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1.2 Phase Transitions in Random Graphs
Tejas Iyer, Lukas Lüchtrath, and Elena Magnanini

Many complex systems, in areas as diverse as biology, sociology, and computer science, can be

Fig. 1: Visualization of the
internet by Barrett Lyon,
Opte project (2003)

represented as networks. That is, the system can be modeled by nodes and interactions between

them, represented by edges. Such systems include, for example, the internet, where nodes are

webpages that are connected by hyperlinks (Figure 1), networks in molecular biology (Figure 2),

social networks, and communication networks. More generally, large sets of correlated data are

represented by networks.

In order to gain a better understanding of certain network effects, for instance the fast spread

of news through social media, it is of great importance to identify and study typical structures

and features of networks arising in the real world. One easily observable property is the degree

distribution. Here, the degree of a node is the number of other nodes that it is connected to, and the

degree distribution then gives the probability of observing a certain degree when picking a node

randomly from the network. Interestingly, it has been observed that in many real-world networks,

the probability of choosing a node of degree k behaves roughly like k−τ for some τ > 2 , a

property known as being scale free. This property indicates the existence of exceptionally high

Fig. 2: Visualization of a
biological network by Fozail
Ahmad,
Bioinformatics Review (2016)

degree nodes, thus, informally, indicating that there is no characteristic “scale” in the degrees

(Figure 3). Another structural property of many networks is that they tend to display a high degree

of clustering. Clustering refers to the feature that two nodes connected to a common node are more

likely to be connected to each other, and is often measured in terms of the number of triangles in

the network. Another property of interest is the existence of a connected component that contains a

fraction of all the nodes, a macroscopic connected component.

Appropriate mathematical models, for which the emergence of the properties described above are

proven rigorously, can be used as null models or benchmarks when it comes to testing algorithms

and statistical methods for real-world applications. Moreover, these mathematical proofs can often

provide insights into the reasons underlying the emergence of such properties.

Phase transitions in random graphs. In order to incorporate the uncertainties arising in real-world

Fig. 3: Visualization of a
scale-free network by Pim
van der Hoorn,
Networkpages (2020)

applications, networks are generally modeled mathematically as random graphs. Here, the edges

and sometimes also the nodes are random. Of particular interest is whether or not changing certain

parameters leads to dramatic changes in the graph structure, a phenomenon usually referred to as a

phase transition. This is important since parameters associated with these networks may fluctuate

(due to, for example, phenomena such as epidemics arising on these networks), and we want to

know under what circumstances these fluctuations will have dramatic consequences.

Our research. Our research in Research Group RG 5 Interacting Random Systems and the Leibniz

Group DYCOMNET Probabilistic Methods for Dynamic Communication Networks investigates the

emergence and nature of phase transitions in multiple contexts. The first part reports on the

emergence of condensation in inhomogeneous preferential attachment models (popular time-

evolving models producing scale-free random graphs), where a positive proportion of the edges in
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the network may accumulate around nodes of large degree. The second part highlights work related

to the presence or absence of macroscopic connected components in spatial models, a property

that is particularly interesting in the context of wireless telecommunication. The third part is related

to work regarding phase transitions in the edge density of exponential random graphs. The latter

arise as models incorporating clustering in diverse contexts.

Inhomogeneous preferential attachment models

A popular class of models that displays some of the features associated with complex networks, in

particular the property of being scale free, is known as preferential attachment. Informally, these

are sequences of graphs evolving in discrete time, where nodes arrive at discrete time-steps and

connect to existing nodes with probability proportional to their degree. Models of this type date

back to Yule, 1924, but were popularized in the context of random networks by Barabási and Albert,

1999.

Despite their success, a shortcoming of the classical preferential attachment models is that they

Fig. 4:
A simulation by Bas
Lodewijks illustrating the
extreme-condensation phase,
when f (i, w) = i p

+ w ,
p > 1 . The parameter regime
simulated corresponds to
that when there is a single
node of infinite degree,
which may be the large
orange node.

fail to encapsulate the inherent inhomogeneities arising in real-world networks. For example, in

the classical models the oldest nodes will tend to have the largest degrees, whilst on the other

hand, in contexts such as the internet, one may expect newer nodes to compete with older ones.

Extensions and newer variants have addressed this issue by assigning positive weights to nodes,

so that newer nodes attach to previous ones according to a function of their degree and their weight.

If this function is monotone increasing in the weight variable, one may regard the weight as the

attractiveness of a node. When this function is given by the product of the degree and weight, this

model is known as preferential attachment with multiplicative fitness, or the Bianconi–Barabási

model (Bianconi and Barabási, 2001). Here, researchers observed that, when nodes are assigned

independent, identically distributed (i.i.d.) weights, there is a critical condition on the weight

distribution leading to a condensation phase transition. In this context, condensation means that

a positive fraction of edges in the network accumulates around nodes of maximum weight. This

observation was first proved mathematically in Borgs et al., 2007.

