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1.3 Multi-scale Chemical Reaction Systems

Artur Stephan

The mathematical description of complex processes in nature involves many challenging difficul-

ties. These result from the fact that mathematical models are governed by the trade-off between

accuracy and simplicity. A more accurate description, e.g., involving more physical states, provides

richer information about the physical problem, which is desirable for a detailed understanding

of the physical process. In contrast, a precise description involves many challenges affecting all

branches of applied mathematics, namely modeling, analysis, and simulation: First, the validation

of an applicable model requires precise measurements that become practically impossible if the

state space is too large. Second, the analytic difficulties grow when increasing the complexity of

the problem. Thirdly, good numerical algorithms may become too costly if the number of parame-

ters and dimensions increases.

A procedure that reduces the complexity of a system is often called coarse-graining. It is a promi-

nent research topic in all areas of natural sciences. These reductions or approximations are often

physically motivated by scale separations of the problem and have the aim to derive an effective

model that respects and reflects the most prominent features of the system. On different temporal

or spatial scales, different processes may govern the physical system, resulting in different levels

of description. The derivation of effective systems by reducing a system involving multiple scales

to a smaller system with fewer scales, for example, only one distinguished scale, is an important

task in applied mathematics and a prominent research area at WIAS. Usually, reductions are made

on the level of the physical states. However, in recent years, it became more and more apparent

that the intrinsic physical nature cannot be described by the physical states only. Desirably and as

explained in the Annual Research Report of WIAS of 2014, a complete coarse-graining procedure

should also take the global physical principles into account. Such a structural reduction proce-

dure has many different advantages. First, the derived effective model automatically satisfies the

desired physical principles, such as energy conservation and monotonicity of entropy production.

Often, the additional information helps in the mathematical analysis of the equations. Moreover,

errors in computer-based simulations may be reduced by preserving the physical structure.

Recently, theoretical progress was made for coarse-graining of multi-scale chemical reaction sys-

tems. Chemical reactions describe the transformation of species, molecules, or substances. Reac-

tion systems are inevitable in modeling processes in biology, chemistry, physics, as well as social

sciences, and economics. In many applications, the number of chemical species can be huge, and

Fig. 1: A simple model that
describes the transcriptional
regulatory system in gene
production

the reaction coefficients for the chemical reactions may vary in a large range. In such cases, not

only the measurement of all necessary physical quantities, but also analytical or numerical treat-

ment is out of reach. A natural simplification is made by the assumption that reactions can happen

with different and distinguished magnitudes of speed. We will consider the case that slow and fast

reactions are distinguished, namely the slow ones of order 1 and the fast ones of order 1/ε for

a small parameter ε > 0 . There are many instances for this kind of assumption in literature. As

a biochemical example, we mention an mRNA-DNA system that can be modeled by a slow-fast re-

action system (see Figure 1). There, proteins (monomers), synthesized by transcription of a gene,

dimerize. Afterwards, they may bind to the gene. Dimerization is a fast reaction, as compared to
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transcription, translation, mRNA and protein degradation, and protein binding.

Gradient structures and EDP-convergence

To include the physical structure, we focus on variational structures that define a gradient flow.

Physically, they describe a closed physical system that is close to thermodynamic equilibrium.

They provide an important modeling framework enjoying many applications in continuum mechan-

ics, semiconductor physics, and also chemical processes. Gradient flows describe an evolution in

the direction of the steepest descent of a driving functional, which is often given by the energy

or entropy. Mathematically, gradient flow equations are evolution equations that are induced by

a so-called gradient system (Q, ℰ,ℛ∗) , consisting of a state space Q (a subspace of a Banach

space X ), a driving (or energy) functional ℰ , and a geometric or dissipative structure in the form

of a dissipation potential ℛ that describes the geometry of the underlying state space Q (see

[2]). Here, ℛ is called a dissipation potential if ℛ(q, ·) : X → [0,∞] is lower semicontinuous,

convex, and satisfies ℛ(q,0) = 0 . Then, ℛ∗ is the (partial) Legendre–Fenchel transform given by

ℛ∗(q, ξ) := supv∈X {〈ξ, v〉 −ℛ(q, v)} . The induced gradient flow equation is then defined by

q̇ = Dξℛ∗(q,−Dℰ(q)) or equivalently 0 = Dq̇ℛ(q, q̇)+ Dℰ(q). (GFE)

The first equation is a rate equation in the state space Q ⊂ X . The second equation is a force

balance, where the viscous force Dq̇ℛ(q, q̇) is balanced by the potential restoring force −Dℰ(q) .

