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1.4 Learning-enriched Differential Equation Models in

Optimal Control and Inverse Problems

Guozhi Dong, Michael Hintermüller, and Kostas Papafitsoros

Differential equations, ordinary (ODEs) or partial (PDEs), that is, equations that involve functions

and their (partial) derivatives, have been essential tools in many fields of science. They describe

the dynamics of the physical world phenomena allowing scientists to get useful insights and make

predictions. Very often in applications, it is desirable to focus on specific constituents of the dif-

ferential equations, for instance, some parameters or otherwise called controls, that significantly

affect how the solution will look like. This need leads to the widely applicable field of optimal con-

Fig. 1: Quantitative imaging
techniques aim to measure
precise values of biophysical
quantities of fixed units
associated to different types
of tissues (here color-coded)

trol of differential equations, where one is seeking for suitable values of these parameters that

result in the solution being close to some desirable state, e.g., a specific temperature distribution

in a room or a specific configuration of a fluid flow. In certain medical applications, these param-

eters can be some tissue-specific biophysical variables, whose precise value can tell clinicians

more about the nature of the tissue, e.g., tumor vs. healthy tissue. Applied mathematicians play a

vital role in developing techniques that facilitate these diagnoses. A first key step is to identify as

precisely as possible the differential equations related to a given imaging technique whose solu-

tions depend on these parameters. By obtaining measured data that are related to these solutions

and correspond to a specific small tissue area, one is able to make a link to some specific bio-

physical parameter values, and achieve a precise classification of that tissue area. This workflow

is done, for instance, in quantitative magnetic resonance imaging (MRI); see Figure 1, [4], and the

corresponding Scientific Highlights article of the Annual Research Report 2019 of the Weierstrass

Institute.

However, very often a differential equation is merely a simplification of a far more complex ground-

truth physical process. This physical process can be unknown or too complicated to be precisely

modeled. Nevertheless, experimental data can provide some glimpse into the true process itself.

One can achieve that, for instance, by considering a family of the differential equations parameters,

the input data, and experimentally measuring the response of the system, the output data, that

corresponds to each one of these parameters. It is then desirable to have a tool — a learned map —

that generalizes this input-output relation to input data that have not been used in this experiment

and eventually approximates the physical process. With regard to the optimal control problems,

this learned map will substitute the control-to-state map. It turns out that this versatile learning

from input-output data can be realized via artificial neural networks (ANNs). The use of ANNs and

the general field of deep learning — one of the cores of artificial intelligence (AI) — is nowadays

ubiquitous. Their remarkable versatility and good approximation properties that are the result of

being trained in a set of data, generalizing well in “unseen” data, have made them a powerful tool

essentially in any area that involves some type of data classification and interpolation.

There has, therefore, been a need for the introduction, analysis, and application of versatile data-

driven frameworks for learning totally or partially unknown physical models via ANNs. This was re-

cently realized in [1] within the EF3 project “Direct reconstruction of biophysical parameters using

dictionary learning and robust regularization” in the frame of MATH+, the Berlin Mathematics Re-
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search Center, which is a cross-institutional and interdisciplinary Cluster of Excellence. ANNs were

employed either to learn some unknown nonlinearity in physical models or to represent the com-

plex parameter-to-solution maps of differential equations and subsequently be embedded into

optimal control problems. For example in the case of qMRI, the dynamics that map certain tissue-

dependent biophysical parameters to the acquired signal, are learned and incorporated into the

reconstruction process, yielding more accurate values for the tissue parameter maps with the obvi-

ous benefits for clinicians and patients.

As it is a case for any new mathematical framework, it needs to be shown to be mathematically

sound and viable. Important questions arise, such as in what degree the approximation quality of a

given ANN (stemming from the quantity and quality of the available data) affects the final solution

of the optimal control problem. It is also vital to design and develop robust numerical methods

for the solution of these learning-informed differential equations and their corresponding optimal

control problems. The recent work [1] also addressed these challenges and showed the versatility

of the framework in key applications, such as qMRI and the modeling of phase transitions in fluids.

