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Introduction

Introduction

» Discontinuous Galerkin (dG) methods can be viewed as
> finite element methods allowing for discontinuous discrete
functions
> finite volume methods with more than one dof per mesh cell

» Advantages of such methods include

> a high level of flexibility (choice of basis functions, nonmatching
meshes, variable approximation order, local time stepping)
> the possibility to enforce locally basic conservation principles

» The main drawback is higher computational costs w.r.t. stabilized
FE or FV on a fixed mesh
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Introduction

A brief historical perspective |

» DG methods were introduced almost 40 years ago
» moderate impact at that time

» Vigorous development over the last decade

> numerical analysis
> range of applications

» DG-related publications/year (Source: Mathscinet)

L L L L L L L
1975 1980 1985 1990 1995 2000 2005
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Introduction

A brief historical perspective Il

First-order PDEs
» DG methods first coined for neutronics simulations [Reed & Hill '73]

» Convergence analysis for steady advection-reaction
» O(h*) L*-error estimate if polynomials of degree k are used and

exact solution is smooth enough [Lesaint & Raviart '74]
> sharper O(h**1/2) estimate [Johnson & Pitkiranta '86]

» Time-dependent conservation laws
» Runge-Kutta DG (RKDG) with slope limiter [Cockburn & Shu
'89-91]: formal accuracy in smooth regions, sharp shock resolution
> extension to multidimensional systems [Cockburn & Shu '98] and
numerous applications
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Introduction

A brief historical perspective IlI
Elliptic PDEs
» Boundary penalty methods [Nitsche '71]

> Interior penalty methods [Babuska '73, Douglas & Dupont '75,
Baker '77, Wheeler '78, Arnold '82]

» Further developments

>
>
>
>

>

>

liftings and application to NS [Bassi, Rebay et al '97]

analysis for Poisson problem [Brezzi et al '99]

mixed dG approximation [Cockburn & Shu '98]

variations on symmetry [Oden, Babugka & Baumann '98, Riviére,
Wheeler & Girault '99]

weighted averages for heterogeneous diffusion [ESZ '09, DEG '08]
locally conservative diffusive flux reconstruction [NEV '07]

» Unified analysis for Poisson problem [Arnold, Brezzi, Cockburn &
Marini '01]

» Discrete functional analysis, convergence with minimal regularity
[Di Pietro & AE '10]
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Introduction

A brief historical perspective IV

Friedrichs systems
» Introduced by Friedrichs in '58

> Linear systems of first-order PDE's endowed by symmetry and
positivity (L?-coercivity) properties

» Encompass many important examples of elliptic and hyperbolic
PDE's

> advection—reaction, diffusion(—AR), elasticity, Stokes, Maxwell in
diffusive regime, ...

» Unified analysis of dG methods based on Friedrichs systems
[AE & Guermond, '06-'08]
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Introduction

Some basic notation |

» Mesh family {7;}, of computational domain Q C R?
> shape-regularity in the usual sense
> the meshes can be nonmatching (hanging nodes); some
contact-regularity is then enforced
» for simplicity, the meshes are affine and cover Q exactly
> h: maximum mesh size

» Example of admissible mesh
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Introduction

Some basic notation I
» Broken polynomial space (k > 0)
PE(TH) = {vi € L2(Q); YT € Tpy, vi|7 € PE(T)}

> PX: polynomials in d variables of total degree < k
> PY%(75) spanned by piecewise constant functions as in FV

» No matching condition at interfaces = dof's can be taken
elementwise

» Other broken polynomial spaces can be considered, and also discrete
spaces not spanned by piecewise polynomials

> Broken Sobolev spaces H*(7;) (s > 0)

» Broken gradient (defined elementwise) V, : H'(7,) — [L%(Q)]¢
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Introduction

Some basic notation Il

» Mesh faces collected into Fj, = F} U FF (split into interfaces and
boundary faces)

» Discrete functions can be two-valued at interfaces

> Interface .7-',’; 5 F = T1N Ty, normal ng from T; to T,

» Mean values and jumps at interfaces

{e} = %(’»914-992) [e] = w1 — 2

» On the boundary, {¢} = [¢] = ¢
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Introduction

Outline

» Advection—reaction (Monday 11)

» The Laplacian (Wednesday 13)

» PDEs with diffusion (Friday 15)

» Incompressible Navier-Stokes (Wednesday 20)

» Most of the material (and much more!) can be found in a
forthcoming book:
Di Pietro & AE, Mathematical aspects of DG methods,
Springer Mathématiques et Applications, 2011
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Some topics not covered in these lectures

» Time-dependent problems

> abundant numerical techniques/recipes
> theoretical aspects are much less covered
> see [Zhang & Shu '04, Burman, AE & Fernandez '10]

» Implementation issues
> see, e.g., [Karniadakis & Spencer '99, Hesthaven & Warburton '08]

» A posteriori error analysis
> Laplacian [Becker, Hansbo & Larson '03, Karakashian & Pascal '03,
Ainsworth '07]
» advection—diffusion-reaction [AE, Stephansen & Vohralik '10]
> heat equation [AE & Vohralik '10]
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Advection-reaction

Advection-reaction

» Continuous problem

v

Abstract nonconforming error analysis

v

Centered fluxes

v

Upwind fluxes

v

The material of this section can be generalized to Friedrichs systems
[AE & Guermond '06-'08]
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Advection-reaction

Continuous problem |

> Let B € [Wh(Q)]? and p € L=(Q)
> a weaker assumption on (3 can be 8 € [L®(Q)]?, V-3 € L=(Q)

» Inflow and outflow parts of boundary 9Q2
o0*F = {x € 9Q | + B(x)n(x) > 0}
> Let f € L?(2); the model problem is

pu+B-Vu=f inl*Q)
u=0 ondQ~
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Advection-reaction

Continuous problem I

» Graph space W = {v € [%(Q) | B-Vv € L%(Q)}

v

Hilbert space with the norm |[v|, = ||v]|72q) + 13-V V[,

» Assume that 9Q~ and 9Q™ are well-separated

v

Then, there is a continuous trace operator from W onto

L*(|B-n[; 9Q) = {v is measurable on 02 | [, |3-n[v? < +oo}

v

The separation assumption cannot be circumvented to work with
traces in L2(|3-n[; 0Q)
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Advection-reaction

Continuous problem Ill

» Define on W x W the bilinear form

a(vow) = [ v+ (0wt [ (30)°ww

Q

where for x € R, x¥ = 2(|x| + x) and x® = (|x| — x)

» Assume that

HMO > 0, — %V{j > [p in Q
» This implies L2-coercivity of a on W since
a(v,v) = / (1 — %Vﬁ) v2 + %/ (Bn)v? +/ (Bn)°v?
Q oQ a0

ZMﬂwam+%/|ﬂmﬂ
oQ
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Advection-reaction

Continuous problem IV

» Weak formulation Seek u € W s.t.

a(u,w):/fw Yw e W
Q

» BCs are weakly enforced
> same trial and test spaces

» Theorem. This problem is well-posed
» [2_coercivity implies uniqueness
» existence by inf-sup argument (using L*-coercivity of a)
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Advection-reaction

Nonconforming error analysis |

» Finite-dimensional space W,
» Discrete bilinear form aj, defined on W), x W,
» Discrete problem Seek u, € W, s.t.
ah(uh, Wh) = / fwy, Yw, € W,
Q
» Nonconforming setting W, ¢ W
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Advection-reaction

Nonconforming error analysis |l

» We want to assert strong consistency by plugging the exact solution
u into ap

» This may not be possible in general for u € W; some additional
smoothness is required, say

ue Wi with W C W

» We assume that a, can be extended to Wi x W,

» Approximation error (u — uj) belongs to Wy, def Wi + W,
» We work with two norms: ||| and ||-||. both defined on W,

> the approximation error will be estimated in the |-||-norm
> the ||-|]«-norm controls the ||-||-norm
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Nonconforming error analysis Il

» Consistency (dG methods are consistent methods!)
Ywy, € W, ah(u, Wh) = / fwy,
Q
» Stability

a
Vv, € W, Ivall < sup an(Vh, wh)
wr€ Wi\ {0} ”I Wh|||

> ensures well-posedness of discrete problem
> a sufficient condition is discrete coercivity

» Boundedness

Vv € Win, Yy € Wh,  an(v, wi) S [Vl [lwall
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Advection-reaction

Nonconforming error analysis IV

» Error estimate

—wll < inf flu—
lu—unll < inf o —=yall-

» Proof. Let y, € W,

> stability, consistency, and boundedness imply

ap\up — W
lun—yoll S sup 2Ll =Y wh)

wp €W, \{0} llwall
sup an(u — yh, wh)
whpEW,\ {0} llwall
S llu =yl

> conclude using the triangle inequality
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Advection-reaction