Another equivalent formulation of the gradient flow equation (GFE) plays an important role. Intro-

ducing the total dissipation functional (also called the De Giorgi functional)

Fig. 2: Italian mathematician
Ennio De Giorgi during an
interview in 1996, SNS
Channel Mathematical and
Natural Sciences, CC BY 3.0

D(q) =
∫ T

0
ℛ(q, q̇)+ℛ∗(q,−Dℰ(q)) dt,

the gradient flow evolution can equivalently be described by the so-called energy-dissipation bal-

ance

ℰ(q(T ))+D(q) = ℰ(q(0)).

This energy-dissipation balance compares the energy at initial time t = 0 with the energy at final

time t = T . The difference is given by the total dissipation functional D(q) , which has a particular

form, consisting of the two terms ℛ and ℛ∗ . The energy-dissipation balance is a suitable starting

point for multi-scale problems using 0 -convergence methods.

For families of gradient systems (Q, ℰε,ℛ∗ε ) , where ε > 0 is a small parameter featuring the multi-

scale nature, a structural convergence, the so-called EDP-convergence, has been established in

recent years [3]. Roughly speaking, EDP-convergence is defined by two 0 -convergences: for the

energy functionals ℰε , defined on the state space Q , and the dissipation functionals Dε given

by

Dε(q) =
∫ T

0
ℛε(q, q̇)+ℛ∗ε (q,−Dℰε(q)) dt,

defined on the dynamic space of trajectories (in a suitable topology). The limit is again given by

D0(q) =
∫ T

0
ℛeff(q, q̇)+ℛ∗eff(q,−Dℰeff(q)) dt.
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The effective gradient system is, then, given by (Q, ℰeff,ℛ∗eff) . Physically, the convergence can be

motivated from thermodynamics because it takes also fluctuations of solutions of the gradient

flow equation (GFE) into account that have finite energy and dissipation.

An almost trivial consequence of EDP-convergence is that (under suitable technical assumptions)

solutions with respect to the gradient system (Q, ℰε,ℛ∗ε ) converge to the solution of the effective

gradient system (Q, ℰeff,ℛ∗eff) . The great advantage of EDP-convergence is that the limit gradi-

ent system is uniquely determined, and hence, the previously hidden physical principles of the

effective evolution equation become evident; see Figure 3.

gradient systems

(Q, ℰε,ℛε)

(Q, ℰ0,ℛeff)

 

gradient-flow eqn.

q̇ = Dξℛ∗ε (q,−Dℰε(q))  

solutions

qε: [0, T ]→ Q

ε
→

0

ED
P

−
→  ⇀

  q̇ = Dξℛ∗eff(q,−Dℰ0(q)) q0: [0, T ]→ Q

Fig. 3: EDP-convergence leads to a commuting diagram. In particular, EDP-convergence generates
the correct limit equation q̇ = Dξℛ∗eff(q,−Dℰ0(q)), and the solutions qε converge to solutions
q0 of the limit equation. However, ℛeff , which is uniquely determined by EDP-convergence,
provides information not contained in the limit equation.

In this sense, EDP-convergence can be understood as a structural coarse-graining procedure that

derives an effective system from a multi-scale system.

Fast-slow nonlinear reaction systems

In [4, 5, 6], the coarse-graining procedure was applied and extended to different fast-slow reaction

and reaction-diffusion systems. We consider species Xi , i ∈ I := {1, . . . , i∗}, that undergo r∗
forward-backward chemical reactions of mass-action type

αr
1 X1 + · · · + α

r
i∗ Xi∗ 
 βr

1 X1 + · · · + β
r
i∗ Xi∗ , r = 1, . . . , r∗ ,

where αr
= (αr

i )i∈I and βr
= (βr

i )i∈I are the stoichiometric vectors in Ni∗
0 . The fast-slow

reaction-rate equation describing the evolution of densities c ∈ C = [0,∞[i∗ of the species has

the form

ċ = Rslow(c)+
1
ε

Rfast(c) with Rxy(c) := −
∑

r∈Rxy

κr
(

cα
r
∗ cβ

r

∗

)1/2
(

cα
r

cαr
∗

−
cβ

r

cβr
∗

)
(αr
− βr ), (RRE)

for xy ∈ {slow, fast} , where κr > 0 are reaction rates, and c∗ = (c∗i )i∈I ∈ ]0,∞[i∗ is a positive

concentration vector providing the detailed-balance equilibrium.

