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1.5 Perovskite Models, Finite Volume Methods, and Painless

Simulation

Dilara Abdel, Patricio Farrell, Jürgen Fuhrmann, and Petr Vágner

The four stages of turning crystal ions into math

In 2019, perovskite solar cells (PSCs) beat classical silicon solar cells. At least in terms of effi-

Fig. 1: A raw perovskite
crystal named after the
Russian mineralogist Lev
Perovski (1792–1856)
(c) K. Nash, CC-BY 3.0,

wikipedia/Perowskit

ciency. With a sunlight-current conversion rate of over 25% , the novel PSCs can match the well-

known light blue solar cells which cover roofs all over Germany. Although PSCs continue perform-

ing better and better, they do not last very long – the perovskite material degrades too fast. How

can we improve PSC efficiency and simultaneously prevent their degradation?

Answering such a question – just as many other scientific open problems at the Weierstrass insti-

tute – involves at least four different stages, namely

Stage 1: Modeling 
Turn the open question into  

(continuous) mathematical equations

Stage 2: Discretization 
Translate the continuous model  

into a discrete model

Stage 3: Analysis 
Examine the continuous  

and discrete models from Stages 1 & 2

Stage 4: Simulation 
Solve and visualize problem  

on a computer 

Guided by this real-life question for perovskites as well as related charge transport problems, all

four stages will be highlighted in the following article. But before we turn to the math, we will briefly

explain the physical principles of semiconductors, solar cells, and PSCs.

In general, a semiconductor is a solid that conducts electric current better than an insulator but

Fig. 2: Perovskite ideal unit
cell ABX 3 . It consists of two
cations A and B as well as an
anion X; see [2]

worse than a metal. The atoms in solids are densely packed, which creates a conduction band

– a new space for electrons through which they can travel. Only the atom’s outermost, valence

electrons can enter the conduction band, and only if they are given an additional energy – the

so-called band-gap energy. In the case of metals, the band-gap energy is negligible, whereas it is

considerably large for insulators. The band gap of semiconductors lies between the two. Hence,

where can an electron in a semiconductor get the energy to enter the conduction band? There

are three main sources of energy: thermal, mechanical, and radiative. We will focus on a particular

source of the radiation – photons emitted by the sun, summarized in a generation process denoted

by Gph.

Roughly speaking, the core of a PSC consists of three parts: positively-doped semiconductor, per-

ovskite, and negatively-doped semiconductor; see Figure 3. The doping in the semiconductors

– artificially implanted positive or negative ions – alters the preference for holes and electrons.

Therefore, the positively-doped semiconductor attracts electrons, whereas the negatively-doped

semiconductor attracts holes. In between them, the perovskite, being also a semiconductor, gen-

erates the conduction electrons and valence holes. However, on top of those electrons and holes,
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Fig. 3: A three-layer device with the relevant charge carrier densities per area ( n for electrons, p
for holes, and a for anion vacancies) as well as the electric potential ψ

the perovskite also contains charged vacancies, which are not fixed to the crystalline lattice, but

migrate and affect the transport of the electrons and holes.

Perovskites form a class of crystalline solids with two cations and an anion – positively and nega-

tively charged ions. Their idealized structure, visualized in Figure 2, is equivalent to the structure

of a mineral with the same name discovered in the late 19th century. In reality, crystal defects

occur that dynamically appear and reappear. They leave void spaces, called vacancies, within the

crystal. For example, an ion next to a defect-caused vacancy can take advantage of the void space

and occupy it, leaving a vacancy in its formerly occupied place. Even though the perovskites are

solids, their microscopic behavior is similar to quicksands. This permanently changing crystalline

structure affects the conduction electrons and valence holes like a dynamic doping, and it is not

enough to consider only electrons and holes as carriers of charge. In perovskites, especially the

movement of negatively charged anions influences the transport of charge that needs to be like-

wise captured by the model. We start with Stage 1 by turning the movement of crystal ions into

mathematics.

Charge transport models for perovskites

The interaction of electrons, holes, and electric potential in a semiconductor can be described byStage 1:  
Modeling a system of partial differential equations introduced by van Roosbroeck in 1950; see [1]. We use

this model to describe the doped transport layers; see Figure 3. As exposed in the Introduction,

within PSCs, the moving anions in the perovskite influence the device behavior. To capture this

influence, we describe the movement of anion vacancies – resulting in electrons n , holes p , and

anion vacancies a as charge carriers. Their densities are denoted by nα , α = n, p, a . Within

the perovskite layer, the semiconductor device equations (1a)–(1c) are extended by an additional

equation (1d):

Fig. 4: Statistics functions

−∇ · (εs∇ψ) = q
(

n p − nn + na − C
)
, (1a)

∂t nn −
1
q
∇ · jn = Gph − R(nn, n p), (1b)

∂t n p +
1
q
∇ · jp = Gph − R(nn, n p), (1c)