Nonconforming error analysis V

» Recall that
— < inf —
lu—unll < it lu = yall«

> The estimate is not optimal since different norms are used

» The estimate is quasi-optimal if the upper bound has the same CV
order as the optimal bound infy, cw, ||u — ya|; otherwise, the
estimate is suboptimal
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Advection-reaction

Centered fluxes |

v

DG approximation in W, = P5(7},)
Discrete problem Seek u, € W, s.t.

v

ah(uh, Wh) = / fwy, Yw, € W,
Q

» Guidelines to design the discrete bilinear form ay,

> consistency
> discrete L2-coercivity on W,

v

Assumptions on the exact solution u

> u has possibly two-valued traces on all mesh faces
> B-ne[u] =0 on all F € Fj; (mesh fitted to possible singularities)
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Advection-reaction

Centered fluxes Il

» Step 1: Localize gradient

an(Vh, wp) = /Q[MVhWh + (BVavn)wil + > /F(ﬂ'n)thWh

Ferp
> aj, is not L?-coercive on W,

ah(Vh,Vh):/n[ﬂvthr(B-Vm)Vh]Jr ) /Fw-n)@vi

FeFb
= [ -39 i+ X [ Ao+ T [0
Q Tez,/oT Ferb F
- [w-1va) i+ =[G+ X [ e
@ FeF) F FeFp F
and the second term has no sign a priori
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Advection-reaction

Centered fluxes Il

» Step 2: Recover discrete [?-coercivity in a consistent way by setting

as! (vh, ) /[MVhWh + (B-Vavn)wp] + /(ﬁ n)° vawh

FeFp

- 3 [Bnnlim

FeF]

since [vZ] = 2[va]{va}. This yields

(mewp+z/wm

FeFp
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Advection-reaction

Centered fluxes IV

» For simplicity, assume p and (8 of order unity

» Discrete coercivity: ||vs?> < a5 (vh, vi) with

def
lvall® = llvallZagey + /F%W'Hlvﬁ

FeFp

» Boundedness: a$f (v, wy) < [[v||«]lwa]l with

WE =2+ 3 189viE+ Y e [ (uellvF?
TeT, FEF] F

» Error estimate
u—upl| < inf fJlu—
I Wl S oW, I Yall«
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Advection-reaction

Centered fluxes V

» Local polynomial approximation: Yz € H**1(7,), VT € T,

lz— 7zl T
1/2

|z = mnzllor ¢ S B Izl
hT||V(Z —mhz)|lT
where 7y, is the L2-orthogonal projection onto W,

» Convergence rate ||u — up| < b if u € H*1(T})

» Convergence for k > 1 and with suboptimal rate
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Advection-reaction

Centered fluxes VI
> Let T €Ty, let & € P5(T)

./T[(“‘V'm“hﬁ —u(BVE+ Y eT,F,/F' Or (un)E = /T fé

FeFr

with €7 F = ny-nf and the (consistent) numerical fluxes

) Bnp{un} (FeF))
¢F(un) = {(ﬁ-n)@uh (F e ]:Z:)

> £ =1 yields the usual FV formulation

/T(M*V'ﬂ)Uth Z ET,F/,:¢F(Uh):/7_f

FeFr
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Advection-reaction

Upwind fluxes |

» Strengthen discrete stability by penalizing interface jumps in a
least-squares sense [Brezzi, Marini & Siili '04]

def
an(vh, wh) = a5 (i, wh) + Su(Vh, Wh)

with (consistent) stabilization bilinear form

sh(Vh, Wh) = ) ./F."/%W'HFH[Vh]][[Wh]]

FeF)

and positive user-dependent parameter 7
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Advection-reaction

Upwind fluxes Il

» a, is consistent

> aj is coercive on Wy vy |2 < an(vh, vi) with
def
ME ™ iy + X [ 3102+ Y [ ndisnel?
Fers’F Fer”F
» Variant: boundedness on orthogonal subscales (OSS)
an(v = mnv, ) S v = muvl ol

where

Iz = Iy lE + D Ivli3om
TeT,

» Rk. With upwinding, the ||-|l.-norm is much “closer” to the
II-I,-norm
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Upwind fluxes Il

> Key technical point

/Q (v — )BTy = 3 / (v = mv)(8 — (B)7)- Ty

TeT,

SO0 v = m vl hrll VY wall e rye
TET,

S v = mavileen llwaller
TeT,

< v =mnvilsllwalls

» Convergence rate [|u — up|l, < |Ju — mpull« < W20 u € HY(T)

» Convergence for k > 0 and with quasi-optimal rate

Alexandre Ern Université Paris-Est, CERMICS
Discontinuous Galerkin methods



Advection-reaction

Upwind fluxes IV

Error estimate in the advective derivative

» Discrete stability with stronger norm

def p
IVIP = IvIZ + Y brllB-Vviit
TeT,

» Discrete inf-sup condition [Johnson & Pitkaranta '86]

bl < sup  2rlmwn)
wreW,\ {0} llwall

> |lvall» is controlled by coercivity
> advective derivative is controlled by testing with wp|T = hr(8)7-Vvj
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Advection-reaction

Upwind fluxes V

> (Full) boundedness: ap(v, wn) < ||v|f|wal with

def 1
IVIE = Il + > vz + 7 vz
TeT,

» Convergence rate ||u — up|| < h<HY/2 if u € HFY(Ty)

» Optimal estimate for advective derivative
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Advection-reaction

Upwind fluxes VI

» New numerical fluxes

Bar{un} + 5nlBuel[us]  (F € Fp)

prn) = {(ﬂn)@uh (F e 7b)

» Particular choice n =1 yields the upwind flux
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Advection-reaction

Salient points of this lecture

» Centered fluxes correspond to a basic design ensuring consistency
and discrete coercivity

» Upwinding can be interpreted as tightening discrete stability by
penalizing jumps

> Error estimates are similar to other stabilized methods with
continuous FEM
> subgrid viscosity [Guermond '99]
> continuous interior penalty of gradient jumps [Burman & Hansbo '04]
> local projection [Braack, Burman, John & Lube '07, Knobloch &
Tobiska '09]
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The Laplacian

The Laplacian

v

Model problem

» Symmetric Interior Penalty (SIP)

v

Liftings and discrete gradients

Diffusive flux reconstruction

v

v

Variations on symmetry and penalty
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The Laplacian

Model problem |

> Let f € L?(Q); seek u: Q — Rst. —Au="finQand ulpg =0

> Weak formulation: u € V < H(Q) s.t.

a(u, v) d:‘Ef/Vu-Vv: / fv  VvevV
Q Q
> u is termed the potential and 0 = —Vu the diffusive flux
» Since V-0 = f, the diffusive flux is in
H(div; Q) < {7 € [L2(Q)]7 | V-7 € L2(Q)}

Physically, the normal component of ¢ is continuous across
any interface
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The Laplacian

Model problem Il

» Since u € H}(Q), u admits a trace on each face F € F}, and

HUHZO VF e Fh

» We want to consider the normal gradient of u on each face

v

Vu € H(div; Q) only implies Vun|gr € H7Y/2(0T) for all T € 7y,
which cannot be simply localized to mesh faces

» A minimal assumption is Vun|gr € L}(OT) forall T € 7,

v

A simple sufficient condition is v € V4 e H?(T3)
» more generally, u € W>P(7;) with p>1ifd=2and p> 2 ifd =3
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The Laplacian

Model problem IlI

» Important property [Vu]-ng = 0 for all F € F}

» Proof
> Let p € (§°(Q). For all T € 7y, since u € V4,

/T(—AU)SOZ/TVU-Vw—/aT(Vu-nr)so

> Summing over T € 7, and using the weak formulation yields

> [avanee =0

FeF]

> Choose the support of ¢ intersecting a single interface and use a
density argument
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The Laplacian

SIP |

» Discrete space V, def PX(75) with k > 1
> see [Di Pietro '10] for cell-centered Galerkin methods with k =0

» Discrete bilinear form [Arnold '82]

ah(vh,wh) déf /thh-vhwh— Z /{thh}'nFllWh]]
JQ F

FeF,

- [1alTamdne+ 30 5 [ [l

FEFh FEFh
for user-dependent positive parameter 7

> ap can be extended to Vi, x Vi
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The Laplacian

SIP 1l

» Elementwise integration by parts yields

/Qth-VhW: -y /T(Av)w—i— > /BT(Vv-nT)W

TeT, TeT,

= — Z /T(Av)er Z /F{VhV}'nF[[WIl

TeT, FeF,

+ 3 [T tw)

