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1.1 Extremely Short Optical Pulses

Shalva Amiranashvili“You must go on and find out

all about that light, and what

it is for, and if all is perfectly

safe. . . ” J.R.R. Tolkien

Light signals have been used to transmit information since the earliest days of human history, for

instance, in the form of “signal bombs” (flares), which were used by the Chinese to report on the

movements of the Mongol army during the siege of Yangzhou in 1276. The Mongols also mastered

the technique of light signals: They used large lanterns to control their troops at nighttime. Better

command and control was one of the reasons why the Mongols’ invasion of the rest of the Asian

world was so successful. At about the same time, attempts to defend against the Viking attacks on

the other side of the continent in Europe suffered from the slow exchange of information between

the unprotected coastal settlements and the military authorities.

Mankind has come a long way since the time of signal fires and nowadays information is transmitted

in a more effective manner: via short pulses consisting of electromagnetic waves, so-called wave

packets, like in Figure 1. The Morse code distress signal SOS , established in 1906, is a combination
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Fig. 1: Two wave packets with
the same envelope. To
distinguish between them, a
complex-valued envelope is
used.

of nine such pulses of just two types (short and long or, mathematically speaking, 0 and 1), which

is sufficient to encode any message. The most ambitious project that employs short pulses to

exchange information is without a doubt the World Wide Web, where a typical data center network

is capable to transmit 40 Gb/s. In plain language, one would need one hour to create a full backup

of the United States Library of Congress, of course, only after its complete digitization. As the

digitization is progressing slowly, and the technology is rapidly evolving, the actual time will be

much less than one hour.

Both old-fashioned signal lights and modern wave packets, the latter of which are invisible to the

naked eye, transmit information using the same electromagnetic waves. All such waves are subject

to one common set of equations discovered by James Clerk Maxwell in the mid-19th century. The

main practical difference between these pulses is their duration: The modern pulses in optical

networks are, to put it mildly, much shorter than the signals from the Chinese signal bombs. It is

no wonder that especially the shortest possible pulses are ideally suited for the quick transfer of

information, even taking into account all the difficulties associated with their generation, made

possible by the invention of lasers, and transmission, made possible by the invention of optical

fibers. This is how the ultrashort pulses came into play.“. . . the most significant event

of the 19th century will be

judged as Maxwell’s discov-

ery of the laws of electrodyna-

mics.” R. Feynman

It is important to note that both short (with the duration of one trillionth of a second) and ultrashort

(up to 1,000 times shorter) optical pulses have numerous practical and potential applications in

addition to the transmission of information. In the field of popular science, for instance, they allow

for the filming of a bullet piercing an apple, as in a famous sequence of photos made by Harold E.

Edgerton. To give a more practical example, let an external electromagnetic pulse with the duration

t0 hit and go through a small target, which reacts by emitting its own radiation. On the time scale

t > t0 , the emitted target’s radiation is separated from the initial pulse, which is already gone, what

is not the case for t < t0 . Ultrashort pulses make it possible to initiate and observe certain very fast

processes, those that are fully accomplished and thus unobservable on a larger time scale. A close

analogy is found in mathematics: If we know how a (linear) system reacts on a short-but-strong

perturbation, which physicists associate with Paul Dirac and call Dirac’s delta function, we can

calculate how the system reacts on any perturbation. A prominent application of this approach was
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the observation of a chemical reaction on molecular level (the 1999 Nobel Prize in chemistry).

One more possibility to make use of ultrashort optical pulses is to take advantage of similarities be-

Fig. 2: A trapped pulse that
propagates bouncing
between two invisible
extreme pulses, like between
two mirrors in a laser cavity

tween different physical systems, whose behavior is determined by the propagation and interaction

of waves. It may happen that mathematically such systems are described by the same equation.

Optical black holes, for instance, appear in a specially designed optical system that simulates

solutions of Einstein’s equations of general relativity. Such an analog black hole is represented

by one edge of a short, extremely intense optical pulse propagating in a fiber. Just as a true black

hole absorbs the matter from the surrounding space, the optical one absorbs the energy from other

pulses, with the main pulse gradually becoming shorter and stronger. The analogy is destroyed

when the hole-presenting pulse becomes too extreme and certain optical effects, which have no

equivalent in the theory of gravity, come into play. Before that happens, the optical black hole gives

laboratory access to mysterious phenomena such as event horizons and Hawking radiation, which

are believed to play their part somewhere in deep space [1].

Optical white holes also exist; they are represented by the second edge of the same ultrashort

pulse, and they, in turn, feed other pulses with energy. Both edges of the seed ultrashort pulse

serve as impermeable barriers for the ordinary radiation (in a range of wavelengths that, by the

way, was calculated at WIAS, see [2] and the references cited therein). Among other things, the

impermeable extreme pulses might replace physical mirrors in certain fantastical devices such as

an all-optical laser cavity in Figure 2. Alternatively, the external radiation can be applied to the

“black” and “white” sides of an extreme optical pulse to switch the pulse on and off, just like it

happens with the electric current in a transistor. This is a possible approach to all-optical switching

and optical transistors.

