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1 The Topological Parts of a Particle System
A locale X = (X,E) is a locally finite, infinite, simple, symmetric directed, connected

graph. You should think of this as the nearest neighbour lattice (Zd,Ed), also called
Euclidean lattice. Other examples include the triangular or the hexagonal lattices.

A state space S is a finite set S with a distinguished base state ∗ ∈ S. (It is a pointed
space.) You should think of this as the {0, 1} set, where 0 is the distinguished base
state (no particle).

A group G acting on X via a group action G
�

X. In the Euclidean lattice, G = Zd

is acting via translation: g.x := x+ g.

An interaction φ is a map φ : S × S → S × S satisfying the property that

ι̂ ◦ φ ◦ ι̂ ◦ φ = idS×S ,

where ι̂(s1, s2) := (s2, s1) is the exchange operator. You should think of φ as being
exactly the exchange operator ι̂. In this context, the above is trivial. In a more
general context, the above ensures that particles can switch back.

2 The Abstract Configuration Space
The space of configurations is given as SX . In the setting of the SSEP on Zd, this is

{0, 1}Zd .

The transition structure (SX ,Φ) is given by the configuration space together with
transitions (=edges) ϕ of the form

ϕ = (η, ηe)

for any configuration η ∈ SX and any edge e ∈ E in the underlying locale, where
ηe is the configuration obtained from η by applying the interaction φ to the sites
connected by e. More precisely, if e = (x, y), then ηez := ηz if z 6∈ {x, y} and

(ηex, η
e
y) := φ(ηx, ηy).
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Note that Φ can contain edges of the form (η, η). Furthermore, using the property
of the interaction φ, one shows that the graph (SX ,Φ) is symmetric! Note that
this is what we really care about. In this sense, we may also look at interactions φ
which do not satisfy this reversability property as long as the transition structure is
symmetric. An example for this are the Glauber dynamics.

In analogy with the ideas from Differential Geometry, one can view the configuration
space M = SX as a manifold. In this setting, all transitions of the form (η, ηe) ∈ Φ
represent the tangent space at the configuration η ∈ SX . In particular, we may view Φ as
the tangent bundle of the manifold (= the union of all tangent spaces).

Define the modified transition structure (SX
∗ ,Φ∗) by restricting SX to configura-

tions
SX
∗ := {η ∈ SX : ηx = ∗ except for a finite number of sites}

that are mostly “void”. Consequently, Φ∗ := Φ ∩ (SX
∗ × SX

∗ ) is the restriction to
transitions between mostly void configurations.

3 Function Spaces
For a set A, define C(A) := RA as the set of all functions A → R.

Note that for Λ ⊂ Λ′ ⊂⊂ X (finite subset)

SX
∗ C(SX

∗ )

SΛ′
 C(SΛ′

)

SΛ C(SΛ)

where the surjection is given by the restriction of a configuration and the inclusion i :
C(SΛ) ↪→ C(SX

∗ ), then, is defined via duality by

i(f)(η) = f(η|Λ).

In the following, we will identify C(SΛ) as a subset of C(SΛ′
) as of C(SX

∗ ). This sort of
identification will happen all the time and will not be stated explicitly any more. Every
time, there is an inclusion arrow, you should interpret it as an identification.

The space of local functions is given as

Cloc(S
X) :=

⋃
Λ⊂⊂X

C(SΛ) ⊆ C(SX) ∩ C(SX
∗ ).

Note that Cloc(S
X) can also be viewed as the direct limit of the family C(SΛ) with

respect to the inclusion defined before. It consists of functions that depend only on
the states at a finite number of sites.
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Note that Cloc(S
X
∗ ) ( C(SX

∗ ) as, for example,(
η 7→

∑
x∈X

xηx

)
∈ C(SX

∗ ) \ Cloc(S
X).

The space of 0-forms is simply

C0(SX
∗ ) := C(SX

∗ ).