FeF]
» This yields

an(v,w) = — Y '/;(Av)er > ./;[[vhv]]-rlF{W}

TET, FeF]

-3 '/F[[V]]{vhw}-np+ > %/FIIVIH[W]]

FeFy FeF,
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The Laplacian

SIP 11

» Discrete problem Seek u, € V), s.t.
ah(uh, Wh) = / fwy, Ywy, € Vp
Q

» The discrete problem “weakly enforces”

> —Aup,="Fforall T €7,
> [Vhus]ng =0 for all F € F}
> [ur] =0 forall F € Fy

» The SIP bilinear form is consistent
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The Laplacian

SIP IV

» Basic terminology

an(v, w) = /thv-th— > /F{vhv}-nF[[W]]

FeFy

consistency term

-3 /F[[V]]{vhw}-np+ > %L[[V]][[W]]

FeF, FeFy
symmetry term penalty term
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The Laplacian

SIP V

» Discrete stability norm: For all v € H'(75)

lef
IvIZ = 1Vav iz + VI3

with the jump seminorm

1
\Vﬁ = Z EHHV]HEZ(F)

FeFy
» |||l is a norm on H(7}) (direct verification)
» The following Poincaré inequality holds true [Brenner '03]

doo,  WeH{(Ty),  |Viieg < ollvi
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The Laplacian

SIP VI

» Bound on consistency term For all (v, w) € V4, x V4

1/2
< (Z > hF||VV|T'HFfz(F)> lwls

TeT, FEFT

> [(Owbarlul

FeF,

» Discrete trace inequality VT € 7y, VF € Fr
b 2 |allizery < Gellvallizery — Wva € P5(Th)

Cir depends on d, k, and mesh-regularity

> Hence, for all (v4, w) € Vi x Vip

> [(Vspncll

FeFy

< CtrNé/2||Vth||[L2(Q)]d|W\J
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» Discrete coercivity: Assume n > CﬁN@ Then,

an(Vi, vh) = IV avillF2 e — 2 Z /{thh}-np[[vh]] + nlval3
Fer,’F

> IVavallfe@pe — 2C Ny ||V vz el vals + nlval?
> Ganllvall®

. _ n—CNp __. 2
with Gy, = gy min(1, C3No)

» Corollary: The discrete problem is well-posed
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The Laplacian

SIP VI

» The minimal value for 7 is difficult to determine precisely because of
the presence of G,

» This can be circumvented by modifying the penalty strategy

» Discrete inf-sup stability (instead of coercivity) holds without
penalty
> in 1D, for k > 2 [Burman, AE, Mozolevski, Stamm '07]
> in 2D and 3D, for piecewise affine polynomials supplemented by
element bubbles [Burman & Stamm '08]
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The Laplacian

SIP IX

» Boundedness Y(v, wp) € Vi x Vi, an(v, wi) < ||v]«|lwa] with

def
IVIZ = IVl + Y Al Vvlirnr e
TeT,

» Error estimate [|u — up|| Sinfy,ev, lu — yall«

» Convergence rate [|u — up|| < h* if u € HY(Ty)

» optimal for the gradient
> optimal for the jumps and boundary values
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The Laplacian

SIP X

Error analysis using only the ||-||.-norm
» The ||-|l- and ||-||.-norms are uniformly equivalent on V/,
» The SIP bilinear form is coercive and bounded using only |||
» Error estimate ||u — up|l« Sinfy,cv, [lu— yall«

» Convergence rate ||u — up|l« < ¥ if u € HA(T})
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The Laplacian

SIP XI

[2-norm error estimate

» Elliptic regularity There is Coy s.t for all 1 € L2(Q), the unique
function ¢ € H}(Q) s.t. —A( = o satisfies |||l n2) < Cenll? ]| 2
> Q convex = elliptic regularity
> Assume elliptic regularity. Then,

lu = unll2@) S hllu = unll«

so that [|u — upi2(q) < W< if u € HKY(T;)
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The Laplacian

SIP XII
> Let ¢ € HY(Q) N H3(Q) be s.t. —A( = u — up; hence,

o unlfy = [ (-0 = un) = 3n(6,u — un)
» Exploiting the symmetry of aj

lu = unlf(q) = an(u — un, C)
» Owing to consistency, boundedness, affine polynomial
approximation, and elliptic regularity
llu = 2y = an(u — up, ¢ — m4()
S Mo = wnllfl¢ = mhc -

S v = unll«hliCli eezs)
S llu = unll<hllu = unll 2@

where 7} is the L?-orthogonal projection onto PL(7) C Vi,
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The Laplacian

Liftings and discrete gradients |

v

Let />0

v

For any F € Fp, rk: L2(F) — [PL(75)]? is s.t.

/ () = / (m}nre V€ [PL(T))
Q F

» rr is vector-valued, colinear to nr
» support of r- reduces to the one or two mesh elements sharing F

» Liftings were introduced by Bassi, Rebay et al ('97) in the context of
incompressible flows

» They were analyzed by Brezzi et al ('00) for the Poisson problem
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The Laplacian

Liftings and discrete gradients Il

» Main stability result For all ¢ € L?(F)

/2
() lzye < Cerhp H‘raHLZ(F)

» Proof: Use Cauchy-Schwarz and discrete trace inequality

Ik = [ He) rho) = [T
<(L/Mﬁfpx0mﬁuﬁwmﬁuz

< he el zgry % Gl PE@) e
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The Laplacian

Liftings and discrete gradients Ill

Global lifting

» For all v € HY(73)

RL(IVD) = > rk(IvD) € [PL(Tn))

FeF,

» Main stability result

1/2
IRV llz@ye < G NS vl
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The Laplacian

Liftings and discrete gradients |V

» Proof

IR DIy = X [ |2

TeT,

FeFr

> card(Fr) Y / | re(Lval) P

TeT, FeFr

maxcard (Fr) Z Z / |r,_- [[Vh]])|2

TeT, FeFr

= Np Z (%)) H[LZ(Q)]d

FeFy

IN

| A

and recall || b (IVDllizc@ye < GV ez
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The Laplacian

Liftings and discrete gradients V

Discrete gradient
» Let />0
> G} HY(Tp) — [L2(Q)]9 is s.t.
/ def /
Gh(v) = Vv = Ry([v])
» Main stability result: For all v € H(7})
1Gh(V) 2@y < (1 + CaNo)?|v]

» Discrete gradients enjoy important properties (discrete Sobolev
embedding, compactness): see 4th lecture and [Di Pietro & AE '10]
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The Laplacian

Liftings and discrete gradients VI

Reformulation of the SIP bilinear form

> Recall
an(vh, whp) = /Vth'VhWh— > /{thh}'nF[[Wh]I
Q Fer, ' F
=% [l Tamne + 3 [ [liwl
F he JF
FeFy FeFy

> Observe that for / € {k — 1, k}

> / (Yo} nr[w] = /Q Vv R([wil)

FeF,
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The Laplacian

Liftings and discrete gradients VII

» Hence,
an(Vh, wp) = /QVth'VhWh—/QVth' RL([[Wh]])—/QRL([[Vh]])'VhWh
+ 3 & [ llw]

FeFy
that is i
an(ns ) = | GH{)-G)(ws) + 34(v )
JQ
with
s ) S [l = [ R(LD) Ri(I)
Fer, ©JF Q
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The Laplacian

Liftings and discrete gradients VIII

» Discrete coercivity: For all v, € V}
an(Vh, v) > HGA(Vh)H[QLZ(Q)]d + (n — CiNa)|val3

» The reformulated SIP bilinear form is equivalent to the original one
only at the discrete level
> at the continuous level, a difference appears because liftings are
discrete objects
> the reformulated bilinear form is only weakly consistent

» The importance of discrete gradients has been recognized recently in
the context of nonlinear problems

> nonlinear elasticity [Lew et al. '04], nonlinear variational problems
[Buffa & Ortner '09, Burman & AE '08]
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The Laplacian

Liftings and discrete gradients IX

Numerical fluxes
» Let T € 75 and let £ € PX(T)

> For the exact solution (e7 F = nr-nf)
/ VuVE+ Y eT’F/ Op(u)é = / fe
T FeFr F T
with the exact flux ®r(u) = —Vung

» For the discrete solution

/TGL(Uh)-VS-i- > ET,F/Fqu(uh)gz/ng

FeFr
with the numerical flux ¢r(up) = —{Vyup}nr + ;- [us]
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The Laplacian

Diffusive flux reconstruction |

» Recall that the exact diffusive flux is 0 = —Vu
» Vio=f
> o € H(div; Q)