Another example comes from fluid dynamics. Ocean waves have much in common with electromag-

netic waves in fibers: To a certain extent, both wave systems are governed by the same nonlinear

Schrödinger equation (NLSE). Here, an important issue is the statistical distribution of the heights By the way, the nonlinear

Schrödinger equation has no

relation to Erwin Schrödinger

and his famous equation. Be-

ing different, they just look

similar and the name has

stuck.

of individual ocean waves and especially the probability with which the most dangerous killer

waves appear. Sailors often reported on the spontaneous appearance of huge ocean waves, which

were two and even three times larger than their neighbors; most accidents with large ships were

attributed to such waves. Physicists have argued that the extreme waves are also extremely rare.

Their assumed distribution, derived by Lord Rayleigh, had a Gaussian tail. The probability of a large

wave was then considered to be negligibly small. In plain language, an observer of stormy weather

would have to wait about 27 years before a wave that is three times larger than the average wave

height appears.

The first fully recorded 25.6 m killer wave, which was more than twice as tall as its neighbors and

which damaged a sea platform in the North Sea in 1995, put an end to the arguments. The question “Waves that appear from

nowhere and disappear with-

out a trace.” N. Akhmediev

arose about the practical measurement of an unknown statistical distribution. If wave statistics

is difficult to collect in a rough sea, why not to collect it in a fiber with its millions of pulses per

second? It was done by Solli et al., and indeed demonstrated that the extreme waves appear much

more often than previously thought by Lord Rayleigh and his followers; the scientists were wrong,

and the sailors were telling the truth [3].

Direct observations of ocean waves were made using satellites covering large areas simultaneously.

As a result, the equivalent of 27 years for an individual observer could be made in 14 minutes
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for one million of the digital observations. These observations confirmed both the existence of

killer waves and the non-Gaussian distribution of the wave heights. Needless to say, the use of the

satellites was much more expensive and yet necessary because human lives were at stake.

Fig. 3: A numerical solution
of the nonlinear Schrödinger
equation that demonstrates
how a small-amplitude
uniform wave is destroyed
and replaced by a turbulent
state with the spontaneous
extreme events

What is important from a purely scientific standpoint: Solli’s experiments demonstrated universality

of extreme waves, which should be expected and indeed have been found in many nonlinear

systems later on. Like the theory of catastrophes, killer waves have become very popular and are

used to explain just about anything, even economic shocks. Staying on solid scientific ground, an

exemplary numerical solution of the above-mentioned NLSE, which equally applies to both fibers

and oceans, is shown in Figure 3. What is actually plotted is the squared magnitude of the envelope

from Figure 1, which is proportional to the power. One can see how a complex turbulent “rough sea”

develops from an initially uniform state and how huge isolated waves appear here and there. To

prove their non-Gaussian nature, one has to make several thousands of such calculations to collect

statistics of the potential extreme events.

Considering all of the above, there is little doubt that physics of ultra-fast phenomena is a fascinating

area of modern science and that the generation of short pulses is a complex technical task. Are

there any mathematical problems with their propagation? An accurate description of pulses in fibers

seems to be simple. As opposed to string theory or quantum gravity, the fundamental equations

governing all electromagnetic waves in nature have been known for almost 200 years. Moreover,

Fig. 4: As pulses propagate
differently, the numerical
solution domain may become
too small

pulses in optical fibers propagate in one spatial dimension, making their mathematical description

even simpler. Given the equations and availability of powerful computers, why not solve the pulse

propagation problem by brute force? The devil is in the separation of scales.

The smallest spatial scale for an optical pulse is its carrier wavelength with the typical value around

1.4µm, which is close to the minimal attenuation in a silica fiber. This spatial scale is much smaller

than the propagation distance, because the maximal length of a fiber optic cable is around 100 km.

A direct calculation that resolves each wavelength all along the fiber is impossible. All useful pulse

propagation models, including NLSE in the first place, employ approximations, namely:

(I) A pulse or a sequence of pulses is considered on a relatively small and comoving computational

domain. As all pulses change their velocities and do it differently depending on their parameters,

the domain may become too narrow and the calculation will have to be repeated ( Figure 4).
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(II) All normal evolution problems in physics predict a system’s state at (time) t > 0 from the initial

state at t = 0 . In fiber optics, a system’s state is “known” at (position along the fiber) z = 0 for

all t and should be calculated for the evolution coordinate z > 0 for all t . Here, the causality

principle is sacrificed (!!) to get the most simple propagation equation.

(III) All pulses move in one common direction along the fiber, and the backward waves are ignored.