Deep learning and artificial neural networks in brief

Mathematically, a neural network is a function 𝒩 : Rr
→ Rs , with a feed-forward architecture, in

the sense that the input is successively propagated into L layers. Every layer consists of a series

of neurons that perform weighted averages of their inputs that have been fed from the neurons

of the previous layer. An activation function σ then decides if the output of each neuron will be

passed to the neurons of the next layer, by assigning relatively large values to it. For a more precise

example, a standard feed-forward ANN with one hidden layer has the following form:

𝒩 (x) = W0σ(W1x + b1)+ b0, x ∈ Rr , (1)

where W1 ∈ Rl×r , W0 ∈ Rs×l are weight matrices and b1 ∈ Rl , b0 ∈ Rs are bias vectors. In that

Fig. 2: Visual example of a
4-hidden layer network

case, we say that the hidden layer has l neurons. A visual example of a 4-hidden layer network

is shown in Figure 2, with the neurons in hidden layers depicted as blue nodes. The activation

function σ : R→ R is some nonlinear map that acts component-wise on a vector in Rl . Popular

activation functions are Sigmoid-type functions, e.g., σ(z) = arctan(z) , and the rectified linear

unit (ReLU), σ(z) = max(0, z) ,

Given some data pairs
{
(xi , fi ) ∈ Rr

× Rs , i = 1, . . . , N
}

, one of the main tasks of deep learning

is to identify suitable choices for weight matrices and bias vectors, collectively denoted by θ , such

that the corresponding neural network 𝒩θ satisfies 𝒩θ (xi ) ' fi , i = 1, . . . , N . In other words,

the target is for𝒩θ to learn a map that corresponds to the input-output data pairs. This learning

is typically achieved via the so-called supervised learning approach, essentially by solving a mini-

mization problem (network training) with respect to θ .

The success of deep learning in several applications is mainly due to the fact that, given enough

training data, the resulting parameters θ∗ lead to a network 𝒩θ∗ that tends to behave well also in

other points outside the training set, that is, they have good approximation and interpolation capa-

bilities. Mathematically, this fact is also corroborated by the universal approximation theorem for
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neural networks [3], which states that if the activation function σ is a continuous non-polynomial

function, then every family of neural network functions of a fixed number of layers is dense to the

set of continuous functions C(Rr ,Rs) , in the topology of uniform convergence in compact sets.

Main framework of learning-informed optimal control

Inspired by key applications on optimization models with physical laws constraints, such as quan-

titative magnetic resonance imaging (qMRI), a versatile data-driven framework was proposed and

mathematically analyzed in [1]. The starting point is a general optimal control problem of the form

minimize
(y,u)

1
2
‖Ay − g‖2H +

α

2
‖u‖2U , over (y, u) ∈ (Y ×U ),

subject to e(y, u) = 0, and u ∈ 𝒞ad .

(2)

Here, Y,U are some appropriate function spaces, α > 0 , 𝒞ad is a constraint set for the control

u , A is a linear operator — for instance, in the case of inverse problems, it can be regarded as the

forward operator of the problem —, and g denotes some given data. The term of focus in (2) is

the equation e(y, u) = 0 , a differential equation describing a physical process, with y being the

solution variable (state). Assuming uniqueness of solutions for (2), we write y = 5(u) to define

the well-defined control-to-state map. We focus on the case where the precise form of the physical

process e is unknown, (i) either as a whole or (ii) with respect to a specific constituent. For the

latter, consider, for example, the following semilinear partial differential equation:

−1y + f (x, y) = u, in� ⊆ Rd , (3)

where f is a completely unknown nonlinear function. In that case, any calculation of y = 5(u) is

out of reach. Nevertheless, given the availability of a data pair set {(ui , yi ) : i = 1, . . . , N } , such

that yi ∼ 5(ui ) , one can train a neural network 𝒩 and use it to approximate the overall unknown

control-to-state map. In the case of (3) , the neural network 𝒩 aims to approximate only the un-

known constituent f arriving in the following learning-informed PDE

−1y +𝒩 (x, y) = u, in�, (4)

In general, we end up with a learning-informed control-to-state map, denoted by 5N , that can

then be embedded into the optimal control problem. A schematic illustration of this framework is

shown in the diagram of Figure 3.