» We want to postprocess up so as to build a discrete vector-valued
field o, s.t.
> o4 € H(div; Q) <= the normal component of o} is continuous
across any interface
> o is an accurate approximation of o = —Vu
» V-.op is an accurate approximation of V.o = f

» Postprocessing should have a negligible cost
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The Laplacian

Diffusive flux reconstruction Il

» Diffusive flux reconstruction has been recently introduced in the
context of a posteriori error estimates

> see [Kim '07, AE, Nicaise & Vohralik '07]

» |t is also important in groundwater flow problems to reconstruct the
Darcy velocity

» For simplicity, we focus on matching simplicial meshes

» general meshes can be handled by postprocessing the diffusive flux in
a matching simplicial submesh and solving local Neumann problems
[Ern & Vohralik '09]
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The Laplacian

Diffusive flux reconstruction IlI

> Direct diffusive flux reconstruction [Bastian & Riviere '03]
> local reconstruction using neighboring values of —Vup
> projection onto Brezzi-Douglas—Marini FE space
» [%-norm estimate, no estimate on the divergence

» Scheme-oriented diffusive flux reconstruction [Kim '07, AE, Nicaise
& Vohralik '07]
> local reconstruction using dG scheme explicitly
> projection onto Raviart—Thomas—Nédélec FE space
> H(div; Q)-norm estimate
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The Laplacian

Diffusive flux reconstruction IV

» Raviart-Thomas—Nédélec FE spaces (/ > 0)
RTN,(75) = {n € H(div; Q) | YT € Tp, 7|7 € [PL(T)]? + xPL(T)}

» Examples of dof’s for / € {0,1}

> More generally, dof's are

> on each face, moments of normal components against g € lPi,,l(F)
> on each element, moments against r € [P/ "(T)]?
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The Laplacian

Diffusive flux reconstruction V

» Construction of o, € RTN,(T3) (I € {k — 1, k})

» Direct prescription of dof's
> on each face F € Fy,

[(enr)a= [ ortula  va e Ph(F)

> in each element T € 7,

/T ohr = — / i (un)r  Vre [P(T)?
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The Laplacian

Diffusive flux reconstruction VI
» V.o is an optimal approximation of f

/(v-ah)g = / fE VT €T, Ve € PLY(Th)
T T

» Proof

/T(V'Uh)f = */Tah'VSJr/aT(Uh'HT)ﬁ
= */TUh'Ver Z "TT,F/F(Uh'nF)g

FeFr
k—1
=[Gt ves 3 ene [ortue= [ 5t
T FeFr F T
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The Laplacian

Diffusive flux reconstruction VII

» [2 norm estimate
lon — olliz@pe < nllu — unll + Rose,7,

with the data oscillation term Rose,7;, = hllf — 7af || 2(q)

» This estimate is optimal if /| = k — 1 and sub-optimal if / = k
» Mixed FE with RTIN%(7)/P5(75) yield an O(h**!) [*-estimate on

the flux
» Mixed FE can often be implemented as a cell-centered method, but

with a wider stencil than dG
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The Laplacian

Variations on symmetry and penalty |

Variations on penalty
» Recall that for SIP

an(vh, wh) =/ Gh(vh)- Gh(wh) + 34 (v, wh)
Q
with

o) = 3 7 [ [l = | R(L4D-R(LwnD)

FeF,
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The Laplacian

Variations on symmetry and penalty Il

> The idea of Bassi and Rebay ('97) is to stabilize with

So(vmwn) = S /Q (L) e (Twnl) — /Q L)

FeF,

» The key advantage is that discrete coercivity holds true for n > Np,
thereby removing the dependency on G,
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The Laplacian

Variations on symmetry and penalty IlI

» A further alternative is to stabilize with

Sh(vh, wh) = Z hi/[[vhll[[whll
FeFy FJF
yielding

an(Vh, wh) = /Q GHw)-Ghwe) + 3 4t / [vallws]

FeF,

» The advantage is that discrete coercivity holds true for n > 0

» However, the term [, RL([va])- Rh([ws]) widens the stencil to
neighbors of neighbors
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The Laplacian

Variations on symmetry and penalty IV

/ thh'V,,wh
Q

_/thvh.R’h(ﬂWh]])_/QRL([[V,’]]).thh
+ 30 4 [ 1wl

FeFy

[ R Ri(Lws))
Q
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The Laplacian

Variations on symmetry and penalty V
Variations on symmetry
> Let € {—1,0,1} and set

an(vh, wp) = /QVth'VhWh* Z /F{thh}'HF[[Wh]]

FeFy

0y / [l Tam}ne + 3 L / [vil[wi]
FeF, F FeF, FJF
> 6 =1 yields SIP
» 0 =0 yields Incomplete IP [Dawson, Sun & Wheeler '04]

> one motivation can be to use the broken gradient instead of the
discrete gradient in the local formulation

/thuh-V£+ Z €T,F/F®F(Uh)§=/Tf§

FeFr
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The Laplacian

Variations on symmetry and penalty VI

» 0 = —1 yields Nonsymmetric IP
> introduced by Oden, Babuska & Baumann ('98) without penalty
(n = 0): numerical experiments
> analysis with penalty by Riviere, Girault & Wheeler (99, '01)

> discrete inf-sup stability without penalty in 2D for k > 2 [Larson &
Niklasson '04]

» Energy-error estimates for {S,|,N}IP are similar

» Optimal L?-error estimates are not available for {N,I}PG because
the duality argument requires symmetry

» optimal [*-error estimates can be recovered by using over-penalty
[Brenner & Owens '07]
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The Laplacian

Salient points of this lecture

v

Derivation of SIP ensuring consistency

v

Energy error analysis of SIP using the |-||-norm
» The concept of discrete gradient

» The possibility of cheap and accurate diffusive flux reconstruction
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PDEs with diffusion

PDEs with diffusion

» Darcy flows
» Diffusion-advection-reaction

» Two-phase porous media flows
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PDEs with diffusion

Darcy flows |

Model problem

> Let f € L?(Q); seek u: Q — Rs.t. —V:(kVu) = f in Q and
u|aQ =0

> Weak formulation: v e V & H () s.t.

a(u, v) déf/ffVu-Vv:/fv Vv eV
Q Q

> k is scalar-valued, bounded, and uniformly positive in Q
> the model problem is well-posed

» Specific numerical difficulty: & is highly contrasted
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PDEs with diffusion

Darcy flows Il

> We assume that & is piecewise constant on a given polyhedral
partition Po = {Qi}i<i<n, of Q

» 0 = —kVu is the diffusive flux

by its definition, o € H(div; Q)

the normal component of ¢ is continuous across any interface
the normal component of Vu is not if kK jumps

v

v

v

» Important application: groundwater flows

> u is the hydraulic head, o the Darcy velocity
» for each geological layer €Q;, klq, is its hydraulic conductivity
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PDEs with diffusion

Darcy flows Il

Discretization

» Compatible mesh with the partition Pq

» Discrete space Vj, def PX(Tn) with k > 1
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PDEs with diffusion

Darcy flows IV

» A rather natural way to extend SIP to heterogeneous diffusion is to
set [Houston, Schwab & Siili '02]

ah(vh,wh) = /thvh-vhwh— Z /{/{thh}npﬂwh]]
Q F

FeF,

=% [EnlisTambae + 3 025 [ puliond

FeF, FeF,

> aj yields consistency and is symmetric

» To achieve discrete coercivity, the penalty coefficient must
depend on x
» For the above choice, 7..r = {r} = 2(k1 4+ K2), F=0T1NOT>
> For high contrasts, 7. r is controlled by the highest value (the most
permeable layer)
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PDEs with diffusion

Darcy flows V

> We believe instead that for high contrasts, ~, r should be controlled
by the lowest value (the least permeable layer)

» This is the approach encountered in Mixed FE and FV

» Moreover, in the presence of dominant advection, diffusion
heterogeneities can trigger internal layers and even solution
discontinuities for locally zero diffusion

> see [Gastaldi & Quarteroni '89, Di Pietro, AE & Guermond '08]
> penalizing the jump at such interfaces does not make good sense

» One simple choice is harmonic averaging

def 2K1K2
Ve, F =
K1 + K2

but to achieve discrete coercivity requires modifying the consistency
and symmetry terms
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PDEs with diffusion

Darcy flows VI

Weighted averages

» To any interface F € F} with F = T, N OT,, we assign two
nonnegative real numbers wt, F and wr, F s.t.

wr,FtwnF=1

. def
> Weighted average {v}, r = wr, rv|7, + W rvl7,

F

> The choice wr, F =wr, F = % recovers usual arithmetic averages
» On the boundary with F =9T N9, {v}.r=v|r
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PDEs with diffusion