The space of 1-forms is given by

C1(SX
∗ ) := C(Φ∗)

alt := {ω ∈ C(Φ∗) : ω(ϕ) = −ω(ϕ)},

where ϕ denotes the opposite edge: if ϕ = (η, ηe), then ϕ = (ηe, η). Note that
ϕ ∈ Φ∗ as we discussed before. This trick of only looking at alternating forms also
gets rid of edges of the form (η, η), as all 1-forms are necessarily 0 on them.
Note that

C1(SX
∗ ) ↪→ C(Φ∗) ↪→ C(E × SX

∗ ) =
∏
e∈E

C(SX
∗ ),

where we used the fact that a transition ϕ = (η, ηe) ∈ Φ∗ is uniquely determined
by the source configuration η ∈ SX

∗ and the edge e ∈ E. This allows us to view a
1-form ω as a family (ωe)e∈E of functions ωe : SX

∗ → R. More precisely, C1(SX
∗ )

corresponds to the subspace of families ω ∈
∏

e∈E C(SX
∗ ) satisfying

ωe(η
e) = −ωe(η)

ωe(η) = 0 if ηe = η

ωe(η) = ωe′(η) if ηe = ηe
′
.

Again, we can make a link with Differential Geometry. If we consider a 1-form in
coordinate form

α = f dx+ g dy + h dz,

then dx, dy and dz represent the possible different directions. Another representation
would simply to represent α as the vector (f, g, h) with f, g, h : M → R. Here, we do
the same thing: every edge e can be viewed as a direction, so that it becomes natural to
simply consider the vector (ωe)e∈E with entries for every direction.

The space Z1 of closed forms contains all 1-forms ω ∈ C1 satisfying∫
γ
ω = 0

for all closed paths, see Section 4.2 for a rigorous definition of the path integral.

We conclude by defining conserved quantities.

A conserved quantitiy is a function ξ : S → R satisfying ξ(∗) = 0 as well as the balance
equation

ξ(s1) + ξ(s2) = ξ(s′1) + ξ(s′2)

for any s1, s2 ∈ S and (s′1, s
′
2) := φ(s1, s2).
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The space of conserved quantities Consvφ(S) is the R-vector space of all conserved
quantities w.r.t. the interaction φ.
Note that Consvφ(S) ↪→ C(SX

∗ ) via the identification ξ 7→ ξX with the total con-
served quantity

ξX(η) :=
∑
x∈X

ξ(ηx).

The interaction φ is irreducibly quantified if, for any locale X, any conserved quan-
tity ξ and for any η, η′,

ξX(η) = ξX(η′) ⇒ η ↔ η′.

Note that one easily shows that ξX is constant on connected components. The
property of being irreducibly quantified ensures that the reciprocal holds true: if ξX
is constant on a set, then this set must be connected.
In the language of probability theory, this means that the associated Markov Chain
is irreducible on the connected components.

We will always assume that the interaction φ is irreducibly quantified.

4 The Naïve Cohomology
In this section, we will consider the “natural” cohomology associated to the complex

0 C0 C1 0,∂0

where the differential ∂0 is very naturally defined as

∂0f = (∇ef)e∈E where ∇ef(η) := f(ηe)− f(η)

is the discrete gradient along the edge e. More precisely, the cohomology is defined as
usual through

H0
naive = ker(∂0) and H1

naive :=
C1
�∂0(C0).

4.1 The Algebraic Approach

You can skip this part as it is only of peripheral interest. Here, I will only discuss how
we obtain the above cohomology from the associated homology. It doesn’t add to the
discussion (in my opinion).

It appears that the complex we should look at is given by

0 C0 C1 0,
∂1

where
C0 := Z[SX

∗ ] and C1 := Z[Φ∗]
alt := Z[Φ∗]�ϕ = ϕ
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are the spaces consisting of (finite) formal sums with coefficients in Z. For C1, we quotient
out formal sums which are equal to their reversed sum in which all transitions are reversed.
For example, the formal sum

ϕ− ϕ = 0.