∂t na +
1
q
∇ · ja = 0, (1d)

jα = −qzα
(

Dα∇nα + zαµαnα∇ψ
)
, (1e)
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where εs denotes the dielectric permittivity, q the elementary charge, and C a background charge

due to cation vacancies of the perovskite. The right-hand sides of (1b), (1c) are given by a gener-

ation Gph , portraying the illumination by the sun, and present recombination processes summa-

rized in R . Within the electric current jα , we have the charge number zα , the diffusion coefficient

Dα , and the mobility µα . The density of charge carriers can be related to the chemical potential

ηα via [1]

nα = Nαℱα(ηα), α = n, p, a,

where Nα denotes the effective density of states, and ℱα a so-called statistics function. In many

cases, we can choose the Fermi–Dirac integral of order one-half F1/2(η) =
2
π

∫
∞

0
ξ

1
2

exp(ξ−η)+1 dξ for

electrons and holes. As opposed to F1/2 and its usual Boltzmann approximation F1
2
(η) ≈ exp(η)

valid for small η , the statistics function F−1(η) =
1

exp(−η)+1 is always less than one; see Figure 4.

Thus, it is well suited to the limited maximum concentration of the anion vacancies in perovskites.

As an extension, the charge transport model can be supplemented with further surface effects

taking place between two different materials; see Figure 3.

Physics-preserving finite volume discretization

The continuous model (1) is analytically tractable only in special, simplified cases. Therefore, to Stages 2 & 3:  
Discret. & Analysis simulate a realistic PSC, (1) will be approximated with a system of ordinary differential equations

(ODEs), which we further solve using a computer. In particular, the ODEs are generated using the

finite volume method [1] so that the system preserves physical properties of the PSC model. This

method subdivides a computational domain � ⊂ Rd , d = 1,2,3 , into a finite number N of

control volumes ωK , each associated with a node xK ∈ ωK ; see Figure 5. For a given physical

quantity, like, e.g., the electron density nn , we use nn,K , nn,L , to denote its value at node xK ,

xL , respectively.

Furthermore, the system of partial differential equations is integrated over each control volume

ωK , using Gauss’s theorem and one-point quadrature rules. For example, the discrete counterpart

of the electron mass balance (1b) reads

Fig. 5: Two neighboring
control volumes

|ωK |∂t nn,K −
1
q

∑
ωL∈𝒩 (ωK )

|∂ωK ∩ ∂ωL | jn;K ,L = |ωK |
(

G K − R(nn,K , n p,K )
)
,

where 𝒩 (ωK ) denotes the set of control volumes neighboring ωK . Here, jn;K ,L approximates

the projected flux jn ·νK ,L across the interface ∂ωK ∩∂ωL , with normal vector 𝜈K ,L . This system

of ODEs can be further discretized in time, e.g., by the implicit Euler method.

There are now several ways to adequately approximate the flux. For example, there exists the con-

venient excess chemical potential scheme [3, 4, 5], which extends the drift part in (1e) by the

excess chemical potential, µex
α = logℱα(ηα)− ηα . The discrete flux reads

jα;K ,L = −
µαNαkB T

zα(xL − xK )

(
B(−Qα;K ,L )ℱα

(
ηα;L

)
− B

(
Qα;K ,L

)
ℱα

(
ηα;K

))
, (2)
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where B(ξ) = ξ/(eξ − 1) is the Bernoulli function and

Qα;K ,L = zα
q(ψL − ψk)

kB T
+ (ηα;L − ηα,K )− log

ℱα(ηα;L )
ℱα(ηα;K )

.

Similar discretization schemes in the unipolar (single charged species with background charge)

case and in the electrolyte case, where different charged quantities compete for the same space

leading to a joint statistics distribution similar to the Fermi–Dirac integral of order −1 have been

analyzed in [4, 5]. The discrete fluxes (2) lump the electrostatic force and the gradients of the

excess chemical potential into a joint convective force. The resulting discrete system exactly con-

serves charge balances, both locally and globally. Moreover, the concentrations, given as the solu-

tion of the discrete system, will stay nonnegative during the evolution, and – in the case of statis-

tics equal to Fermi–Dirac integral of order −1 – limited by the available amount of lattice sites. In

addition, the discrete solutions relax to the steady state solution; see Figure 6. Results obtained

for the special case of electrolytes with ion volume constraints [4, 5] suggest that also for the dis-

crete perovskite model the relative free energy of the discrete solutions along a trajectory decays,

and the solution of the discrete system is well defined, exists, and converges weakly to a solution

of the continuous problem.

Fig. 6: Approach towards the steady state solution for a three layer PSC device. The error between
transient and steady state solution for three configurations are depicted: without mobile ions, with
mobile ions & with mobile ions and surface recombination as further surface effect; see Figure 3.

