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1.3 Pressure-robust Flow Discretizations on General

Polyhedral Meshes

Derk Frerichs, Alexander Linke, and Christian Merdon

Computational fluid dynamics and quality meshes

Computational fluid dynamics (CFD) is a key technology of our modern society: It is of fundamental

economic importance in weather forecasts for agriculture, air transportation, and emergency man-

agement, and can give substantial theoretical insight in various scientific disciplines like medicine,

climate research, or astrophysics. Even hot topics like the spread of the Corona virus in aerosols

or stability investigations of the gulf stream in relation to climate change are covered. What CFD

Fig. 1: A square divided into
various convex and
non-convex polygons with
hanging nodes showing the
flexibility of polygonal
meshes

simulations have in common is that they are based on a translation process: Physics describes

the motion of fluids, e.g., water or air, by balance laws for their mass and momentum distribution.

These laws are formulated in the language of mathematics, leading to the famous Navier–Stokes

equations, which has continued to trigger challenging research questions since their discovery in

the early nineteenth century. And finally, CFD translates these equations by a process called dis-

cretization into a language that is understood by modern computers. Like any translation process,

also discretization is error-prone. And what makes the discretization even more challenging is that

a reduction of the complexity, i.e., a compression of information, of the original problem is needed

in order to make simulations computationally feasible in practice. In particular, a lack of pressure-

robustness as discussed in this contribution can be a very important potential error source during

this compression of information.

A starting point for the discretization of any CFD simulation is the availability of a mesh. A mesh

serves several purposes. Basically, it delivers a partition called triangulation of the flow domain

of interest, e.g., the outer space of an airplane. In every control volume of the mesh, a certain kind

of discrete physics has to hold, which approximates the original balance laws for the mass and

momentum distribution in the fluid. These control volumes are key for the simulation: On the one

hand, the more control volumes are spent in the mesh, the more accurate the simulation results

are. On the other hand, more control volumes mean more computing time and memory, hence,

more electricity and money. But not only the pure number of control volumes, also the shape of the

control volumes may help to approximate the physics of the flow. Thus, the availability of quality

meshes is fundamental for CFD. Such quality meshes allow for appropriate unstructured, adaptive

and anisotropic control volumes delivering an appropriate compression of information.

Fig. 2: A Voronoi–Delaunay
mesh as used, e.g., in WIAS
electrochemistry simulations

In the past, numerical mathematics required certain assumptions on the structure of the underly-

ing mesh: Meshes should be built from simple geometrical objects like tetrahedra or hexahedra

in three space dimensions, resp. triangle or quadrilaterals in two space dimensions, facilitating

the algorithmic construction and the theoretical investigation of CFD considerably. In recent years,

these assumptions have been questioned, though. Instead, polyhedral meshes have been pro-

posed, where the flow domain of interest is decomposed into a partition of polyhedra in 3D, resp.,

general polygons in 2D, which has a great potential to simplify quality mesh generation; see Fig-

ures 1–2 for examples.
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Indeed, polyhedral meshes facilitate:

� efficient local mesh refinement, wherever the physics of the flow locally requires a higher reso-

lution, since hanging nodes can be incorporated naturally;

� anisotropic meshes, since anisotropic prismatic control volumes for challenging multiscale

phenomena — like the resolution of boundary layers — are allowed;

� multi-physics, i.e., coupling with simulators for other subprocesses with specific mesh require-

ments is simplified, e.g., with WIAS electrochemistry finite volume solvers on Voronoi–Delau-

nay meshes.

However, a major challenge still remains: The translation process of discretization for challenging

flow problems is much more error-prone on polyhedral and quality meshes than on simple (struc-

tured) grids. Especially, for incompressible flow problems recent WIAS research has recognized

that only so-called pressure-robust flow solvers can be accurate and efficient in general. Thus, this

article describes recent progress on the construction of pressure-robust flow solvers for polyhedral
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Fig. 3: A divergence-free
vector field. Thus, the
streamlines of the flow field,
indicating the path a fluid
parcel will take, are closed
loops.

grids.

The incompressible Navier–Stokes equations

CFD as described above consists in the approximate solution of the Navier–Stokes equations

(NSE). Mathematically, they form a challenging system of partial differential equations, whose so-

lutions, i.e., the output of the simulation, are whole functions that model the mass density ρ of

the fluid and the velocity distribution in the fluid u . Since the physical quantities ρ and u depend

on time and space, these functions depend actually on four variables: the time t and the position

in space x , y , and z . It is important here to mention that the velocity u = (u, v, w) is represented

as a vector of velocities, where u models the velocity of the fluid in x -direction at any point in the

domain at any given time t , and v and w model the velocities in y - and z -direction.

Physically, the Navier–Stokes equations are a model that is based on classical Newtonian physics

and a few simplifying assumptions valid for many relevant flows. These simplifications allow for

a certain compression of information as mentioned above: i) in the absence of sources and sinks,

mass is conserved, and ii) momentum changes only by the action of forces. Especially, the Navier–
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Fig. 4: A gradient vector field.
All streamlines start in the
origin of the plot; hence, it is
non-divergence-free.