Darcy flows VII

Symmetric Weighted IP (SWIP)

an(vh, wp) = /KVth'VhWh— Z /{thvh}w'nF[[Wh]]
Q F

FeF,

-y /,:[vh]]{fcvhwh}w-n/:-l- > n% /F[[Vh]][[Wh]]

FeF, FeFy

» Discrete problem Seek up € Vj, s.t.

ah(uh, Wh) = / fwy Ywy € Vp
Q
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PDEs with diffusion

Darcy flows VIII

» Diffusion-dependent weighted averages

w def K2 w def K1
Ti,F = T, F =
K1+ K2 K1+ K2

> homogeneous diffusion yields back arithmetic averages

» dG methods with non-arithmetic averages were considered by
Stenberg ('98), Heinrich et al. ('02-'05), Hansbo & Hansbo ('02)

» diffusion-dependent weighted averages were introduced by Burman &
Zunino ('06)

> the SWIP method was introduced and analyzed by [AE, Stephansen
& Zunino '09, Di Pietro, AE & Guermond '08]

Alexandre Ern Université Paris-Est, CERMICS
Discontinuous Galerkin methods



PDEs with diffusion

Darcy flows IX

» The SWIP bilinear form yields consistency since

an(v,w) = — Y /TV-(HVV)W—I— > /lcﬂﬁvhv]].nF{W}w

TEeT, FeF]
= [IVamdone + 3 0%E [ uiw)
Fer, ' F Fer, F JF

with {w}g = wr, Fw|ry, +wr Fw|T,

> As a result, if the exact solution is smooth enough,

ah(u, Wh) = / fwy, Ywy, € V,
JQ
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PDEs with diffusion

Darcy flows X

» Discrete stability norm

‘2 def

IvI? = 162V v e + V1

with diffusion-dependent jump seminorm

{ef Vi, F
V3. = Z 3 Hﬂ 1172(ry

FeFy

» Bound on consistency term VY(v, wy) € Vip x Vi

1/2
(Z 3 hFlf'@l/zVVrnFﬁz(F)) [Wls,e

TET, FEFT

> /{thv}w nefw]| <

FEF)

since 2(w?ky + W3K2) = V. F
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PDEs with diffusion

Darcy flows Xl

» Discrete coercivity: Assume 7 > C2Np Then, for all v, € V},
Canllvall® < an(vi, vi)

with Cgp independent of k

» Boundedness For all (v, wy) € V4 x Vj,
an(v, wh) < Conall V[« [ wall

with Cynq independent of x and

def
IVIZ = IvIP + Y brlls?Yvnr|for
TeT,
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PDEs with diffusion

Darcy flows XI|

v

Error estimate ||u — up|| < Cinfy,cv, [lu — yu||« with C independent
of K

» Convergence rate ||u — up| < Hh:||%02(mhk if ue HY(Ty)

> optimal for the gradient, jumps, and boundary values

An optimal O(h**1)-L2-norm error estimate can be proven using
duality techniques

v

A local formulation with numerical fluxes can be derived

v
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PDEs with diffusion

Darcy flows XllII
» Local lifting operator rfr’n : L2(F) — [PL(Th)]9 s.t. Y € L2(F)

[ rtestorm= [tnmlonee v e PUT)
Q F

> Discrete gradient G}, (v) & Vv — S e, th . (IV]) € [P4(T4)]?
» Let T €7, and let £ € PX(T); then, for | € {k — 1, k}
[ w6t Ver 3 ere [ortune = [ e
T FeFr F T
with e7 F = n7-nf and numerical flux

(/)p(uh) déf —{/{thh}w-np + 7/%[[[1;7]]
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PDEs with diffusion

Darcy flows XIV

Regularity of exact solution

» Diffusion heterogeneities can trigger solution singularities

v

In 2D, the exact solution € W?P(Pq), p > 1 [Nicaise & Sandig '94]

v

For all T € 7, Vunl|gr € L1(OT) = consistency can be asserted
in the usual way

v

Owing to Sobolev embedding, v € H**(7,) with o = 2 — % >0

v

An O(h®) ||-||-norm error estimate can be proven

> see [Di Pietro & AE '10]
> see also [Riviere & Wihler '10] for the Poisson problem
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PDEs with diffusion

Darcy flows XV

Diffusion anisotropy

» In some applications (e.g., groundwater flow), « is RY?-valued,
symmetric, bounded, and uniformly PD

» The SWIP method is then designed using the normal component of
the diffusion tensor at each interface
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PDEs with diffusion

Diffusion-advection-reaction |

Model problem

> Let f € L?(Q); seek u: Q — Rs.t. V-(—kVu+ Bu) + fiu=finQ
and ulpg =0

> Weak formulation: u € V < H(Q) s.t.
def

a(u,v) = /Q(/QVU— uﬁ)-Vv—Q—/Qﬁuv:/va YveV

> K is scalar-valued, bounded, and uniformly positive in Q
» (s Lipschitz, fi € L°(Q), ji+ V-8 > po > 0in Q
> the model problem is well-posed: For all v € V

1720 112 2
a(v,v) > s Vvlliz@ye + Hollvllzz ()
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PDEs with diffusion

Diffusion-advection-reaction |l

> d(u) © kYt uf3 is the diffusive-advective flux

> by its construction, ®(u) € H(div; Q)
> the normal component of ®(u) is continuous across any interface

» Nonconservative form of advective term
V(—kVu)+ 3-Vu+ pu=f where p = i+ V-

» The fully conservative form is more natural from a physical
viewpoint
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PDEs with diffusion

Diffusion-advection-reaction |l

Discretization
> K is piecewise constant on a given polyhedral partition Pq of Q

» Meshes are compatible with this partition

> Discrete space Vj, < PX(7,) with k > 1

> Key idea: Combine SWIP with upwinding
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PDEs with diffusion

Diffusion-advection-reaction IV

an(v,w) = /(fivhv— Vﬁ)'VhW+/ﬁVW
Q

Q

- 3 [T+ (3D nela]

FeF
_ F;_h/;r[[\/]]{HVhW}w.nFJrF;.h/FWH’ﬂ’F[[VMW]]

i Tk, 1
> for F € Fi, Ynp.F =175 + 5160F|

» for F € .7:,?, Vr,8,F = T]A';,;F'F + (/3'11)e

» For dominant diffusion with local Péclet numbers
helBng| /v F < 1, the amount of penalty introduced by SWIP is
sufficient and centered fluxes can be used for advection and the
boundary penalty term with (3-n)® can be dropped
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PDEs with diffusion

Diffusion-advection-reaction V

» Discrete problem Seek uy € Vj, s.t.

ah(uh, Wh) = / fwy Ywy € Vp
Q

v

The exact solution is such that [u] = 0 for all F € F}, and
[®(u)]nF =0 for all F € Fj

[ul = 0 — [Buln — (Bne)lul = 0
Hence, [kVu]ng = 0 for all F € F]

v

v
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PDEs with diffusion

Diffusion-advection-reaction VI

» The previous consistency proofs for SWIP and upwind can be
combined

a(u, wn) = /Qv'(_’iVU)Wh+/QV-(ﬁU)Wh+/Qﬁuwh
+ Z /Flll'iVU]]-nF{Wh}U— Z /F(ﬁ'nF)[[U]]{Wh}

FeF| FeF]

:/fWh
Q
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PDEs with diffusion

Diffusion-advection-reaction VII

» Recall discrete coercivity norm for SWIP for 1 > C2Ny

Ve, F
|||v”|sw1p = ||Kl/2vhv||[2L2(Q)]d + § : h Hl[V]I”iQ(F)
F
FeFh

» Recall discrete coercivity norm for upwind
W = IVl + 3 [ 31801+ 3 [ 4inrllvF?
Ferp FeF]

def

> Letting || = [|[|Z,

+ |12, ields for all vy, € V4

el < an(vh, vi)

and therefore discrete coercivity and well-posedness
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PDEs with diffusion

Diffusion-advection-reaction VIII

» Boundedness on OSS for upwind combined with full boundedness for
SWIP yields boundedness on OSS for DAR

» Assuming u € H**1(T}) typically yields the estimate

1/2 1/2
o = unllswip + N = thllupw S RIS g h* + 18172 (oo T2

L@

(h")

as for pure diffusion

O(h**1/2) as for pure advection-reaction

» An optimal error estimate on the advective derivative can be
established by proving discrete inf-sup stability with a stronger norm
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PDEs with diffusion

Diffusion-advection-reaction IX

Locally vanishing diffusion

> & is scalar-valued and vanishes locally; more generally, & is
tensor-valued and some of its eigenvalues vanish locally