Input {ui}Ni=1

Output {yi}Ni=1

(Partially) unknown
Physical process

y = Π(u)

Learning-informed
model

y = ΠN (u)

Learning-informed
optimal control

min
(y,u)

1
2
‖y − g‖2L2 + α

2
‖u‖2L2

subject to y = ΠN (u)
u ∈ Cad

2

Fig. 3: Schematic illustration
of the learning-informed
optimal control framework
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The versatility and applicability of this approach was established in [1] by its validation in two key
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Fig. 4: Approximation of a
double-well potential F by a
neural network

applications, discussed next.

Optimal control of semilinear partial differential equations. The following general optimal con-

trol problem of learning-informed semilinear PDEs was studied in [1]

minimize
(y,u)

1
2
‖y − g‖2L2(�)

+
α

2
‖u‖2L2(�)

, over (y, u) ∈ (H1(�)× L2(�)),

subject to −1y +𝒩 (x, y) = u, in�, ∂ν y = 0 on ∂�,

and u(x) ≤ u(x) ≤ u(x), for a.e. x ∈ �.

(5)

Here, 𝒩 : �× R→ R is an ANN that has been sufficiently trained offline in order to approximate

an unknown function f in its domain. By formulating the PDE as a first-order optimality condi-

tion of a variational problem, existence of solutions to the PDE and further to the optimal control

problem were shown. Note that uniqueness for the PDE solution can only be guaranteed if 𝒩 is

strictly monotone in the second variable, which cannot be reasonably assumed if f is not strictly

monotone. In [1], a particular example of a stationary Allen–Cahn equation has been tested as a
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Fig. 5: Detail of Figure 4

benchmark problem. There, the nonlinearity f is associated to the derivative of a double-well po-

tential function F , which models the separation of a fluid into two states and whose precise form

has traditionally been a matter of modeling choice rather than data driven. In Figures 4 and 5, we

show an example where the (derivative of the) ground potential F is learned by a neural network

using some local data. Despite the fact that the learned potential looks globally quite different —

recalling that the network approximation is good only in a compact set — the important double-

well part is well approximated. Indeed, the solution (y𝒩 , u𝒩 ) of (5) ends up being close to the

corresponding solution of the ground-truth model (y, u) , Figure 6.

Fig. 6: Comparison of the
solutions of the
learning-informed and
ground-truth optimal control
problems of the stationary
Allen–Cahn equation with
the double-well potentials
shown in Figure 4

Control difference State difference Learning-informed state y𝒩 and control u𝒩
|u𝒩 − u| |y𝒩 − y|

Inverse problems on quantitative imaging. It turns out that the task of quantitative MRI, a high-

level description of which we have already given, can be formulated as a special case of the general

optimal control problem (2). This formulation reads as follows:

minimize
(y,u)

1
2
‖Pℱ(y)− gδ‖2L2(�)

+
α

2
‖u‖2H 1(�)

, over (y, u) ∈ [L2(�)]3L
× [H1(�)]3

s.t.
∂y
∂t
(t) = y(t)× γ B(t)−

(
y1(t)
T2

,
y2(t)
T2

,
y3(t)− ρme

T1

)
, t = t1, . . . , tL ,

and y(0) = ρm0, u := (ρ, T1, T2) ∈ 𝒞ad ⊂ ([L
∞(�)]+)3.

(6)
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The goal is to estimate the physical unit values of (T1, T2) , the tissue-dependent magnetic relax-

Fig. 7: T2 reconstructed by a
dictionary-based method [4]
(top) and by the proposed
learning-informed method
[1] (bottom)

ation parameters, as well as the proton spin density ρ , with the ultimate target being the classifica-

tion of a given tissue slice � . These biophysical quantities are inserted into the physical dynamics,

via the Bloch equations, the above ODE system, which describes the evolution of the magnetiza-

tion y in a tissue volume unit (voxel). In an MRI experiment, subsamples of the Fourier coefficients

( Pℱ ) of y are measured at specific times t1, . . . , tL , resulting in possibly noisy data gδ . This ill-

posed inverse problem is modeled in the first line of (6), where additional H1 regularization is

imposed on the unknown parameter maps T1, T2 : � → R as well as ρ . If the parameter-to-

solution map of the Bloch equations y = 5(T1, T2) is explicitly known, then it can be embedded

into the minimization problem (6), resulting in the following least-squares formulation:

minimize
(ρ,T1,T2)