The fast-slow reaction-rate equation can be understood as a gradient flow equation of the cosh-

type gradient structure (C, ℰ,ℛ∗ε ) , where the ( ε -independent) energy functional is the free energy
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of Boltzmann type

ℰ(c) =
i∗∑

i=1

c∗i EBz(ci/c
∗
i ), EBz(r) = r log r − r + 1 .

The dual dissipation potential ℛ∗ε consists of a slow part and a fast part and is given by

ℛ∗ε (c, ξ) = ℛ∗slow(c, ξ)+
1
ε
ℛ∗fast(c, ξ), ℛ∗xy(c, ξ) =

∑
r∈Rxy

κr
(
cα

r
cβ

r )1/2 C∗
(
(αr
− βr ) · ξ

)
, (dDP)

where the cosh function is given by C∗(r) = 4 cosh(r/2) − 4 . It follows that the reaction-rate

equation (RRE) is indeed given by the gradient flow equation ċ = Dξℛ∗(c,−Dℰ(c)) .

Heuristically, one expects that in the limit ε → 0 , an equilibration of the fast reactions occurs

such that Rfast(c(t)) ≡ 0 , which defines the slow manifold where the slow evolution takes place.

This result can also be shown on the level of the gradient structure by proving EDP-convergence

[4]. As it turns out, the gradient system (C, ℰ,ℛ∗ε ) converges to (C, ℰeff,ℛ∗eff) , where the effective

gradient system is given by

ℰeff = ℰ, ℛ∗eff = ℛ∗slow + χ0⊥fast
,

where χK (ξ) = 0 for ξ ∈ K and infinity, otherwise. The dissipation potential again consists of

two parts: one part that captures the slow reactions and one part that restricts the evolution to the

set of fast equilibria

Efast = {c ∈ C : Rfast(c) = 0} ,

by forcing the chemical potentials to be transversal to the subspace of fast stoichiometric vectors

0fast = span
{
αr
− βr : r is fast

}
. The important assumption is that the manifold of fast equilibria

Fig. 4: One fast and one slow
bimolecular reaction
coarse-grained to one
trimolecular reaction

Efast can be parametrized (by a function 9 ) in terms of adiabatic variables or, in other words, the

conserved quantities of the fast reactions. These slow adiabatic variables are the natural variables

of the coarse-grained systems and are given by q ∈ Ĉ = QfastC , where the matrix Qfast satisfies

Qfast0fast = 0 . The effective system in its gradient structure can be equivalently expressed in these

coarse-grained slow variables, where the state space is Ĉ = QfastC , and the energy functional and

dissipation potential are given by

ℰ̂(q) = ℰ(9(q)), ℛ̂∗(q, ξ̂ ) = ℛ∗slow(9(q), QT
fastξ̂ ).

In particular, a new physical principle in terms of a yet undiscovered gradient structure is obtained

because the coarse-grained driving functional is no longer of Boltzmann type. As an application, a

structural reduction from two bimolecular chemical reactions to one trimolecular reaction can be

performed; see Figure 4.

Fast-slow linear reaction-diffusion system

Considering two species that, in addition to a fast linear reaction, also diffuse in a medium � ⊂

Rd , the evolution of their concentrations c = (c1, c2) can be described by a linear reaction-
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diffusion system (complemented by no-flux boundary conditions and initial conditions)

ċ1 = δ11c1 −
1
ε

(
c1
c∗1
−

c2
c∗2

)
, ċ2 = δ21c2 +

1
ε

(
c1
c∗1
−

c2
c∗2

)
, (RDS)

where δ1, δ2 > 0 are diffusion coefficients and (c∗1, c∗2) > 0 are the equilibrium concentra-

tions, which define the reaction rates. These reaction-diffusion systems can again be written as

a gradient-flow equation induced by a gradient system (Q, ℰ,ℛ∗ε ) , where the state space Q is

now the infinite-dimensional manifold of probability measures Q = Prob(� × {1,2}) , and the

driving functional is the free energy ℰ(µ) =
∫
�

∑2
j=1 EBz

(
c j
c∗j

)
c∗j dx for measures µ = c dx and

the stationary measure c∗ = (c∗1, c∗2)
T
∈ Q . Here, the dissipation potential ℛ∗ε is given by two

parts ℛ∗ε = ℛ∗diff +ℛ∗react,ε , describing diffusion and reaction separately. The diffusion part ℛ∗diff
corresponds to the Wasserstein metric showing the connection to the theory of optimal transport.

