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1.2 Gelation (Phase) Transition in Coagulating Systems
Heide Langhammer and Dirk Peschka

Soft gels and gelation: Macroscopic and microscopic perspective

Gels are versatile materials that combine physical properties of liquids and solids. Typical examples

sol gel

Fig. 1: Sketch shows gelation
transition from uncrosslinked
polymers (sol phase) on the
left to crosslinked polymers
(gel phase) on the right due
to the formation of bonds
(dotted lines) creating an
elastic polymer network

for gels include gelatin used in food applications, gels and emulsions for medical products, and hy-

drogels in contact lenses. Hydrogels also play a crucial role in biomedical applications, particularly

in tissue engineering, for their biocompatibility and ability to mimic the extracellular matrix, which

provides a scaffold and mechanical support for maintaining the structure and function of living

tissues. Gels consist of random networks of crosslinked particles, often formed by polymers that

connect through entanglements or chemical bonds. These bonds can be created or broken through

dynamic processes, allowing the network to adapt and evolve over time. Here, particles are broadly

defined to include polymers or clusters of crosslinked polymers.

The transition of a liquid-like suspension of particles, known as a sol, into a solid-like structure,

called a gel, occurs through a process known as gelation, as sketched in Figure 1. This process

involves the formation of crosslinks between particles, creating a stable and flexible network, i.e.

a percolating, dynamic structure with distinctive macroscopic viscoelastic properties. Gels exist

in a complex environment shaped by chemical composition, ions and charges, temperature, pH,

pressure, and external forces such as mechanical stress or electric fields, all of which influence

gelation.

These chemical and physical properties call for a complex mathematical framework for predicting

their behavior. Understanding gels and the process of gelation requires a dual approach: examining

the reversible and irreversible bonding processes that lead to the creation of polymer (particle)

networks, and analyzing the macroscopic transition in viscoelastic properties due to these bonding

processes.

Research in the WIAS Main Application Areas Materials Modeling and Flow and Transport focuses on

gels as macroscopic systems with distinct mechano-chemical properties. In contrast, the research

topic Coagulation emphasizes the microscopic properties of particle systems and the study of

their gelation processes via the concept of coagulation. Research at WIAS aims to bridge these

approaches by combining the microscopic stochastic particle interpretation with the macroscopic

continuum representation of materials, working towards a unified understanding of gelation.

The nature of gelation, whether it constitutes a thermodynamic process driven by energy and entropy

or a kinetic process governed by crosslinking rates, remains a subject of debate and connects

thermodynamic continuum models with particle-based coagulation models. While thermodynamic

approaches emphasize free energy landscapes and kinetic models focus on bond and cluster

formation dynamics, combining these viewpoints promises deeper insights into the interplay

between the microscopic and the macroscopic perspective.
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Continuum approaches for soft visco- and poroelastic gels
Continuum models for soft gels typically involve systems of partial differential equations (PDEs) to

describe strongly coupled viscoelastic and poroelastic phenomena. In particular, their softness and

swelling, caused by solvents in polymer networks or water in hydrogels, are typically modeled using

nonlinear PDEs. In the presence of mechano-chemical effects, such systems are characterized by a

Fig. 2: Visualization of phase
separation in a viscoelastic
gel progressing over time
from top to bottom. The gel
exhibits volume changes
(swelling), showing distinct
swollen (yellow) and
contracted (blue) phases.
Image adapted from [2].

free energy ℱ =
∫
�

W (Fe, ϕ,∇ϕ) dx,

depending on the elastic deformation Fe = F F−1
p in a multiplicative decomposition, where Fp

describes inelastic effects, F = I+∇u is the deformation gradient expressed with the displacement

u . The dependence on an internal order parameter ϕ , e.g., representing chemical concentration of

solvents or charges, accounts for the influence of a complex environment.

Minimizers of the free energy can give rise to phase separation and phase transitions, particularly

in cases where W is non-convex, leading to highly non-unique minimizers. Consider the energy

W (F, ϕ,∇ϕ) = G
2
(
tr(C− I)−2 ln(det F)

)
+
σ
2 |∇ϕ|

2
+ ϕ lnϕ + (1−ϕ) ln(1−ϕ)+ χϕ(1−ϕ),

where C = FT F , G encodes the shear modulus, σ represents an interface term, and the remaining

terms describe a Flory–Huggins-type mixing entropy used for polymer mixtures. The parameter

χ controls the phase behavior: χ < 0 promotes mixing, while χ > 0 favors phase separation.

The irreversible gradient flow dynamics of such a system is governed by a dissipation potential

9∗(q; η) that describes irreversible effects and leads to an evolution ∂t q = Dη9∗(q;−Dqℱ(q))
where the state q = (u, Fp, ϕ) represents elastic displacements and inelastic deformations as well

as scalar variables ϕ , describing an abstract but thermodynamically consistent dissipative dynamic,

including phenomena such as viscous friction, viscoelastic relaxation, and phase separation or

phase transition of sol and gel phase; see Figure 2. In particular, the bond reformation in the

macroscopic gel leads to a relaxation of elastic stresses via the evolution of the inelastic variable Fp.