» elliptic/hyperbolic interface

def

Too = {x € 0Q;N0Q; | nj(k|q,)n; > nf(f-@|g}.)n, =0}

where 1, is a normal to 99Q; N 0Q;
> 7o, is decomposed into
def

= {x€Zoqa | (Bn/)(x) >0}

Too ¥ {x € Toq | (Bur)(x) < 0}

+
Iy q

and for simplicity we assume that (8-n/)(x) # 0 in Zp
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PDEs with diffusion

Diffusion-advection-reaction X
> The interface conditions on Zy q are

[-xVu+ Bulny =0 onZpg
[ul =0 on IJQ

so that u can be discontinuous on 7
> see [Gastaldi & Quarteroni '89, Di Pietro, AE & Guermond '08]

» Example with k|g, = { (1) 0?5 ] and klg, = [ 8 g }
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PDEs with diffusion

Diffusion-advection-reaction Xl
» Weighted averages are crucial to ensure consistency

> Let F}* collect the interfaces in Zg
» For the SWIP part, since {wj}z = wil|q,,

a3 (u, wy) /V (kVu)wy + Z /ﬂ“vh”]] nFWhlo;

FeFjr

» For the upwind part,

3" (u, wh) /v ﬁu)wh-i-/MUWh— > / (BnF)[u]wala,

FEF)*

» Owing to conservation for the diffusive-advective flux,

ap(u, wp) = aSW’p(u wh) + ap" (u, wy) = / fwp,
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PDEs with diffusion

Diffusion-advection-reaction Xl

» Example: Unit square divided into 4 subdomains
» Strong x-diffusion in 2 quadrants and strong y-diffusion in the
others, anisotropy ratio 10°
» Rotating advective field
SWIP+upw SIP+upw

» SIP+4upw oscillates because it enforces zero jumps near
underresolved layers
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PDEs with diffusion

Two-phase porous media flows |

» We consider two-phase, immiscible, incompressible flows through
isothermal and indeformable porous media
» motivated by secondary oil recovery and oil trapping effects
» several dG methods available [Bastian '99, Bastian & Riviere '03,
Eslinger '05, Klieber & Riviére '06, Epshteyn & Riviére '07]

» Heterogeneous media with distinct capillary pressure curves lead to
discontinuous saturations
> FV methods designed by [Enchéry, Eymard & Michel '06, Cances
'09, Cances, Gallouét & Porretta '09]
» dG method recently designed by [AE, Mozolevski & Schuh "10]
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PDEs with diffusion

Two-phase porous media flows |l

» Mass conservation for each phase
0t(6Sa) + Vo = qa a € {nw}

¢: (constant) porosity, S,: phase saturation, u,: phase velocity, gu:
source/sink

> S, +Sy=1,5:=5,€[S,1—-Su]

» Generalized Darcy's law (no gravity)

Us = =KAo (S)Vpa

K: absolute permeability, A,: phase mobility, p,: phase pressure
» Capillary pressure
7(S) = pn — Pw
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PDEs with diffusion

Two-phase porous media flows Il

» Fractional flow formulation

» Total mobility A = Ay + An, fractional flow f = X, /A
> Global pressure p (Chavant & Jaffré '86)

» Total velocity u = u,, + u, s.t.

u=—-AKVp Viu=qy+qn

> Non-wetting phase mass conservation becomes
$0:S + V-(uf(S)) — V-(e(S)7'(S)VS) = q,

with €(S) := A (S)F(S)K

» degeneracy ¢(Sp) = ¢(1 — Swr) =0
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PDEs with diffusion

Two-phase porous media flows IV

» Sequential approach to march in time: For m=0,1,...
1. solve elliptic equation for global pressure

V-(A(SMKVP™ ) = gt + gt
2. reconstruct total velocity
um+1 _ f/\(S’")KVp'"H

3. advance in time saturation equation (semi-implicit Euler)

O V(TS = V(ST (ST)VS™ ) = g7

» SO given by IC

» BC's can be of Dirichlet or Neumann type for both pressure and
saturation
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PDEs with diffusion

Two-phase porous media flows V

Interface conditions

» For simplicity, two subdomains Qg3, 8 € {1,2}, with different rock
properties

» Up to rescaling, both Sg's take values in [Sp,, 1 — Sy

» Example of capillary pressure curves

10

0 0.2 04 06 s 08 1
S

» Critical value S* = Wflm(Sn,)
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PDEs with diffusion

Two-phase porous media flows VI

» We assume that the wetting phase is present on both sides of
interface
» Jump [a] := a1 — a2 on interface def 01 N O,

» Interface conditions on saturation

> flux continuity [uf(S) — e(S)n'(S)VS]nr =0
> S = Sp if St €[S, S*]

» Interface conditions on pressure
> flux continuity [-AKVp]-nr =0
> continuity of (some) phase pressures
[pv] =0 if S1 € [Sar, S7]
el =1p] =0 if S € [S",1—Sw)

so that [7(S)]=0if S € [S*,1 — Suwr)
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PDEs with diffusion

Two-phase porous media flows VII

» Reformulate interface condition on saturation as [S] = J(S;) with

S— Su if S € [Sr, S*]
J(S) =
(5) {5—7r2_1(7r1(5)) if S; € [S*,1— Sur)

> for S1 € [Snr, S7], [S] = J(51) yields S2 = S,
> for 51 (S [5*, 1-— 5.,.,,), IIS]] = J(51) yields 71’1(51) = 71’2(52)

» Reformulate interface condition on pressure as [p] = G(S) with
suitable function G depending on S; and S,
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PDEs with diffusion

Two-phase porous media flows VIlII

Step 1: SWIP for pressure equation
» Find p’"+1 € Vj s.t. for all z, € V4 (only Dirichlet BC's)

Z / Sh Kvpm+l) 4 qvf':-‘rl + qm+1)
TeT,
+ Z /ﬂ)\ Sh KVp,T“]] IlF{Zh}w
FerF}
+ 3 [ ( ANSTIK V23 +n2E nzhn)
FeF,
where '
Ipr ] if Fe Fi\T
o' = S [p 1 - G(Sp) ifFer
p,’:’Jr1 PD if Fe f,’,’
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PDEs with diffusion

Two-phase porous media flows IX

> Reference diffusion k7= r = [[(A(SF)K)|7= || o= (F)
» Penalty coefficient v based on harmonic average

» The pressure interface condition that is weakly enforced is

[pi 1 = G(SP)

Step 2: RTN reconstruction of total velocity

» Direct prescription of dof’s
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PDEs with diffusion

Two-phase porous media flows X

Step 3: Saturation equation

» Implicit Euler and semi-linearization of diffusive term
PSS T (um (™) - V(57 (ST)VS™H) = gt

» SWIP for diffusive term
> reference diffusion kr+ r = [|(e(SF)m" (S77))] 7+ | L= (F)
» penalty coefficient based on harmonic average

» Upwind for advection by total velocity
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PDEs with diffusion

Two-phase porous media flows Xl

Numerical illustration
» Pushing a blob of oil
» $=02,5,=5,»=0
Brooks—Corey model for mobilities with parameter § = 2
Absolute permeabilities K1 =1 and K, = 0.1
Capillary pressure curves with S* = 571/2 ~ 0.45

vVvYyvy

m(s) = 5s° ma(s) = 4s° +1

> 1D setting with Q; = (0,1) and Q2 = (1,2)
> Dirichlet BC's on the pressure: p|x—o = 1.8 and p|x—> = 1.0
» Mixed BC's on saturation: S|x—o =0 and €(S)7'(S)%|,—> =0

» Discretization with k =1

» No limiters were used
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PDEs with diffusion

Two-phase porous media flows Xl|

» Saturation and pressures at times {0.008,0.015,0.25}

> global (solid), capillary (dashed), wetting-phase (dotted) pressures
» h~!=80/120/160, 7 = 0.001/0.0005,/0.00025

{_
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PDEs with diffusion

Salient points of this lecture

» Weighted averages and harmonic penalties for heterogeneous
diffusion

» Combining SWIP and upwind for diffusion-advection-reaction, robust
even for locally semidefinite diffusion

» These ideas are also important in nonlinear problems with fronts and
interface conditions
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Incompressible NS

Incompressible NS

» Discrete functional analysis

» Poisson problem revisited

v

Stokes equations: pressure-velocity coupling

» Incompressible NS
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Incompressible NS

Discrete functional analysis |

» For (steady) linear PDEs, the mathematical analysis of dG methods
is relatively well-understood

» For nonlinear PDEs, the situation is substantially different

> FE-based techniques require strong regularity assumptions on the
exact solution

> the analysis of FV schemes proceeds along a different path, avoiding
such assumptions [Eymard, Gallouét, Herbin et al '00-08]

» New discrete functional analysis tools in dG spaces are needed

» discrete Sobolev embeddings
» discrete Rellich—Kondrachov compactness result

see [Buffa & Ortner '09, Di Pietro & AE '10]
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Incompressible NS

Discrete functional analysis ||

» Recall discrete stability norm for SIP (and other variants)

def
Ivlide = IVIZ = IVaviife@ye + Z /H[V]]\2

FE]:h

2
|V‘.]