The reaction part ℛ∗react,ε is ε -dependent and defined by a straightforward generalization as in

the space-independent situation (dDP). Together, they define a geometry on the space of proba-

bility measures that take transport and transformation into account. The reaction-diffusion system

(RDS) can now formally be written as a gradient flow equation µ̇ = Dξℛ∗ε (µ,−Dℰ(µ)) .

In [5], EDP-convergence for the gradient systems was shown. In particular, the approach is robust

to take also shifts (the so-called tilts) by a linear potential V = (V1, V2) into account. On the

level of the evolution equation, these additional energy shifts give rise to a linear reaction-drift

diffusion system with space-dependent reaction coefficients

d
dt

(
c1

c2

)
= div

((
δ1∇c1

δ2∇c2

)
+

(
δ1c1∇V1

δ2c2∇V2

))
+

1
ε

− 1
c∗1

e
V1−V2

2 1
c∗2

e
V2−V1

2

1
c∗1

e
V1−V2

2 −
1
c∗2

e
V2−V1

2

(c1

c2

)
,

where the new stationary solution is c∗,V = (c∗,V1 , c∗,V2 ) . In the potential-free situation (i.e. V =

const ), we recover the reaction-diffusion system (RDS).

EDP-convergence provides an effective gradient system, where the effective dissipation potential

consists again of two terms ℛ∗eff = ℛ∗diff+χ{ξ1=ξ2} , where the first term describes the diffusion of

the species, and the second term provides a coupling of the forces (or chemical potentials), which

defines the linear slow manifold. Similar to the space-independent situation, the effective gradient

system can also be equivalently described using coarse-grained slow variables ĉ = c1 + c2 such

that 9(ĉ) = (c1, c2) , and the coarse-grained state space is given by Q̂ = Prob(�) . The coarse-

grained energy functional and dissipation potential are defined by

ℛ̂∗(µ̂, ξ̂ ) =
1
2

∫
�
δ̂V
|∇ ξ̂ |2 dµ̂, ℰ̂(µ̂) =

∫
�

(
log µ̂+ V̂

)
dµ̂,

where the mixed space-dependent diffusion coefficient and the mixed potential are given by

δ̂V
=
δ1c∗,V1 + δ2c∗,V2

c∗,V1 + c∗,V2

, V̂ = − log
(

c∗1e−V1 + c∗2e−V2
)
,
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respectively. The coarse-grained evolution equation is a scalar drift-diffusion equation of the form

˙̂c = −div

(
δ̂V ĉ∇

(
−
δℰ̂
δµ̂

))
= div

(
δ̂V
∇ ĉ + δ̂V ĉ∇ V̂

)
.

In the potential-free case V = const , we derive classical results for the PDE (partial differential

equation) system [1]. In addition, EDP-convergence shows that the effective model can be derived

in a consistent structural manner.

Conclusions and outlook

EDP-convergence provides a thermodynamical consistent way to derive effective gradient systems

for multi-scale problems. Advantageously, the derived evolutionary systems satisfy the desired

physical principles. Moreover, we have seen that previously unknown physical structures are un-

covered. They provide theoretical insights in chemical reaction systems and, in this way, a better

understanding of everyday chemical and biochemical processes. Mathematically, there are several

SFB 1114

interesting research directions. The geometry on the space of probability measures that is induced

by a linear reaction diffusion system has to be explored. Moreover, the coupling to mechanical sys-

tems including explicit temperature dependence is interesting from the application point of view.

Naturally, coarse-graining is connected to numerical simulations where continuous problems are

approximated by discrete systems. Connection to discrete models will be further investigated in

collaboration with the Collaborative Research Centre 1114 Scaling Cascades in Complex Systems,

which also funded this research.
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