked infiltration of malware into D2D systems is
already of immense relevance; see Figure 1 (right) and our results on limiting shapes of infected
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1.1 Probabilistic Methods for Communications 11

regions below. The natural next step then is to design and evaluate possible decentralized counter-
measures against malware attacks, for which we present a short summary of our research at the
end.

Stochastic geometry in telecommunications

In order to describe the system with all its uncertainties, we use methods from probability theory,

Fig. 2: Realization of
randomly placed devices
(blue). Black edges are
drawn whenever two devices
have overlapping interaction
zones (gray).

more precisely from stochastic geometry [6]. In the first step, we associate to each device located
at Xi an interaction zone given by an open disk Br (Xi ) of radius r centered at Xi , where 2r
is the range in which the device Xi can communicate in a peer-to-peer fashion. In other words,
any pair of devices whose associated disks have nonempty intersection are connected by an edge,
forming a random graph, the so-called Gilbert graph Gr (X) , where X = {Xi }i2I is the set of all
device locations; see Figure 2 for an illustration. In absence of any refined statistical information
on the spatial distribution of the devices, the null model is given by the stationary Poisson point
process. This is a family of random point measures that enjoys strong spatial independence. It has
one parameter, the spatial average density of the points. The associated Poisson–Gilbert graph
is the fundamental object of the theory of continuum percolation, which investigates statistical
properties of the connected components of the graph. In particular, it has been observed already
in the early 1960s that there exists a phase transition in the density parameter for the almost-sure
absence, respectively unique existence, of an infinite connected component C in Gr (X) . This is
the celebrated phase transition of percolation, which also has strong links to statistical physics
(e.g., the probabilistic description of liquid-vapor phase transitions) and can be interpreted as an
indicator for the D2D system to feature only local, respectively global, connectivity.

The Poisson–Gilbert graph can serve as a model for a static pure D2D connectivity network, or as

Fig. 3: Realization of initial
device positions (dotted
blue) and their respective
positions at a fixed positive
time (blue), with arrows
indicating the
corresponding
displacement.

a snapshot for an otherwise mobile system. For example, considering the use case of car-to-car
communications, the mobility of the nodes is of crucial importance for the system. Fortunately,
point-process theory provides also a versatile framework for the modeling of mobile nodes, via
the use of markings. More precisely, we can associate with each device location Xi an attribute,
for example a trajectory 0i that represents the path of Xi . Then, the location of the device Xi
at time t � 0 is given by Xi (t) = Xi + 0i (t) . Natural choices for these mobility models are, for
example, independent and identically distributed (i.i.d.) random walks or random-waypoint mod-
els in continuous time and continuous space; see Figure 3 for an illustration. Mobile connectivity
graphs now give rise to a new class of questions, for example, concerning the time at which a de-
vice makes contact with a large cluster, or the amount of time that it can communicate over large
distances. Here is where the DYCOMNET group within WIAS makes contributions; see the following
section for details.

On the other hand, in connectivity graphs such as the Poisson–Gilbert graph, edges represent the
possibility to transmit data from device to device, but the actual flow of messages is not repre-
sented. In order to incorporate this flow, a standard modeling approach is known under the name
first-passage percolation, which plays also a big role in the probabilistic analysis of space-time
epidemiological events. Here, a passage time ⌧e is associated to every edge e in the graph. If, at
time zero, a message is placed at a vertex Xi ; then, the set of vertices Ht (Xi ) that have received
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the message by some positive time t > 0 , is given by

Fig. 4: Realization of
first-passage percolation on
a Gilbert graph at some
positive time. Vertices in
Ht (o) are indicated in red.

Ht (Xi ) =

n
X j 2 X : 9 path � in Gr (X) starting in Xi and ending in X j , such that

X

e2�

⌧e  t
o
;

see Figure 4 for an illustration. Note that the set Ht (Xi ) cannot be larger than the connected com-
ponent of Xi in Gr (X) . In the case that the connected component of Xi is infinite, then questions
about the asymptotic speed of data propagation, the limiting geometry of the reachable device set,
and properties of the shortest paths (geodesics) become highly relevant, but nontrivial. One par-
ticular use case is given by the propagation of malware in pure D2D systems with and without the
presence of counter-measures. Also here, the DYCOMNET group performs research within WIAS,
and we present details in the last section.