Similarly, loops of the form (η, η) will also be identified with 0. The differential ∂1, then,
is defined through

∂1ϕ = ηe − η

for any transition ϕ = (η, ηe) ∈ Φ∗, and continued to all of C1 by linearity.
Then, the associated cocomplex is given by

0 C0 C1 0,∂0

where

C0 := HomZ(C0;R) ∼= C(SX
∗ ) and C1 := HomZ(C1;R) ∼= C(Φ∗)

alt

which corresponds to the complex that we defined at the very beginning of the section.
Here, the first isomorphism is given by

C(SX
∗ ) 3 f 7→ F ∈ C0, F

(
n∑

i=1

niηi

)
:=

n∑
i=1

nif(ηi)

and similarly for the second.
The differential ∂0 is defined through the duality relationship ∂0f := f ◦∂1 which gives

indeed
∂0f

(
(η, ηe)

)
:= f

(
∂1(η, η

e)
)
= f(ηe − η) = f(ηe)− f(η) = ∇ef(η)

as we expected.

4.2 Studying the Naïve Cohomology

From now on, we will simply write ∂ instead of ∂0.

The 0-th cohomology H0
naive is easily computable. Recall that

H0
naive = ker ∂.

Clearly, this is the space of functions f : SX
∗ → R that are constant on every connected

component of (SX
∗ ,Φ∗). In particular,

dimH0
naive = #connected components.

Already in the simplest case of exclusion processes on (Zd,Ed), this number is infinite as the
connected components are in bijection with the number of particles in the configuration.

This can be generalized in the following way. First, recall that we identify conserved
quantities ξ with the associated functions

ξX(η) :=
∑
x∈X

ξ(ηx).
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One easily verifies that ξX is constant on every connected component of (SX
∗ ,Φ∗), yielding

Consvφ(S) H0
naive.

However, the right-hand side must be much larger, as it contains also functions like (ξX)2

if ξX is a conserved quantity. To get an explicit description of H0
naive in terms of the

conserved quantities, suppose that dimConsvφ(S) = cφ and choose a basis ξ1, . . . , ξc
φ .

Define the function

ξX : SX
∗ → Rcφ , η 7→

(
ξ1X(η), . . . , ξc

φ

X (η)
)
.

This map associated to a configuration η the values of the conserved quantities for the
configuration η. In particular, if η ↔ η′, then

ξX(η) = ξX(η′).

Since we assumed that the interaction is irreducibly quantified, the converse holds true: if
ξX(η) = ξX(η′), then η and η′ are in the same connected component. Hence, the connected
components corresponds bijectively with the elements of the set

M := ξX(SX
∗ ).

Note that M has the structure of a monoid w.r.t. the usual addition on Rcφ . Indeed, for
two configurations η, η′ ∈ SX

∗ , we can easily construct a configuration η′′ such that

ξX(η′′) = ξX(η) + ξX(η′).

To do so, let Λ and Λ′ be two finite sets containing all nonempty sites of η and η′ respec-
tively. Choose any injection i : Λ′ ↪→ X \Λ and define η′′x := ηx if x ∈ Λ, η′′i(x) := η′x for all
x ∈ Λ′ and η′′x = ∗ otherwise.

In particular, if there is at least one conserved quantity (cφ ≥ 1), the monoid M
contains at least a copy of N, implying that

dimH0
naive = +∞.

If no quantity is conserved, then the transition structure is connected and dimH0
naive = 1.

The 1st cohomology H1
naive , then, encodes information on the “holes” in the transition

structure. Recall that
H1

naive :=
C1
�∂(C0).

To analyse H1
naive, we first give an explicit description of the exact forms ∂(C0). Along a

path γ = (ϕ1, . . . , ϕn), define the path integral∫
γ
ω :=

n∑
i=1

ω(ϕi).

We say that a form ω is closed if ∫
γ
ω = 0

for all closed paths γ. Write Z1 ⊆ C1 for the space of all closed forms. Similarly to the
continuous case, one can show

6



Proposition 4.1. One has
∂(C0) = Z1,

i.e. a form is exact iff it is closed.

Proof. Clearly, if ω = ∂f and γ is a path from η to η′, then∫
γ
ω = f(η′)− f(η).

