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1 Generator Magic (Heuristics)
Consider a Markov Process X on state space S with generator A (and domain D(A) ⊆
Cb(S)). Then, for any f ∈ D(A),

Mf
t := f(Xt)− f(X0)−

∫ t

0
(Af)(Xs) ds (1)

is a mean-zero martingale with quadratic variation

[Mf ]t :=

∫ t

0

(
A(f2)− 2fAf

)
(Xs) ds.

Conversely, under some technical conditions, if a process X satisfies (1) for all f ∈
D(A), then X is a strong Markov Process with generator A. That has the following con-
sequence:

Theorem 1.1 (Handwaving [EthKur86]). Consider Markov Processes XN with generators
AN . Suppose that

i) The sequence (XN )N is tight (so that we can extract a convergent subsequence).

ii) The generators AN → A converge in a suitable way.

iii) Many technical conditions...

Then, XN → X in distribution to the Markov Process X with generator A.

Furthermore, if the quadratic variation vanishes in the limit, the limiting process
is deterministic. In this case, the above formulation is nothing else than the weak
formulation of PDEs of the type

∂tρt = Aρt,

where the test functions f = fG : L2(T) → R usually take the form

fG(ρ) := 〈ρ,G〉 :=
∫
T
ρ(u)G(u) du
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for some G : T → R smooth enough. In the case of the heat equation (A = ∆), the action
of the generator is

∆fG := f∆G

and the weak formulation becomes

0 = 〈ρt, G〉 − 〈ρ0, G〉 −
∫ t

0
〈ρs,∆G〉 ds.

Note that usually the test functions are time dependent (to prove unique-
ness of the solution). That would add a term

∫ t
0 (∂sfs)(ρs) ds or

∫ t
0 〈ρs, ∂sGs〉 ds

to the formulations. In our case, this additional term does not make any
difference, so I don’t mention it for simplicity!

2 The Symmetric Simple Exclusion Process (SSEP)
Everything will be defined on the torus for simplicity: TN := Z/(NZ) and T = R/Z. The
exclusion processes take values in the space of all particle configurations ΩN := {0, 1}TN .

We then consider the Markov process η := (ηNt )t≥0 with values in ΩN , started in µN ,
with generator

LNf(η) :=
1

2

∑
x∈TN

(
ηx(1− ηx+1) ·

(
f(ηx,x+1)− f(η)

)
+ ηx(1− ηx−1) ·

(
f(ηx−1,x)− f(η)

))
=

1

2

∑
x∈TN

(
f(ηx,x+1)− f(η)

)
.

We expect the limit ρ to be deterministic. (One can easily show that the
quadratic variation vanishes.) This leads us to the ansatz ρt(x/N) ≈ ρNt (x) :=
E[ηNt (x)]. Hence, we want to compute

∂tρ
N
t (x) = E[LNηt(x)] = E

[
1

2
·
(
ηt(x+ 1) + ηt(x− 1)− 2ηt(x)

)]
=

1

2
·∆NρNt (x),

where ∆N is the discrete Laplacian on TN . Since, at least heuristically via parabolic
scaling,

N2∆N −→ ∆,

we might expect that the sped-up process (ηNN2t)t≥0 converges to the solution of the heat
equation

∂tρt =
1

2
∆ρt.

More rigorously: We are interested in test functions

〈ρt, G〉 =
∫
T
ρt(u)G(u) du ≈

∑
x∈TN

ρNN2t(x)G
( x

N

)
≈ 〈πN

t , G〉,
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where
πN
t :=

1

N

∑
x∈TN

ηN2t(x)δx/N

is the rescaled empirical measure process. Then, πN is a Markov process with generator
(using the same symbol)

N2LN 〈πN , G〉 = N2
∑
x∈TN

(
LNηx

)
·G

( x

N

)
=

N2

2

∑
x∈TN

∆NηN (x) ·G
( x

N

)
=

〈
πN ,

1

2
(N2∆N )G

〉
.

Note that we performed two summations by parts to shift the Laplacian
from η to the test function G.

We conclude that

MG,N
t := 〈πN

t , G〉 − 〈πN
0 , G〉 −

∫ t

0

〈
πN
s ,

1

2
∆NG

〉
ds

is a mean-zero martingale. If πN −→ π in distribution, then these quantities converge to

〈πt, G〉 − 〈π0, G〉 −
∫ t

0

〈
πs,

1

2
∆G

〉
ds.

Furthermore, one shows that MG,N converges to 0 and that, necessarily, π( dx) = ρ(x) dx
for some ρ ∈ L1(T).

This gives that ρ satisfies
∂tρt =

1

2
∆ρ

weakly.

The above covers everything that was discussed during the talk on May 09. The rest will
be covered during the first session of the minicourse on May 11. It is not necessary to

read it beforehand and is meant as an overview of the motivation for the rest of the
minicourse.
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3 Gradient Models
One way of writing the generator from the SSEP is

LNηx = Jx−1,x − Jx,x+1,

where Jx,x+1 is the current of particles flowing from x to x+ 1, given by

Jx,x+1 = (flux from x to x+ 1)− (flux from x+ 1 to x)

= ηx(1− ηx+1)− ηx+1(1− ηx)

= ηx − ηx+1 = −∇Nηx.

This decomposition into currents is often possible. This allows us to do a summation
by parts via

N2LN 〈πN , G〉 = N2
∑
x∈TN

(LNηx) ·G
( x

N

)
= N2

∑
x∈TN

(
Jx−1,x − Jx,x+1

)
·G

( x

N

)
=

∑
x∈TN

NJx,x+1 ·N∇NG
( x

N

)
,

where ∇NG
(
x
N

)
= G

(
x+1
N

)
−G

(
x
N

)
is the discrete derivative.