Connection intervals in mobile D2D networks

Although pure D2D systems are already in use today, for example in sensor networks or disaster-

Fig. 5: Realization of
infrastructure nodes (green)
and devices (blue and grey).
The grey areas indicate the
k -hop coverage zones of the
infrastructure where k = 1
is dark grey, k = 2 is grey,
and k = 3 is light grey.
Correspondingly, dark blue
devices are connected to the
infrastructure directly, blue
devices need one
intermediate hop, light blue
ones need two hops, and
grey devices need at least
three hops.

rescue ad-hoc networks, in the foreseeable future, D2D systems will be mainly deployed as an
extension to more traditional cellular networks. We thus consider a homogeneous Poisson point
process Y = {Y j } j2J of infrastructure nodes with intensity �S > 0 in addition to the marked
Poisson point process of mobile nodes X (t) as presented above. We are interested in the times at
which a typical device Xo is connected to the infrastructure in at most k hops

4k = {t 2 R : Xo(t) k!t Y },

where k!t means that a connection is possible with at most k hops in Gr (X (t) [ Y ) ; see Fig-
ure 5 for an illustration. Our main interest lies in the distribution of connection intervals of the
typical device. For this problem, we consider the length of maximal uninterrupted connection time
intervals around a given time t

I (t, 4k) = sup
ab : t2[a,b]⇢4k

(b � a),

where I (t, 4k) = 0 if t 62 4 . Using this formula, we define the k -hop connection-interval measure

⌧T (d`, dt) =
1
T

Z

[0,T ]\4k
�(I (s,4k ),s/T )(d`, dt)ds,

where � is the Dirac measure. Here, T is the time horizon. Let us highlight that ⌧T encodes a
number of important network characteristics. For example, the integral ⌧T ( f ) for f (`, t) = 1 is
the time-averaged connection time of the typical node, and T ⌧T ( f ) for f (`, t) = 1{̀ > 0}/` is
the number of connection intervals in [0, T ] . We analyze ⌧T in an asymptotic regime of large time
horizons T " 1 , many hops k " 1 , and sparse infrastructure �S # 0 , coupled as

�S(T )|Bk/µ(o)| = c and �S(T ) = T �↵, (1)

with parameters ↵, c > 0 , and where µ > 0 is the so-called stretch factor of the Poisson–Gilbert
graph in the supercritical percolation regime. This is the asymptotic quotient of the graph distance
and the Euclidean distance between two distant sites in C . Note that the constant c can be inter-
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preted as the expected number of infrastructure nodes in the reachable region.

For the mobility scheme, we assume the trajectories 0i to be i.i.d. random walks, starting from
zero, i.e., devices sequentially move with constant speed to random waypoints that are indepen-
dently drawn from an isotropic probability measure (dx) ; see Figure 6 for an illustration. Now,

Fig. 6: Realization of devices
(transparent, grey, and blue)
and infrastructure nodes
(green). Devices at initial
time (transparent) are either
directly connected (solid red
edges) or indirectly
connected (dashed red
edges) to infrastructure, or
they are disconnected. At
time 1 , the devices have
moved and their
corresponding new locations
offer either direct
connections (solid blue
edges) or indirect
connections (dashed blue
edges) to the infrastructure
process, or no connections
(grey).

our main results in [4, 5] establish distributional limits of ⌧T , as T " 1 under the scaling (1), for
three different regimes that depend on ↵ . First, for ↵ < d/2 , we have

⌧T (d`, dt) D
�! E[�Io(N )(d`)]dt,

where Io(N ) = I (0, 41 \ ([ jN 4
o, j
1 )) with N an independent Poisson random variable with

intensity c . Here, (4
o, j
1 ) j�1 is a family of i.i.d. copies of 4o

1 where

4o
1 = {t 2 R : o !t 1} and 41 = {t 2 R : Xo(t) !t 1},

the events that the origin o , respectively the typical device, is part of the infinite cluster of
Gr (X (t) [ {o}) , respectively Gr (X (t)) . In words, in the regime of (relatively) dense infrastructure,
the k -hop connection-interval measure approaches (in the spirit of a law of large numbers) a prod-
uct measure that is given in terms of an expectation over interval lengths in which both, the typical
device and at least one reachable infrastructure node, are part of the infinite cluster. On the other
hand, for (relatively) sparse infrastructure, where ↵ > d/2 , using the same definitions,

⌧T (d`, dt) D
�! E[�Io(N )(d`)|N ]dt.

Again in words, in this regime, there is less averaging, and the number of reachable infrastructure
nodes remains random in the limit. Finally, in the critical regime ↵ = d/2 , we see the emergence
of a standard Brownian motion Wt , and

⌧T (d`, dt) D
�! E[�Io(Y 0(Bc0 (Wt )))(d`)|Y 0(Bc0(Wt ))]dt,

where c0 = (c/|B1(o)|)1/d , and Y 0 is a unit-intensity homogeneous Poisson point process. In this
case, even the random number of reachable infrastructure nodes around the limiting trajectory of
the typical random walker survives the limit.