At WIAS, we have been investigating the energy-driven evolution of gels, proving the well-posedness

of the resulting PDEs, modeling gel dynamics such as poroelasticity, phase transitions, and phase

separation, as well as developing structure-preserving discretizations—and we continue to advance

these research topics. These include finite element methods to approximate functionals in finite-

dimensional subspaces, as well as time discretizations that respect the energy dissipation structure

[1, 2]. These efforts in RG 1 Partial Differential Equations and RG 7 Thermodynamic Modeling and

Analysis of Phase Transitions are aimed at biological applications in biomechanics and biomedicine

in collaboration with researchers from Berlin Charité [3]. A key focus is on extending classical

Kelvin–Voigt rheology of purely viscous solids to include viscoelastic relaxation of Maxwell type

using gradient flows and GENERIC (General equation of non-equilibrium reversible irreversible

coupling), to include the reformation of elastic crosslinks, which is joint work with Freie Univer-

sität Berlin (Andreas Zafferi) and Charles University Prague (Tomáš Roubíček) in the context of

geophysical applications. Furthermore, currently extensions to charged polymers and conductive

gels are explored as a natural extension of existing WIAS expertise [4, 5] on analysis, modeling,

and simulation of charge transport and gelation on the particle level. The study of the gelation

transition, in particular, represents a major milestone in this research with the University of Oxford

(Andreas Münch, Sarah Waters), where insights from discrete particle systems are expected to play

a critical role.
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Particle systems with coagulation

A complementary perspective on the phenomenon of gelation is developed within the research

Fig. 3: Initial configuration of
the coagulation process

topic Coagulation. In contrast to the continuum approach, the research of RG 5 Interacting Random

Systems is dedicated to stochastic models that contain individual descriptions of a large number of

particles interacting via pairwise coagulations that take place over time. Coagulation refers to the

merging of particles into a new particle and is modelled as an irreversible change of the particle

system, distinguishing it from the bonding processes we described earlier. Through successive

coagulations, increasingly larger structures emerge, which may lead to a gelation transition de-

pending on whether the larger structures are visible on the macroscopic scale: a phenomenon

interpretable as either a phase transition influenced by thermodynamic potentials or a kinematic

transition governed by the rates of dynamic processes. This duality reflects the interplay between

statistical mechanics and particle-level dynamics in gelation processes.

When aiming for rigorous results about the gelation transition, a tractable model has to be found. A

Fig. 4: Configuration of the
coagulation process after
several coagulations took
place

probabilistic approach was chosen, following the idea of Particle-based Modeling, and a stochastic

process for coagulation is defined. We neglect the movement of the particles, as well as their spatial

extension or viscoelastic properties of the network, focusing instead on two properties: their mass

and location in an abstract state space. The interacting forces that lead to coagulations are captured

via a so-called coagulation kernel, which is a function determining the rate at which a particle pair

merges or forms a bond based on the particle properties. A precise introduction to this model, the

so-called Marcus–Lushnikov process, is given below.

Stochastic models for coagulation

The inhomogeneous random graph. A stochastic model for coagulation is given by a random

graph, where edges are formed between its vertices over time, such that the clusters (i.e., connected

components) of the graph can coagulate due to the addition of an edge. One initializes the process

Fig. 5: Transition of the
cluster configuration in the
inhomogeneous random
graph

with N unconnected vertices, where each vertex v carries some spatial data xv ∈ 𝒮 . Then, an

edge between a vertex pair with data x, x ′ ∈ 𝒮 appears at rate 1
N κ(x, x ′) . In Figure 5, we illustrate

how the cluster configuration of the graph can change through the addition of an edge. The goal

is then to study the evolution of the clusters of the graph for a large number N . We extensively

studied this model in [6], where we provide a detailed analysis of the gelation transition that marks

the emergence of a giant cluster whose number of vertices is proportional to N .