In particular, if γ is closed, the integral vanishes and we may conclude that ω is closed.
Conversely, if ω is closed, choose some η0 for every connected component. Then, for

all η ↔ η0, set
f(η) :=

∫
η0→η

ω

for any path η0 → η. Since ω is closed, this integral does not depend on the choice of the
path. For any transition ϕ = (η, η′), we know that η and η′ are in the same connected
component. So f(η) and f(η′) are defined w.r.t. the same η0. Consider some path η0 → η,
then

∂f(ϕ) = f(η′)− f(η) =

∫
(η0→η,ϕ)

ω −
∫
η0→η

ω = ω(ϕ).

This proves that ω is exact.

In particular, to find elements in H1
naive, it suffices to find forms that are not closed.

Consider the example of SSEP. For every x ∈ X, define the configuration δx ∈ SX
∗ that

places a particle at site x and nothing at all the other sites. Denote by δe = (δx, δx+e1) the
transition moving the particle along the edge e = (x, x+ e1). We may define a differential
form ω by

ω(δe) = 1 = −ω(δe)

and 0 otherwise. As soon as X = Zd has dimension d ≥ 2, we can go around in circles.
More precisely, there is a path γ : (x, x+e1), (x+e1, x+e1+e2), (x+e1+e2, x+e2), (x+e2, x).
However, integrating the above form along this path gives∫

γ
ω = ω(η, ηe) = 1 6= 0.

In particular, ω is not exact. Now, note that we can define such a differential form for
every edge e ∈ E and these forms define different classes in H1

naive, yielding

dimH1
naive = +∞

as soon as d ≥ 2. Somehow, the first cohomolgy reflects on the number of holes in the
transition structure. And we have shown that every hole in the locale X leads to a hole
in the transition structure.
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5 The Uniform Cohomology

5.1 Some More Definitions

The problem with the naïve cohomology is that there are too many badly behaved func-
tions. For example, although (ξX)2 is, strictly speaking, a conserved quantity, we know
from experience that it doesn’t matter to us. One of its “bad” properties is the long range
correlation it exhibits, as

(ξX(η))2 =
∑

x,y∈X
ηxηy.

The idea, then, is to discard all functions that have long range correlations. To make this
rigorous, we first need to define what we want to understand under “correlations”. Note
that, classically, correlations is of the form

∏
x∈Λ ηx for a finite subset Λ ⊂⊂ X. This leads

to the definition of Λ-correlations as the set

CΛ(S
X) := {f ∈ C(SΛ) : f(η) = 0 as soon as there is x ∈ Λ with ηx = ∗}

of functions that behave like a product if the base state was 0. To isolate short range
correlations, we will use the map

ιΛ : C(SX
∗ ) −→ C(SX

∗ ), ιΛf(η) := f(η|Λ ∪ ?|Λc),

where ? ∈ SX
∗ denotes the base configuration (∗)x∈X . If f is a Λ′-correlation with Λ′ 6⊆ Λ,

this implies
ιΛf ≡ 0.

Furthermore, note that ιΛιΛ
′
= ιΛ∩Λ

′ .

Proposition 5.1 (Proposition 3.3). For any f ∈ C(SX
∗ ), there exists a unique decompo-

sition
f =

∑
Λ⊂⊂X

fΛ

such that fΛ ∈ CΛ(S
X).

Hence, to discard long range correlations, we define

the space Cunif (S
X) of uniform functions as those functions f ∈ C(SX

∗ ) for which
the correlation decomposition is given by

f =
∑

Λ⊂⊂X
diamΛ≤R

fΛ

for some finite R.

the space C0
unif (S

X) of normalized uniform functions as the subset of functions f ∈
Cunif (S

X) such that
f(?) = 0.

These should be thought of as mean zero functions.
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To describe the cohomology, we need a suitable analogue for 1-forms. Recall that

C1(SX
∗ ) ↪→

∏
e∈E

C(SX
∗ ).