Stokes equations incorporate the pressure gradient as a driving force of the fluid and the friction

force, which tends to decelerate and to homogenize the fluid velocity distribution as a whole. As a

rule of thumb, high speed flows, so-called high Reynolds number flows, where the friction forces

are negligible in large parts of the flow domain, are more difficult to simulate than low-speed flows,

where comparably stronger friction forces simplify the simulations.

In the past, research at WIAS has focused on fluid flow in liquids as opposed to fluid flow in gases.

Fluid flow in liquids is one — and not the only one — extreme case in fluid mechanics: Such flows

are called incompressible, since the density of a liquid is practically independent of the pressure.

Therefore, the balance law of mass conservation for the fluid mass degenerates to a geometric con-

straint for the velocity field: The velocity field u is divergence-free, i.e., at every time t , what flows

into an arbitrary control volume has to flow out of the control volume, elsewhere. This geometric

constraint is very strong and has some important consequences. Here, it matters most that the in-

compressible Navier–Stokes equations are truly vector-valued. Neither do they make much sense

in a one-dimensional setting — under reasonable boundary conditions, the only one-dimensional,
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divergence-free velocity field is u = 0 —, nor is it reasonable to decouple the equations for the ve-

locity u = (u, v, w) into three, separate scalar equations for the velocity components u, v, and w. 0 0.2 0.4 0.6 0.8 1 1.2

0 0.5 1 1.5 2 2.5

0 0.2 0.4 0.6 0.8 1

Fig. 5: Velocity fields and
their absolute values for a
planar lattice flow for
ν = 10−4 at time t = 1
(transient Stokes equations
with exact convection term)
calculated with different
methods on the same mesh.
The classical Taylor–Hood
(top, 4771 unknowns) and
Bernardi–Raugel (middle,
3682 unknowns) methods
show large errors, whereas
the pressure-robust
Bernardi–Raugel method
(bottom, 3682 unknowns)
resolves the velocity better.

Some history and WIAS research on pressure-robustness

According to the Helmholtz–Hodge decomposition, all the various forces of the vector-valued in-

compressible Navier–Stokes equations like the pressure gradient, the viscous forces, and the ma-

terial derivative can each be split into sums of only two basic type of forces: divergence-free forces

(closed streamlines as depicted in Figure 3) and gradient field forces (streamlines start and end

in sources and sinks or at the boundary of the flow domain as shown in Figure 4), which is a re-

markable difference to the one-dimensional case, where every force is a gradient, according to the

fundamental theorem of calculus. It holds an important orthogonality property: Divergence-free

vector fields w whose streamlines do not leave the flow domain and arbitrary gradient fields ∇φ

are perpendicular in the following sense:∫
∇φ · w dx = 0. (1)

The WIAS research on pressure-robustness is essentially based on an improved understanding of

how the orthogonality relation (1) can be exploited in a CFD algorithm. The term pressure-robust-

ness indicates that the role of the pressure gradient is very special in the incompressible NSE:

Only the divergence-free parts of forces like the friction force and the material derivative drive

the flow; the gradient field parts of forces in the Navier–Stokes momentum balance are always

balanced completely by the pressure gradient, which instantaneously adapts itself all the time for

this purpose. This strange behavior of the pressure gradient is due to the degeneracy introduced

by the divergence constraint.

Physically, this behavior leads to strong and complicated pressure gradients in fast and challeng-

ing vortex-dominated, e.g., hurricane-like, flows at high Reynolds numbers, since the centrifugal

force, i.e., the nonlinear material derivative, in a rotating flow is nearly completely balanced by

the pressure gradient. Recent WIAS research confirmed that pressure-robustness allows for more

accurate simulation of such vortex-dominated flows at high Reynolds numbers [5].

Furthermore, the notion of pressure-robustness emanates from an improved understanding of the

classical theory of mixed methods from the 1970ies, which is commonly viewed as a complete

theory. This theory allows to construct CFD algorithms for the incompressible Navier–Stokes equa-

tions that converge to the exact flow solution if the mesh gets finer and finer. It proposes to relax

the cumbersome divergence constraint in order to facilitate the construction of CFD algorithms. To

this end, it introduces discretely divergence-free vector fields, for which (1) only holds in a cer-

tain discrete sense, i.e., not for arbitrary smooth φ . Unfortunately, this relaxation causes a lack

of pressure-robustness, resulting in large discretization errors in case of high Reynolds number

flows.

In a sense, the numerical analysis of partial differential equations since the 1970ies can be under-

stood as the history of attempts to construct CFD algorithms that have less and less unnecessary

constraints. On the one hand, these attempts concern the meshes, where first simplicial and hex-
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ahedral meshes were used and nowadays polyhedral meshes are exploited. On the other hand,

they concern different kinds of continuity and differentiability constraints for the ansatz and test

functions used in a CFD algorithm ( H1 -conforming finite elements, nonconforming finite element

schemes, L2 -conforming Discontinuous Galerkin and finite volume schemes, . . . ).