Moreover, these pulses are not too intense and propagate in a weakly nonlinear limit. We then

have a small parameter that makes it possible to expand and simplify the equations.

(IV) As a typical picosecond pulse at 1.4µm contains about 200 field oscillations, it is properly de-

scribed by its carrier frequency ω0 and envelope ψ . The slowly varying envelope approximation

(SVEA) assumes that ψ is smooth and does not change much on the time scale 1/ω0 .

In the simplest case, the envelope (like in Figure 1) does not change at all and just moves along the

fiber with the velocity V = const . The envelope ψ depends only on the delay variable τ = t− z/V ,

and the propagation equation simply states that ∂zψ(z, τ ) = 0 . If the simplest scenario is destroyed

(by dispersion, nonlinearity, attenuation, and so on), the propagation equation takes the form

∂zψ(z, τ ) = dispersionOperator(ψ)+ nonlinearOperator(ψ)+ · · · , (1)

where each term on the right-hand side accounts for a certain physical process. They act indepen-

dently of each other because of the weak nonlinearity and SVEA; the list of the involved operators

can be found in any textbook on fiber optics.

The simplest representative of (1) is the (normalized, focusing) NLSE

∂zψ = i∂2
τ ψ + i |ψ |2ψ, (2)

which is integrable. This is why numerous explicit solutions for all kinds of solitary pulses and

spontaneous killer waves were found. By choosing both the dispersion and nonlinear operators in

a special and very sophisticated manner, one can get further integrable envelope equations [4],

but in practice, the general applications-relevant Eq. (1) is solved numerically. This is usually done

Fig. 5: Relative error ε
versus discretization N for
different splitting methods.
The two best methods (green
and red lines) were found at
WIAS [5].

by the split-step method, where the change from ψ(z, τ ) to ψ(z +1z, τ ) occurs by the successive

accounting of contributions of all involved operators one by one ( Figure 5).

RG 2’s research in the context of the application topic “Optical pulses in nonlinear media” is

focused on pulses, which are so extreme that at least one of the assumptions from the list (I–IV) is

violated. In the first place, this applies to the ultra-short few-cycle pulses with a duration of several

femtoseconds, such that instead of 200 field oscillations within the pulse, we have only 1 or 2 of

them.

Speaking of few-cycle pulses, is there any useful replacement of the envelope concept, one that

avoids the costly solution of the full Maxwell system? The SVEA-independent definition of the

envelope that is currently accepted in optics employs the so-called analytic signal and applies

to any pulse, whether short or not. And yet the definition (a signal that is analytic in the upper

half-plane of complex times) looks like a trick and comes from nowhere. Instead, we employ the so-

called classical creation-annihilation fields, which are borrowed from the continuous Hamiltonian

mechanics. The complex envelope is chosen to transform the Hamiltonian to its normal form. The
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definition is equivalent to the standard one for a longer pulse and is different from and better than

the standard one for a few-cycle pulse. Among other things, the use of the creation-annihilation

fields reduces the costs of the split-step solution.

Another area of research that is closely related to ultrashort pulses deals with an accurate descrip-

tion of medium dispersion, which is encoded in the dispersionOperator(ψ) in (1). Most commonly,

the dispersion effect is approximated by a differential operator, e.g., by i∂2
τ in the simplest Eq. (2)

and by a higher-order differential operator in a more general Eq. (1). Being unbounded, these

operators lead to stiff numerical solutions. The situation with the ultrashort pulses is especially

dangerous, as they have wide spectra such that higher-order derivatives of quickly oscillating

frequency components ( e−iωτ with large ω ) come into play. The difficulty is considerably relaxed

by replacing the polynomial approximations with rational ones.

Throughout the lifetime of the application topic “Optical pulses in nonlinear media”, a considerable

effort was invested in the numerical solutions of (1) and more specific pulse propagation models

that avoid the use of the envelope. In addition to the conventional splitting methods, special

attention was given to additive methods, such as the Burstein & Mirin splitting
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where the evolution operator ehL ( ehN ) yields the solution of the linear (nonlinear) subproblem in

(1) on z ∈ (0, h) . The splitting (3) consists of four threads that can be calculated in parallel. We

found a new class of the additive splittings, a far-reaching generalization of (3); see [5].

Last but not least, we studied situations where excitation of backward waves cannot be ignored

Modulation instability
Standard 4-wave mixing (FWM)
FWM with a backward satellite
FWM with a negative frequency
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Fig. 6: Four possible wave
mixing scenarios. One with a
backward wave and one with
a negative frequency wave
are new, see [6]

because it takes place in a resonant way in the course of wave mixing. We found a kind of Brillouin’s

scattering that takes place due to optical nonlinearities without any involvement of the material

waves. The new theory describes non-envelope pulses propagating in both directions ([6], Figure 6).
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