Painless simulation using automatic differentiationStage 4:  
Simulation 

Fig. 7: Simulation of a
forward scan protocol of a
PSC device with additional
surface effects

In this section, we explain automatic differentiation and how we leverage it to solve the discrete

systems. Solving a large system of nonlinear equations often relies on Newton’s method, which in

each of its iterations requires the assembly of the Jacobi matrix – the matrix of partial derivatives –

of the nonlinear operator. Calculating the partial derivatives and implementing them into program

code is a straightforward but tedious and error-prone task which can be automated.

Forward mode automatic differentiation allows to evaluate a nonlinear function such that both its

value and its derivative are obtained at once. A straightforward implementation is based on dual

numbers D defined by extending the set of real numbers R . Similar to introducing the imaginary

unit i with i2
= −1 to define the complex numbers, one introduces a special number ε to define

the set of dual numbers as D = {a + bε | a, b ∈ R} . With positioning ε2
= 0 , the evaluation of a
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polynomial p(x) =
∑n

i=0 pi x i on a dual number a + ε yields

p(a + ε) =
n∑

i=0

pi ai
+

n∑
i=1

i pi ai−1ε = p(a)+ p′(a)ε.

This fact can be generalized to differentiable functions of several variables and to multivariate

dual numbers, allowing for the calculation of partial derivatives. The Julia computer language via

the package ForwardDiff.jl provides an easily accessible implementation of dual number

arithmetic helping to evaluate nonlinear functions along with their derivatives.

For implementing the Voronoi finite volume discretization as described above, we develop the

Julia package VoronoiFVM.jl. It builds upon the experience available at WIAS on the imple-

mentation of the method [1]. It allows to describe discretizations of rather general nonlinear mul-

tiphysics reaction-diffusion-convection systems via reaction terms, flux functions like (2), and ca-

pacity terms. These constitutive functions are evaluated at discretization nodes and control vol-

ume interfaces using dual number arithmetic. The resulting local contributions are assembled into

the residual vector of the discretized system and a sparse matrix representation of its Jacobi ma-

trix. All computational results shown in this contribution and in refererences [2]–[6] have been

obtained using this package.

Automatic calculation of Jacobians for discretized nonlinear systems of partial differential equa-

Fig. 8: Experimental result
(markers) and fitted
numerical simulation (solid
lines) of an impedance
spectrum of an YSZ device at
850 ◦C [6]

tions opens further computational possibilities. These include the utilization of efficient higher-

order time discretization methods readily available in Julia via the package Differential-

Equations.jl. The Jacobi matrix evaluated at the steady state of a nonlinear system with an

added frequency-dependent complex diagonal matrix can be used to obtain the phase shift and

amplitude (related to the impedance) of the system response to a small periodic perturbation of

this steady state. In [6], an implementation of a charge transport model for monocrystalline yttria-

stabilized zirconia (YSZ)-based electrochemical cells in VoronoiFVM.jl has been used to fit

measurements of cyclic voltammograms and impedance spectra to parameters of the model; see

Figure 8.

We envision to include derivatives with respect to problem parameters into the automatic differen-

tiation approach that should benefit parameter identification and bifurcation analysis. Foremost,

the introduction of ion concentration limitation and further model improvements are aimed at sup-

porting the qualitative understanding of the performance and degradation issues of PSCs. Efficient

and flexible numerical implementations matching experimental measurements can verify and cal-

ibrate the model, allowing to optimize geometry and materials of PSCs in future research.

References

[1] P. FARRELL, N. ROTUNDO, D.H. DOAN, M. KANTNER, J. FUHRMANN, TH. KOPRUCKI, Chapter 50: Numer-

ical Methods for Drift-Diffusion Models, in: J. Piprek, ed., Handbook of Optoelectronic Device

Modeling and Simulation, 2 (2017), CRC Press, Boca Raton, pp. 733–771.

[2] D. ABDEL, P. VÁGNER, J. FUHRMANN, P. FARRELL, Modelling charge transport in perovskite

solar cells: Potential-based and limiting ion depletion, Electrochim. Acta, 390 (2021),

pp. 138696/1–138696/12.

Annual Research Report 2021

https://github.com/JuliaDiff/ForwardDiff.jl
https://gitjub.com/j-fu/VoronoiFVM.jl


38 1 Scientific Highlights

[3] D. ABDEL, P. FARRELL, J. FUHRMANN, Assessing the quality of the excess chemical potential

flux scheme for degenerate semiconductor device simulation, Opt. Quantum Electron., 53:3

(2021), pp. 163/1–163/10.

[4] C. CANCÈS, C. CHAINAIS-HILLAIRET, J. FUHRMANN, B. GAUDEUL, A numerical-analysis-focused com-

parison of several finite volume schemes for a unipolar degenerate drift-diffusion model, IMA

J. Numer. Anal., 41:1 (2021), pp. 271–314.

[5] B. GAUDEUL, J. FUHRMANN, Entropy and convergence analysis for two finite volume schemes

for a Nernst–Planck–Poisson system with ion volume constraints, Numer. Math. 151:1 (2022),

pp. 99–149.
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