The Marcus–Lushnikov process. The Marcus–Lushnikov process is a stochastic process that

models the evolution of particles that undergo successive coagulation events. The particle data

is given by a location in an abstract space 𝒮 and an integer mass. At time t ≥ 0 , the random

configuration of the process is described by the collection (Xi (t),Mi (t))
n(t)
i=1 , where (Xi (t),Mi (t)) is

the data of the i -th particle and the total number of particles at any time t is given by n(t) . Initially,

the expected number of particles is given by N and each particle carries a mass that is equal to

1 . Then, one samples random times for each particle pair that are independent and exponentially

distributed. Their parameters depend on the data of the particle pair. More precisely, for a particle

pair with data (x,m), (x ′,m′) ∈ 𝒮 × N the parameter is given by N−1 K
(
(x,m), (x ′,m′)

)
, where
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K is the coagulation kernel. The smallest exponential time defines the first coagulation time and

triggers a coagulation event. The corresponding particle pair is removed from the configuration and

replaced by a new particle. For a coagulating particle pair with data (x, m), (x ′, m′) the new particle

is defined to have a mass m + m′ and its new location z is sampled according to a distribution

ϒ((x, m), (x ′, m′), dz) depending on the particle data. The transition of the configuration in a

coagulation event is illustrated in Figure 6. We call ϒ the placement kernel. After the transition,

the parameters of the exponential times are updated according to the new particle configuration

and the procedure is iterated. As mentioned above this model focuses solely on the coagulation(x,m)

(x′,m′)

(z,m+m′)

Fig. 6: Transition of the
particle configuration in one
coagulation step

mechanism that can be observed in different physical or chemical systems. An obvious choice for

the space S would be Rd , however, various choices are possible. For example, if one wants to

model coagulation of molecules, then one can include geometric data or electrical charges into the

particle description.

The main example that we have in mind is a coagulation kernel that has the form

K
(
(x, m), (x ′, m′)

)
= ϕ(x, x ′)mm′, for (x, m), (x ′, m′) ∈ S × N,

where ϕ is a non-negative continuous function. More precisely, one can think of a function that

only depends on the distance of the two particle locations x, x ′ and is bounded from above. The

fact that the kernel grows bilinearly in the masses ensures that the interaction rate with particles of

large masses grows sufficiently fast, as their mass grows. From easier, i.e. non-spatial, versions of

the model it is known that this is the regime where gelation can be observed.

The Marcus–Lushnikov process is the empirical process �(N )
= (�

(N )
t )t≥0 , where, for t ≥ 0 ,

�
(N )
t =

n(t)∑
i=1

δ(Xi (t),Mi (t)) ∈ M(S × N) (1)

is the empirical measure registering the particle data at time t . For a large number of initial particles,

i.e. for the limit, as N → ∞ , one is interested in understanding the limit of 1
N �(N ) .

Large deviations approach to gelation

The usual approach to study the Marcus–Lushnikov process builds on its construction as a contin-

uous-time Markov chain and aims to show that its limit, as N → ∞ , follows a certain dynamics,

which can be described via a system of differential equations, called the Smoluchowski equation.

However, it is known that this equation does not always have a solution, which is related to the

possibility that after a finite time large particles are formed whose mass diverges as N → ∞ . If

their masses make up a non-trivial portion of the entire mass in the system, we call the collection of

those particles the gel. Unfortunately, the gel’s influence on the system’s dynamics is not captured

in the Smoluchowski equation, and an extension of the equation is only possible in certain cases,

giving the Flory equation or modified Smoluchowski equation.

We resort to an approach that describes all possible evolutions of the particle system by carefully

studying the limit of the distribution of the process with the help of Large Deviations. A main

challenge consists in finding a suitable description of the distribution and was solved in our work
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[7] via a statistical mechanics approach that has not been used in that way before.

T

S

0

interactions Fig. 7: Illustration of the
decomposition of the process
into three interacting
coagulation trees

The key is to decompose the coagulation process into certain sub-processes, called coagulation

trees, each of which tracks the evolution of particles that have coagulated by a fixed time T into

one particle, see Figure 7. Thus, we reinterpret the outcome of the coagulation process on the time

interval [0, T ] as interacting coagulation trees that are sampled according to a certain distribution.

They interact with each other via an interaction cost that corresponds to the probability that none

of the particles in distinct trees have coagulated during [0, T ] . This approach is not only novel,

but it is useful for deriving a large-deviations principle that describes the limit of the distribution

of ( 1
N �

(N )
t )t∈[0,T ] , as N → ∞ , on an exponential level. Let us explain briefly how the theory of

large deviations sheds light on gelation. Indeed, it can be used to identify the optimal state of the

system that can be observed with high probability, as N → ∞ . If the optimal state only consists of

particles of finite mass, as N → ∞ , then gelation did not occur, while otherwise gelation did occur.

Conclusions and outlook

In our work on PDEs for gels, we analyze and discretize models that incorporate poroelastic and

viscoelastic properties grounded in thermodynamic principles [1, 2]. Moving forward, we aim to

extend these models to account for more complex macroscopic aspects of gelation. In our work

on the Marcus–Lushnikov process [7], we employ the large-deviations approach to derive criteria

for gelation that depend on upper and lower bounds on the coagulation kernel. In our previous

study on the inhomogeneous random graph [6], we were even able to determine a precise time of

gelation and found a description of the spatial configuration of the macroscopic cluster. Several

extensions of the model can be the subject of further investigations, e.g., allowing for fragmentation

or movement of the particles.
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