In this context, past WIAS research on CFD algorithms on simplicial meshes has demonstrated

that the sophisticated and efficient use of so-called H(div) -conforming finite element schemes

allows to fulfill the orthogonality relation (1) exactly, leading to accurate simulation results for

time-dependent vortex-dominated high Reynolds number flows [5]. At WIAS, researchers have re-

vealed that pressure-robustness comes from divergence-free and H(div) -conforming discrete test

functions, and not from trial functions [6].

As an outcome, novel pressure-robust low-order schemes like the pressure-robustly modified first-

order Bernardi–Raugel scheme can be competitive, or on coarse unstructured meshes even supe-

rior, to higher-order schemes like a second-order Taylor–Hood method. An illustration with a time-

dependent planar lattice flow u(x, y, t) = e−8π2νt [sin(2πx) sin(2πy), cos(2πx) cos(2πy)] simu-

lated in the time interval (0, 1) is depicted in Figure 5. This illustration indicates that schemes of

(formal) higher order are not enough for an efficient and accurate CFD simulation. Likewise, physi-

cal fidelity like pressure-robustness is important for the translation process of discretization.

In search for more flexible CFD algorithms, the extension of pressure-robust schemes to polyhedral

meshes by exploiting H(div) conformity has naturally emerged as a research topic.

Pressure-robustness on polyhedral meshes

Methods allowing for polyhedral and polygonal meshes that were drawing enormous attention in

the last decade are hybrid high-order methods (HHO) and virtual element methods (VEMs), be-

sides, e.g., discontinuous Galerkin methods, extended finite element methods, or mimetic finite

difference methods. HHO and VEMs work on general polyhedral meshes, but also give the possibil-

ity to respect physically relevant properties such as mass conservation.

Fig. 6: A polygon (solid
lines) and a possible
subtriangulation (dashed
lines)

In the case of VEMs, the divergence constraint mentioned above can be satisfied exactly and not

only discretely by the design of the ansatz functions in the underlying discrete velocity and pres-

sure space. However, here not only polynomials, but also other non-polynomial basis functions in

the velocity space are required. Those basis functions are only defined implicitly, which is why the

method is called virtual and, hence, have to be treated with care during the design of the discrete

equations.

In general, exactly divergence-free methods are also pressure-robust since exactly divergence-free

test functions are orthogonal in the sense of (1) to the gradient part of the force. However, this is

not the case for the classical VEM, since the virtual test functions need to be projected to suitable

polynomial functions that can be evaluated everywhere. Unfortunately, the classically used L2

best-approximation does not preserve the divergence, i.e., the projection and the gradient part

of the force are not orthogonal in the sense of (1). Therefore, gradient forces in the momentum

balance might have a possibly enormous impact on the approximation of the velocity.
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To repair the lack of pressure-robustness for the VEM in the spirit of the WIAS approach, another

projection has to be used that preserves the divergence. This new and carefully designed pressure-

robust projection is based on a subtriangulation of the polygons as in Figure 6, and thereon uses

well-established ideas of H(div) -conforming interpolations. It ensures the continuity of the normal

flux along the triangle boundaries and, hence, the divergence of the function is preserved, but now

can be evaluated pointwise everywhere [4]. The superiority of the new pressure-robust variant

compared to the classical VEM can also be seen in Figure 7 in practice for a high Reynolds number

flow.

It can be noted that the subtriangulation is used only locally and that the total number of degrees

of freedom stays the same. To conclude, this new pressure-robust VEM benefits from less com-

putational cost and more flexibility due to polygonal meshes compared to simplicial methods on

the corresponding subtriangulations, and reduces the computational cost dramatically in case of

strong gradient field forces or high Reynolds number flows compared to the classical VEM. 0 2 4 6 8 9.4

0 0.2 0.4 0.6 0.8 1

Fig. 7: Velocity fields and
their absolute values of the
same velocity as in Figure 5
at fixed time t = 0 and
ν = 10−4 (steady Stokes
with exact convection term
and exact time derivative)
computed by different VEMs
with 3426 unknowns. The
classical VEM (top) shows
large errors, whereas the
pressure-robust VEM
(bottom) resolves the
velocity better.

Outlook

Future research at WIAS on pressure-robust schemes has the following three main goals:

A first goal is to tap the full potential of pressure-robust methods on quality meshes. This goal

concerns multi-physics and multi-scale real-world applications as in Czochralski crystal growth

and in electro- or magneto-hydrodynamics. And it concerns the construction of CFD algorithms

that deliver provably robust and accurate results on anisotropic three-dimensional meshes. First

steps towards this goal for simplicial three-dimensional meshes can be found in [3].

A second goal is the construction of novel convection stabilizations for high Reynolds number

flows that do not interfere with pressure-robustness. As a first result, the recent WIAS preprint

[1] constructs the first H1 -conforming, convection-stabilized (LBB-stable) mixed method for the

incompressible Oseen model problem that delivers provably optimal velocity convergence rates.

Pressure-robustness is decisive to obtain the result.

Third, pressure-robustness extends nicely to novel well-balanced schemes for the compressible

Navier–Stokes equations, where dominant gradient-field forces may also excite numerical errors

at low Mach numbers [2]. In the future, WIAS research will investigate the case of compressible

high Reynolds number flows at low — up to extremely low — Mach numbers.
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