» Non-Hilbertian setting (1 < p < +00)

def
¥ = 19 o+ 3 1 = [ Iar

FEF

» Broken polynomial space V, def IPZ(’E,) with kK >1
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Incompressible NS

Discrete functional analysis IlI

Discrete Sobolev embeddings

» For all g such that

. « def .
() 1<q<p = LLifl<p<d
(i) 1<g<40ifd < p < +o0

Jogp,  Vvh € Vh, [vhl[La(@) < op,qllvallac,p
» Particular case p =2 and d € {2,3}: For all g such that
(i) 1<q<6ifd=3
(i) 1<g<4ooifd=2

Jog, Vv, € Vh, Ivalla@) < ogllvallac
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Incompressible NS

Discrete functional analysis IV

v

Discrete Poincaré—Friedrichs inequality (¢ = 2, p = 2) [Brenner '03]

» g =4, p=2for NS [Karakashian & Jureidini '98]

v

Discrete Sobolev embeddings with p = 2 [Lasis & Siili '03]

v

Two key differences
> present technique is much simpler: no elliptic regularity or
nonconforming FE interpolation = general meshes can be used
» embeddings are proven in discrete spaces, not in broken Sobolev
spaces
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Incompressible NS

Discrete functional analysis V

Principle of proof

» Inspired from [Eymard, Gallouét & Herbin '08]

v

BV estimate (327, sup{ frs udig. ¢ € C¥(RY), ||| 1o (rey < 1})
Vv € Vi, Ivallev S Ivallac,t S llvallac,, (P> 1)

(vn extended by zero outside )

Classical result (1* e 755): IVl gey < 25llviiBY

v

v

For 1 < p < d, use ||-|| 1+ ga)-estimate for |v,|*, Holder's inequality
and a trace inequality

v

For p > d, use Holder's inequality
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Incompressible NS

Discrete functional analysis VI

Compactness for discrete gradients
> Let />0

» Recall that G| : HY(7,) — [L2(Q)]? is s.t.

Gi(v) & Vv — RI([V])

where

Ry(IvD) = > rk(IvD)

FeF,

and for any F € Fp, rk : L2(F) — [PL(75)]? is s.t. for all
p € L2(F)

/ () / {(r}nre  r € [PY(TH)
Q F
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Incompressible NS

Discrete functional analysis VII

Main result

> Let (vh)nen be a sequence in (V},)pen bounded in the ||-||qg-norm

» Then, there exists a subsequence of (v4)nen and a function
veHI(Q) st ash—0

v, — v strongly in L?(Q)
and for all / >0

Gi(vi) — Vv weakly in [L*(Q)]¢
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Incompressible NS

Discrete functional analysis VIII

Principle of proof
> Inspired from [Eymard, Gallouét & Herbin '08]

» Functions extended by zero outside

v

Uniform BV estimate on space translates

[vi(- + &) = vall ey < [ElaallvallBy < ClEla

v

Kolmogorov Compactness Criterion in L(R9)

v

Sobolev embedding: compactness in LI(R?), g > 2

There is v € L2(R?) s.t. vy — v strongly in L?(R9)

v
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Incompressible NS

Discrete functional analysis IX
» Bound on ||-||ag-norm = bound on discrete gradient => there is
w € [L2(Q)]9 s.t. G(vh) — w in [L2(Q)]¢

» For all ¢ € [G§°(R?)]¢

/Rd Ghlve) = / Vi = / Ry (IveD)he
= — /er vV + Z A{g@ _WL@}'HF[[Vh]]

FeFy
converges to — [o, vV-p = Vv =w

» Thus, v € HY(R?) and since v = 0 outside Q = v € H3(Q)
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Incompressible NS

Poisson problem revisited |
» Recall SIP bilinear form for Poisson problem in Vj, = P(7}) (k > 1)
an(vh, wh) = /Y;G/’,(Vh)‘G;:(Wh)+§h(Vh=Wh)
with [ € {k — 1, k} and
sy(vm ) = 3 2 [ Tllwnd = | RiD)-Ri (L)
Fe]—' Q

» Discrete coercivity (7 > C2Np): For all vy € Vj,

an(vh, vi) > Gan || vallic
an(vh, vi) > [ Go(va)[[fizgye + (1 — CaNo)lval3
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Incompressible NS

Poisson problem revisited |l
» We no longer assert strong consistency by plugging the exact
solution into ap
» Only discrete arguments are used for aj

» Asymptotic consistency For any sequence (Vp)per in (Vi)nen
bounded in the ||-||ag-norm and for any smooth function
¢ e GO (Q)

lim ap(vh, mhe) = a(v, @) = / Vv-Vg
h—0 Q

where v € H3 () is the limit of the sequence (vi)ner given by the
compactness theorem
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Incompressible NS

Poisson problem revisited Il

Asymptotic consistency for SIP

an(vh ) = / GL(vr) GL(mhp) + &n(vi Thp) = Ty + T,
Q

» T — [, Vv-Vypas h— 0 since

> Gj(vs) = Vv weakly in [L*(Q)]°
> Gy (mhp) — Vi strongly in [L*(Q)]¢

> T, — 0 since |%a| < |valalmrels

> |vh|s is bounded and |mhp|s — O
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Incompressible NS

Poisson problem revisited IV

Convergence to minimal regularity solutions

Let (up)ner be the sequence of discrete solutions. Then, as h — 0, for
the whole sequence

up — u strongly in L?(Q)
Vyup — Vu strongly in [L?(Q)]¢
luply — 0

where u € H}(Q) is the exact solution
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Incompressible NS

Poisson problem revisited V

Step 1: A priori bound
Canlenlic < aun,un) = [ fun < 2]y sl
Q

= (un)hen is bounded in the ||-|ag-norm

Step 2: Compactness

There exists v € H}(Q) such that, as h — 0, up to a subsequence,
up — v strongly in L2(Q) and G/(uj) — Vv weakly in [L2(Q)]¢
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Incompressible NS

Poisson problem revisited VI

Step 3: Asymptotic consistency
For all ¢ € C5° ()

/f(p<—/ fﬂhw:ah(uh77rh<p)—>/Vv-V<p
Q Q Q

= by density, v solves the Poisson problem

Step 4: Additional properties

» Uniqueness of solution = the whole sequence (up)pcy converges
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Incompressible NS

Poisson problem revisited VII

» Strong convergence of the discrete gradient

> owing to weak convergence
liminf an (un, un) > lim inf || Gy (un)llfi2@ye > IV ullfr2(pe
» Owing to stability
IGhn) s < anCum ) = [ fun
yielding
i sup |G (un) sy = limsu [ o = [ = |Vl

» Convergence of |up|y to zero using stability
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Incompressible NS

Stokes equations |

Model problem

> Let f € [L2(Q)]9; seek velocity field u: Q — R? and pressure field
p:Q— Rs.t.

—Au+Vp=f inQ
Viu=0 inQ

with u|aQ =0 and <p>Q =0

» Mass and momentum conservation for a slow, incompressible flow
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Incompressible NS

Stokes equations ||

Weak formulation

» Functional spaces

USHQY P LXQ) < {qge2(Q)] (g)n =0}

» Bilinear forms
a(u, v) /Vu Vv b(v,q) & —/ qV-v
Q
» Find (u,p) € U x P s.t.

a(u,v)—&—b(v,p):/ﬂf-v Vv eU

—b(u,q) =0 Yqge P
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Incompressible NS

Stokes equations Il

» Well-posedness hinges on surjectivity of divergence operator
[Ladyzhenskaya, Netas, Bogovskil, Solonnikov,...]

> Thereis fBq s.t. for all g € P, there is v, € U with
q=Vvg  Ballvgli@ye < llalle@
» Equivalent inf-sup condition

b(w,
vaeP  falldlam < sup 299
we U\ {0} ||WH[H1(Q)]d

Alexandre Ern Université Paris-Est, CERMICS
Discontinuous Galerkin methods



Incompressible NS

Stokes equations IV

Discrete divergence
> Let />0

» Define D] : [HY(75)]? — PL(75) s.t.