Using various degrees of asymptotic decoupling in the highly detailed k -hop connection-interval
measure ⌧T , our results show that ⌧T can be well approximated by much simpler connection-
interval measures given in terms of expectations over percolation clusters.

Malware propagation in random geometric graphs

Let us now revisit the static Poisson–Gilbert graph and consider first-passage percolation as intro-
duced above. We are interested in the behavior of Ht = Ht (q(o)) , where q(o) is the closest point
of the origin in the unique infinitely large connected component C . The version of first-passage
percolation in which the passage times are i.i.d. exponential random variables with parameter
⇢ > 0 is called the Richardson model (on the Poisson–Gilbert graph), and we write H

�,⇢
t to in-

dicate both, the intensity � of the underlying Poisson point process as well as the parameter ⇢ .
Our first result from [1] establishes weak convergence of the paths H

↵�,⇢/↵
[0,t ] (with respect to the
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Skorokhod topology based on the vague topology) towards a limiting branching process T
�,⇢
[0,t ] ,

Fig. 7: Illustration of T �,⇢ at
4 increasing time steps.
Gray disks indicate the area
for possible offsprings.

in the limit as ↵ tends to infinity. This can be seen as high-density limit for devices with slow
transitions. The limiting process T

�,⇢
[0,t ] has an initial device at the origin and then iteratively pro-

duces offsprings after independent exponential waiting times with parameter |Br (o)|�⇢ . Here, the
offsprings are uniformly distributed in the ball with radius r centered at the parent device; see
Figure 7 for an illustration.

The main result in [1] is a shape theorem for Ht =
S

x2Ht
V (x, C) , the union of Voronoi cells

V (x, C) associated with points in Ht , taken with respect to the infinite cluster C ; see Figure 8 for
an illustration. The shape theorem can be understood as a spatial strong law of large numbers,
i.e., almost surely,

lim
t"1

1
t

Ht = B�(o),

where 0 < � < 1 is a nontrivial speed constant. In words, the set of space points that are
closest to a device that is reached at a time t by a message initially placed close to the origin,

Fig. 8: Realization of a
Poisson–Voronoi
tessellation with respect to
the large connected
component of a
Poisson–Gilbert graph

approaches a ball with radius given by t� . Note that, in order to avoid percolation already at time
zero, it suffices to require that P(⌧ = 0) < (�|Br (o)|)�1 , the inverse of the expected degree of a
typical node in the Poisson–Gilbert graph. On the other hand, in order to control fluctuations, we
also have to assume that E[⌧⌘] < 1 for some ⌘ > 2d + 2 , but otherwise the distribution of ⌧

is arbitrary; however, note that it influences the speed � . The main ingredients in the proof are a
good control on the length of shortest paths in the graph and subadditivity arguments.

Let us finally report also on results for the propagation of malware in the supercritical Poisson–
Gilbert graph (and more refined Cox–Gilbert graphs, i.e., Poisson–Gilbert graphs in random envi-
ronments) in the presence of a counter-measure, as presented in [2, 3]. We consider the Richardson
model on the Poisson–Gilbert graph in which a typical device carries a malware at initial time. In
addition to regular susceptible devices, at initial time, there is also an independent Poisson point
process of special devices called white knights in the system. Now, white knights carry a patch

Fig. 9: Phase diagram for
global survival and
extinction based on the
infection rate �I and the
white-knight intensity µW .
The solid line is based on
simulations, and the dashed
lines indicate rigorous
bounds. The constant ⇢
represents a threshold
below which any positive
white-knight intensity
suffices to eliminate the
malware on infinite clusters.

that eliminates the malware, but this patch can only be transferred to devices that are infected
(due to privacy regulations) and not to susceptible devices. Once patched, the device also be-
comes a white knight and, on the long-term run, we observe a competition between an escaping
malware spreading and a chasing patch. Allowing for different transmission rates for the malware
and the patch, we see various behavioral regimes depending on four parameters, the different
rates and different initial intensities of susceptible devices and white knights. Our main findings
in [2] (based on rigorous arguments) and in [3] (mainly based on simulations) concern phase tran-
sitions of global and local survival and extinction of the malware as exemplified in Figure 9. In a
nutshell, sufficiently large white-knight intensities or patching rates lead to global extinction of the
malware, whereas sufficiently large intensities of susceptible devices or infection rates guarantee
positive probabilities of a global survival of the malware.
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