1
2
‖Pℱ(ρ5(T1, T2))− gδ‖2L2(�)

, s.t. (ρ, T1, T2) ∈ 𝒞ad . (7)

This approach was introduced in our previous work [2] where (7) was solved with a Levenberg–

Marquadt method, giving superior results compared to some of the current state-of-the-art meth-

ods in qMRI [4]. Nevertheless, explicit formulas of the Bloch map are only available in certain

special choices of the external magnetic field B . However, numerical methods or some elaborate

targeted experiments can provide data that facilitate a neural network approximation 5𝒩 that

can take the role of 5 in (7). It was shown in [1] that this learning-informed model can achieve

similar results to the “ground-truth” one; see Figure 7. Furthermore, the approach is more flexible

and it has the capability to learn some potential perturbation of the initially believed to be accu-

rate model. Finally, there is a significant reduction in the computational load, since a repetitive

solution of the exact physical model is avoided.

Mathematical challenges

In terms of the problem (2) and its learned counterpart, many mathematical questions arise. For

instance: Do the learning-informed PDEs admit solutions? Will the optimizers associated to the

learning-informed model be close to the one associated to the ground-truth one? These and similar

questions were also addressed in [1]. For instance, focusing on the semilinear PDEs (3) and (4),

and under some standard assumption on f (e.g., continuity and certain polynomial growth rates),

it was shown that for every ε > 0 there exists a neural network 𝒩 ∈ C∞(Rd
× R) such that

sup
‖y‖L∞(�)≤K

‖ f (·, y)−𝒩 (·, y)‖L2(�) < ε (8)

with the corresponding learning-informed PDE (4) admitting a weak solution. The constant K > 0

is associated to a uniform bound of the type ‖y‖H 1(�)+‖y‖C(�) ≤ K satisfied for every solution of

the original PDE uniformly for all controls u ∈ 𝒞ad , with the solutions of the learning-informed PDE

satisfying similar estimates. Indeed, we observed that the uniform boundedness of the range of

the input and output data (state variable) played a crucial role in these proofs, stemming from the

fact that the density of neural networks holds in the topology of uniform convergence on compact

sets. Analogous estimates are shown for the control-to-state maps

‖5(u)−5𝒩 (u)‖L2(�) ≤ Cε, for all admissible u ∈ L2(�) (9)
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as well as their derivatives.

Regarding the corresponding optimal controls, quantitative convergence results were also proven,

showing that under certain conditions, the solution of the learning-informed problem u𝒩 will con-

verge to the solution u of (2), with specific rates

‖u𝒩 − u‖U ≤ C (L0ε1 + ε1ε2 + ε2‖Q(u)− g‖H ) .

Here, C is some constant depending on the parameter α , the Lipschitz constant L0 of the oper-

ator Q := A5 and its derivative Q′ , and ε1 and ε2 are error bounds between Q and Q𝒩 :=

A5𝒩 and their derivatives, respectively.

Finally, a common numerical algorithmic framework using a sequential quadratic programming

(SQP) approach combined with semismooth Newton, was used to tackle both problems (5) and (6),

while the numerical algorithm for learning was executed in a separate offline phase before the SQP

algorithm.

Conclusions and outlook

We introduced a general optimal control framework that incorporates physical processes that are

enriched through data-driven components, and we showed its feasibility in two key applications.

This idea combines the power of both traditional mathematical modeling with machine learning

methods, and is able to deliver more accurate physical models. The latter can finally serve as data-

faithful constraints in optimization tasks. In the future, we expect that such approaches will be

used to learn small but systematic deviations from previously well-established physical models.

Finally, we note that several mathematical challenges arise from this work. For instance, the use of

nonsmooth neural networks, stemming from the incorporation of nonsmooth activation functions,

has become prevalent due to certain approximation and trainability advantages. For our set-up,

this nonsmoothness poses difficulties in establishing rigorous first-order optimality systems for

the learning-informed optimal control problems. Future studies should also focus on incorporating

the architecture and the training of the networks into the overall minimization process to further

robustify the new technique.
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