» Bilinear form for discrete divergence

by(v,q) dgC—/QCJDL(V)
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Incompressible NS

Stokes equations V

» Link with discrete gradient
bi(vh, qn) = —/ anDp(vh)
Q

_ /Q @Vt 3 / [valne{an}

FeFy

:/th'thh_ Z /F{Vh}'nF[[qh]]:/QVh'gf/v(qh)

FeF]

with slightly modified discrete gradient

Gi(an) < Vhan — > ri(lanD)

FeF,
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Incompressible NS

Stokes equations VI

Equal-order discontinuous spaces for velocity and pressure
» For k > 1,

Un CIPSTRIY Py PK(TH)/R

» Discrete inf-sup condition (LBB) Vg5, € Py

[ bh Wh, Gh
Bllanllz@) < sup bn(wh, 1) + 1qnlp
wieUn {0} [[Whllver
. def d
with [Jws |12, = S lwail3q and

def
lanl2 = > helllalllr
FeF}

[Cockburn, Kanschat, Schétzau, Schwab '02, AE & Guermond '08]
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Incompressible NS

Stokes equations VII

» Discrete problem combines SIP for velocity components, discrete
divergence operator, and pressure jump penalty

» Find (uh,ph) € Up x Py s.t.

an(un, vi) + ba(vh, pn) = / fovip  Vvp € Uy
Q

—bu(un, qn) + jn(pn, gn) =0 Van € Ph
with
d
an(vh, wh) = > (/ Gh(Vhn,i)- GR(Wh,i) + 3n(Vh,i, Wh,i))
i=1
ian ) = 3 he [ Lalln]
FeF] F
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Incompressible NS

Stokes equations VIII

Convergence for smooth solutions

» Strong consistency can be asserted if (u, p) smooth enough

» Discrete inf-sup stability with norm

def
(v, I = Ivlize + llalZa) + lal;

» Boundedness with suitable ||-||.-norm

» Convergence rate if (u, p) € H*"1(T) x H*(73)

I(u = unp = pu)ll < K

> optimal on velocity gradient, jumps, and boundary values
» optimal on pressure and its jumps

» Optimal O(h¥*1)-L2-norm velocity error estimate if Cattabriga's
regularity holds true (e.g., if Q is convex)
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Incompressible NS

Stokes equations IX

Convergence with minimal regularity
» Only assume (u, p) € [H}()]9 x L2(Q)

> Let ((un, pn))nen be the sequence of discrete solutions. Then, as
h — 0, for the whole sequence,

up — u in [L2(Q)]¢
Vpup — Vu  in [L2(Q)]9?
|uply — 0

ph— p in L*(Q)
|Ph‘p —0

where (u, p) € [H}(Q)]¢ x L2(Q) is the exact solution
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Incompressible NS

Stokes equations X

Alternative formulations

» Non-stabilized formulations on affine quadrilateral or hexahedral
meshes [Toselli '02]

> Non-stabilized formulations on triangular meshes with
Py = P%71(7;) [Hansbo & Larson '02, Girault, Riviere & Wheeler
'05]

» Using continuous pressures

> mass conservation is expressed less locally
> earlier related work [Becker, Burman, Hansbo & Larson '01]
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Incompressible NS

Incompressible NS |

Model problem

> Let f € [L2(Q)]9; seek velocity field u: Q — R9 and pressure field
p:Q— Rs.t.

—vAu+ (uV)u+Vp=Ff inQ
Vu=0 inQ

with ulpo =0 and (p)o =0and d € {2,3}

» Mass and momentum conservation for an incompressible flow
(v: shear viscosity)

» The convective term can be written in the conservative form
V- (u®u) since (u-V)u = V-(u@u) — (V-u)uand V-u=0
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Incompressible NS I

Weak formulation

» Functional spaces U and P as for Stokes

» Bilinear forms a and b as for Stokes and trilinear form
t(w,u,v) = / ((w-V)u)-v
Ja

» Find (u,p) € U x P s.t.

va(u,v) + t(u,u,v) + b(v,p) = / fov YvelU
Ja

—b(u,q) =0 Vge P
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Incompressible NS Il

» The key property of the trilinear form is that for divergence-free w
1 2
t(W,u,u):—§ (Vw)u"=0 Yue U
Ja

so that the convective term does not affect the kinetic energy
balance

» Existence of a solution for incompressible NS can be proven by
passing to the limit from a conforming FE approximation

» Uniqueness holds true under a smallness condition on the data
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Incompressible NS IV
Literature overview

> One key issue is controlling the convective term

> piecewise divergence-free velocity fields [Karakashian & Jureidini '98]
> nonconservative method based on Temam's device [Girault, Riviere
& Wheeler '05]

t'(w,u,v) = t(w,u,v) + /(VW

> conservative LDG method using BDM velocity projection [Cockburn,
Kanschat & Schétzau '05]

» The analysis of such methods hinges on strong regularity
assumptions on the exact solutions and generally uses a smallness
assumption on the data

» We want to avoid such assumptions as in recent FV work [Eymard,
Herbin et al '07-'10] = see [Di Pietro & AE '10]
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Incompressible NS

Incompressible NS V

Discrete trilinear form
» Let k > 1 and take as before U, = [P%(75)]¢

» Elementwise integration by parts yields
LDy == [[(@rmnw)
+% > /Fl[Wh]]'nF{Vh'Vh}+ > /F{Wh}'nFl[Vh]]'{Vh}

FEF) FeF}

Difficulties

> wj is not divergence-free
> wj, and v, have jumps and do not vanish on boundary
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Incompressible NS

Incompressible NS VI

> For all (wp, up, v), we set

th(Wh, Up, Vi) def /((Wh Vi)up)-vih — Z /{Wh} nf[un]-{vn}

FEF]

41 /‘(Vh'Wh)(Uh Vh) /[[Wh]] nF{up-vh}

2 Ja 2 fFy
» Key stability property:

th(Wh., Vh, Vh) =0 V(W/77 Vh) € U, x Uy
» If u € U is divergence-free and smooth, ty(u, u, vy) = t(u, u, vp) for

all vy, € Uy
> vyet, strong consistency will not be used here
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Incompressible NS VII

» Alternative expression for tp

th(Wh, Un, Vh) /ZWh Go¥ (un,i) vi,i + %/sz,k(wh)uh'vh
+3 3 [Iwlnrludu]

Fef'

» Boundedness for t;: using the discrete Sobolev embedding for
L*(2), one proves for all (wp, up, vi) € Up x Uy X Uy

th(Whs tn; vh) S [[Wallverllunllverlvallver
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Incompressible NS VII|

Discrete problem

> Seek (Ump,_,) € Up x Py s.t.

vap(up, vi) + th(up, up, Vi) + ba(Vh, pr) / f-vy Vv, € Uy
Q
—bn(un, qn) + v~ jn(ph, qn) = 0 Vagn € Py

> Existence of a discrete solution without any smallness assumption on
the data
> topological degree argument
> use discrete stability and boundedness of t;
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Incompressible NS X

Convergence with minimal regularity

> Let ((un, pn))nen be a sequence of discrete solutions. Then, as
h — 0, up to a subsequence,

up — u in [L2(Q)]¢
Vpup — Vu in [L2(Q)]%H
|unly — 0

ph— p in L*(Q)
|Ph‘p —0

where (u, p) € [H}(Q)]¢ x L2(Q) is an exact solution

» Convergence of the whole sequence if uniqueness
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Incompressible NS X

» Asymptotic consistency for t, For any sequence (vh)ner in (Un)nen
bounded in the ||-||ve1-norm and for any smooth function
v € [GE(Q)?

1
lim ty(vi, v, The) = t'(v, v, @) = /((V~V)v)~gp + = /(V-v)v-tp
h—s0 Q 2 Jg

where v € [H3(Q)]9 is the limit of the sequence (v4)ner given by
the compactness theorem

> A slightly different form of asymptotic consistency is also needed to
prove the strong convergence of the pressure
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Incompressible NS Xl

Numerical illustrations

» Kovasznay solution [K. '48] laminar flow behind a 2D grid
» k =1 for velocity and pressure, both discontinuous, 64 x 64 grid
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Incompressible NS

Incompressible NS XII

» Lid driven cavity problem

> k = 2 for velocity and pressure, continuous pressure, 120 x 120 grid
> calculations from [Botti & Di Pietro '10]
» ref. solution of [Erturk, Corke & Gokgdl '05]
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Salient points of this lecture

» Discrete functional analysis (Sobolev embedding, compactness)
» Asymptotic consistency and convergence with minimal regularity

» Discrete divergence and discrete inf-sup for pressure-velocity
coupling for Stokes

» Design conditions for discrete trilinear form in NS

» An existence result and a convergence result for NS with minimal
regularity and general data
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