This leads to the definition of

the space C1
unif (S

X) of uniform 1-forms as the union

C1
unif (S

X) :=
⋃
R>0

C1
R(S

X),

where
C1
R(S

X) := C1(SX
∗ ) ∩

∏
e∈E

C(SB(e,R))

and B(e,R) is the R-ball around the two vertices connected by e,

the space Z1
unif (S

X) of closed uniform forms as

Z1
unif (S

X) := Z1(SX
∗ ) ∩ C1

unif (S
X).

5.2 The Uniform Cohomology

The new complex, then, is given by

0 C0
unif Z1

unif 0,∂

where we use that ∂ does indeed map uniform functions to uniform forms. Furthermore,
we have restricted ourselves directly to closed forms as non-closed forms cannot be exact.
The fact that we only consider normalized uniform functions stems from the fact that
we want to give special attention to the base state for which conserved quantities should
vanish. In this sense, we are considering a cohomology of the pointed space (SX , ?).

As usual, the cohomology is defined as

H0
unif := ker ∂ and H1

unif := Z1
unif�∂(C0

unif )
.

Theorem 5.2 (Theorem 5.8). Suppose that the interaction φ is irreducibly quantified and
that the locale is infinite and transferable (i.e. if I cut out a ball, the complement stays
connected). Then,

H0
unif

∼= Consvφ(S) and H1
unif = {0}.

In particular, a uniform form is exact iff it is closed.

The Theorem is equivalent to showing that the short sequence

0 Consvφ(S) C0
unif Z1

unif 0∂
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is exact. The injection Consvφ(S) ↪→ C0
unif ∩ ker ∂ follows from the fact that conserved

quantities do not have cross-correlations as

ξX(η) =
∑
x∈X

ξ(ηx)

and ξX(?) = 0 by definition. It is harder to see why every element in the kernel necessarily
is a conserved quantity. This is uses that X is infinite and that the interaction is irreducibly
quantified.

The next step is to show that ∂ is indeed surjective. First, notice that every uniform
form ω can be written as

ω = ∂f

for some f ∈ C(SX
∗ ) as we have seen before. It remains to show that f is uniform. This

proof is the most technical one of the paper and uses quite some algebra. At this point,
we need that the locale is transferable.

5.3 Towards Invariant Forms

At the moment, we have considered all (uniform) functions, which gave us the short exact
sequence

0 Consvφ(S) C0
unif Z1

unif 0∂

However, we are interested in the invariant functions under the group action G �X.
Note that this action induces group actions on the configuration space and the different
function spaces. For example,

(g.η)x := ηg.x and (g.f)(η) := f(g.η).

For a space V , write V G := {v ∈ V : g.v = v for all g ∈ G} for the invariant subspace.
As

g.ξX(η) =
∑
x∈X

ξ(ηg.x) =
∑
x∈X

ξ(ηx) = ξX(η),

one has (
Consvφ(S)

)G
= Consvφ(S).

Proposition 5.3 (Lemma 5.15). The space
(
C0
unif

)G
of shift-invariant normalized uni-

form functions consists of functions

F =
∑
g∈G

g.f

for some f ∈ Cloc(S
X).
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If we write Hk(G,V ) for the k-th group cohomology of V (to be defined later), then
the short exact sequence from before induces the long exact sequence

0 Consvφ(S)
(
C0
unif

)G (
Z1
unif

)G

H1(G,Consvφ(S)) H1(G,C0
unif ) · · ·

∂

δ

Now, write C :=
(
Z1
unif

)G
and E := ∂

((
C0
unif

)G)
for the closed and exact uniform forms

respectively. Since the above implies that E = ker δ, we obtain the exact sequence

0 E C H1(G,Consvφ(S)).δ

If we can show that δ is surjective, this would yield the short exact sequence

0 E C H1(G,Consvφ(S)) 0δ

and thus
H1(G,Consvφ(S)) ∼= C�E .

Under the (technical) assumption that δ has a section, we then obtain the decomposition

C ∼= E ⊕H1(G,Consvφ(S)).

Finally, if G is abelian and free of rank d, then

H1(G,Consvφ(S)) ∼=
d⊕

i=1

Consvφ(S)

and thus

C ∼= E ⊕
d⊕

i=1

Consvφ(S).
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