An H-convergence-based implicit function theorem for homogenization of nonlinear non-smooth elliptic systems

Lutz Recke

Abstract

We consider homogenization of semilinear elliptic PDE systems of the type

$$\partial_{x_i} \Big(a_{ij}^{\alpha\beta}(\varepsilon, x) \partial_{x_j} u^{\beta}(x) + f_i^{\alpha}(x, u(x)) \Big) = 0 \text{ in } \Omega, \ \alpha = 1, \dots, n,$$

with homogeneous Dirichlet boundary conditions. Here $\varepsilon > 0$ is the small homogenization parameter, $\Omega \subset \mathbb{R}^N$ is a bounded Lipschitz domain, $a_{ij}^{\alpha\beta}(\varepsilon,\cdot) \in L^{\infty}(\Omega)$ satisfy the Legendre ellipticity condition, and $u \in C(\overline{\Omega}; \mathbb{R}^n) \mapsto f_i^{\alpha}(\cdot, u(\cdot)) \in L^{p_0}(\Omega)$ are C^1 -smooth with certain $p_0 > N$. We suppose that the family of diffusion tensors $[a_{ij}^{\alpha\beta}(\varepsilon,\cdot)]$ H-converges for $\varepsilon \to 0$ and that

$$N = 2 \text{ or } a_{ij}^{\alpha\beta} = 0 \text{ for } \alpha > \beta.$$

Our result is of implicit function theorem type: If u_0 is a non-degenerate weak solution to the homogenized problem, then for $\varepsilon \approx 0$ there exists exactly one weak solution $u = u_{\varepsilon}$ with $||u - u_0||_{\infty} \approx 0$, and $||u_{\varepsilon} - u_0||_{\infty} \to 0$ for $\varepsilon \to 0$.

The main tools of the proofs are gradient estimates of Meyers and Morrey type for solutions to linear elliptic systems with non-smooth data. Neither assumptions about global solution uniqueness are needed nor additional smoothness of $\partial\Omega$ or $a_{ij}^{\alpha\beta}$ or f_i^{β} or u_0 nor growth restrictions for $f_i^{\alpha}(x,\cdot)$.