To proceed as before, we need to perform a second summation by parts. In analogy
to the SSEP for which Jx,x+1 = −∇Nηx, we assume the gradient condition for the current:

Jx,x+1 = h(ηx)− h(ηx+1).

Then, we get

N2LN 〈π,G〉 =
∑
x∈TN

N
(
h(ηx)− h(ηx+1)

)
·N∇NG

( x

N

)
=

∑
x∈TN

h(ηx) ·N2∆NG
( x

N

)
and we might expect the limiting equation to be

∂tρt = ∆
(
h(ρt)

)
.

Closing the Equation: There is one technical issue to overcome. In the present form,
we cannot use the weak convergence of πN as the above is not (necessarily) a continuous
functional of πN . The usual approach is to replace ηx by the average

ηεNx :=
1

2εN

∑
|y|≤εN

ηx+y

over a macroscopic box of size ε. The advantage is that we may write

ηεNx = 〈πN , ιxε 〉
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as a continuous functional of π, where ιxε := 1
2ε1[x−ε,x+ε]. This implies

N2LN 〈πN , G〉 ≈
∑
x∈TN

h
(
〈πN , ιxε 〉

)
·N2∆NG

( x

N

)
which converges in N to∫

T
h

(
1

2ε

∫ u+ε

u−ε
ρ(v) dv

)
·∆G(u) du −→

ε↓0

∫
T
h(ρ(u)) ·∆G(u) du.

Although this part of the proof is not trivial and the so-called Replacement
Lemmas usually take up a big part of the overall proof, these will not be the
main point of this talk. So from now on, we will more or less ignore this
technicality and simply assume that everything works as just mentioned.

4 Examples Non-Gradient Models
Let us modify the Simple Symmetric Exclusion Process by changing the jumping rate from
one site to another by a factor that may depend on the surrounding sites:

GNf(η) :=
∑
x∈TN

∑
z=±1

c(η;x) · ηx(1− ηx+z) ·
(
f(ηx,z)− f(η)

)
,

where c(η;x) = c(τxη) is a translationally invariant function depending on a finite number
of values of η around x. This model is considered in [VarYau97].

As before, we can define the current

Jx,x+1 = c(η;x) · ηx(1− ηx+1)− c(η;x+ 1)ηx+1(1− ηx)

yielding the current representation

GNηx = Jx−1,x − Jx,x+1

and thus
N2GN 〈πN , G〉 =

∑
x∈TN

NJx,x+1 ·N∇NG
( x

N

)
.

The problem is that J does not satisfy the gradient condition as soon as c is not
constant!

Heuristically, we might expect that

NJx,x+1 = Nc(η;x)
(
ηx − ηx+1

)
+Nηx(1− ηx+1)

(
c(η;x)− c(η;x+ 1)

)
≈ −c(ρ(x))∇ρ(x) + ρ(x)(1− ρ(x))∇c(ρ(x)).

In other words, we expect to see a limiting equation of the form

∂tρt(x) = ∇ ·
(
D(ρt(x))∇ρt(x)

)
for some diffusion coefficient D.
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The problem is that we do not have any estimates that would allow us
to deduce this type of convergence of NJ . This is the object of the Non-
Gradient Method: In what sense can NJ be replaced by a gradient (rescaled
by a diffusion coefficient)?

A second example can be obtained by introducing a second species. In this context, a
site can be in one of three states: 0 (no particle), 1 (particle of type +) or −1 (particle
of type −). Then, the generator of the simply symmetric multi-species exclusion process
becomes

HNf(η) :=
∑
x∈TN

∑
z=±1

|ηx|
(
1− |ηx+z|

)
·
(
f(ηx,y)− f(η)

)
,

where |ηx| = 1 iff there is a particle at site x. The process is uniquely characterised by
the pair (|η|, η+), where |η| tracks where the particles are (it is a standard SSEP!) and η+

tracks only the particles of type +. In particular, that means that |η| can be described by
the gradient methods. Let us concentrate on η+. One easily checks that

HNη+x = J+
x−1,x − J+

x,x+1,

where the current of positive particles is given by

J+
x,x+1 = η+x

(
1− |ηx+1|

)
−
(
1− |ηx|

)
η+x+1

which is not in gradient form. For details on this particular model, see [Éri22] for an
introduction and [Qua92] for a full treatment.

References
[EthKur86] Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Characterization

and Convergence. Wiley series in probability and mathematical statistics.
Wiley, 1986.

[KipLan98] Claude Kipnis and Claudio Landim. Scaling Limits of Interacting Particle
Systems -. Berlin Heidelberg: Springer Science and Business Media, 1998.
isbn: 978-3-540-64913-7.

[Qua92] Jeremy Quastel. “Diffusion of color in the simple exclusion process”. In:
Communications on Pure and Applied Mathematics 45.6 (1992), pp. 623–
679. doi: https://doi.org/10.1002/cpa.3160450602. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160450602. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160450602.

[Éri22] “Varadhan’s method for non gradient diffusive hydrodynamics”. Mini-Course.
2022. url: http://chercheurs.lille.inria.fr/cerignou/contenu/NG.
pdf.

[VarYau97] S. R. S. Varadhan and Horng-Tzer Yau. “Diffusive limit of lattice gas with
mixing conditions”. In: Asian Journal of Mathematics 1 (1997), pp. 623–678.

6