Often, due to simplicity, one considers evolving tree models since one expects many properties, such

as the degree distribution, to be similar to models involving evolving graphs. A natural framework of

evolving trees, which encompasses and generalizes many of the existing models above, posits that

nodes v arrive one at a time and are assigned a random i.i.d. weight Wv . These weights may take

values in an arbitrary measure space (S,𝒮) . Newly arriving nodes then connect to a single existing

node with probability proportional to a general, measurable fitness function f : N0 × S→ [0,∞)

that incorporates information about the current degree of the target node, and its weight. This

model class possesses a rather rich structure. The condensation behavior may roughly be classified

according to the following conjectured phases [3]:

1. Non-condensation phase: There exists λ > 0 such that
∑
∞
j=1 E

[∏ j−1
i=0

f (i,W )
f (i,W )+λ

]
= 1.

2. Condensation phase: For any λ > 0 such that the sum converges
∑
∞
j=1 E

[∏ j−1
i=0

f (i,W )
f (i,W )+λ

]
< 1.

3. Extreme-condensation phase: For any λ > 0 ,
∑
∞
j=1 E

[∏ j−1
i=0

f (i,W )
f (i,W )+λ

]
= ∞.
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This conjecture is proved in a number of specific cases in [3]. Both the second and third phase are of

particular interest in exploring more detailed properties of the process. In the third phase, all of the

mass of edges concentrates on a sub-linear number of nodes of large weight and degree. Ongoing

work in exploring this phase has led to some more interesting results concerning the limiting infinite

tree associated with the model, roughly establishing two other phases:

1. The no-sideways explosion phase: For almost all W ,
∑
∞
i=0

1
f (i,W ) = ∞ . In this case, under

Fig. 5:
A simulation by Bas
Lodewijks illustrating the
“extreme condensation”
phase, when
f (i, w) = i p

+ w , p > 1 . In
the parameter regime shown,
there is a single infinite path.

another critical condition, there is either a single infinite path in the associated infinite tree, with

every node having finite degree, or, when f (i,W ) > 0 for all i ∈ N , there exist infinitely many

nodes of infinite degree and uncountably many infinite paths. The former phase may be regarded

as an extreme effect of competition on the structure of the infinite tree, making everyone poor in

the sense that their degree is finite rather than infinite. In [5], we derived sufficient criteria for

either case.

2. The certain-sideways explosion phase: For almost all W ,
∑
∞
i=0

1
f (i,W ) <∞ . In this case, there

are precisely two scenarios: Either the infinite tree contains exactly one node of infinite degree

or exactly one infinite path (but not both!); see Figures 4 and 5. We also derived sufficient

conditions for either scenario, proving a phase transition in many particular instances of the

model [4].

Work on this problem is closely related to so-called Crump–Mode–Jagers branching processes,

which model the size and structures of populations in continuous times (for example, the number

of species of a biological entity) and are thus of interest in regards to other potential applications

outside network science.

Percolation phase transition in the weight-dependent random connection model

The models described in the previous part can produce scale-free networks. By further embedding
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Fig. 6: Realization of the
Boolean model based on a
Poisson point cloud

the nodes into space, in addition to assigning them weights, we can also incorporate clustering.

More precisely, in the models we consider in this part, pairs of nodes that are located closer to

each other are more likely to connect, in addition to pairs where one node has a high weight. A

well-known example is the Boolean model, where the weights are random radii, and two vertices

are connected when the associated balls centered at the nodes intersect (Figure 6). Unlike the

model of the previous part, this model has no time parameter and consists of infinitely many nodes

homogeneously distributed in the entire Euclidean space. A main interest of DYCOMNET lies in

finding criteria for the presence or absence of infinite connected components. For communication

applications, the components are the parts of the network through which messages can be ex-

changed. Hence, the existence of infinitely large components is of fundamental importance. We

say that a graph with an infinite component percolates. Originally, percolation was introduced by

Broadbent and Hammersley (1957). The idea was to model a porous medium as a random graph,

and an infinite component is interpreted as a fluid being able to percolate through the medium.

A key quantity in our setting is the amount of long edges as a measure of what different regions a

vertex can reach. Formally, the nodes are embedded into d -dimensional Euclidean space through

a standard Poisson point process and additionally assigned an independent mark distributed

uniformly on (0,1) representing its inverse weight. Any pair of nodes x and y with marks ux
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and uy then independently forms an edge with probability ρ(β−1g(ux , uy)|x − y|d ) . Here, ρ is

a non-increasing function and, hence, short distances lead to larger probabilities. The function

g is assumed to be non-increasing such that smaller marks (i.e., larger weights) lead to higher

connection probabilities. Additionally, β > 0 is an intensity parameter scaling the expected degree.

Many established models belong to the presented class. For instance, the aforementioned Boolean

model is given by the choice ρ = 1[0,1] and g(ux , uy) = (u
−γ /d
x + u−γ /dy )−d for some γ ∈ (0,1) .

As it is well known that for d ≥ 2 graphs of this class contain an infinite connected component

Fig. 7: Snapshot of a
weight-dependent random
connection model with
δeff > 2 and small β

for large values of β , we are interested in whether there is a phase transition such that an infinite

component no longer exists when β is small. The key to answering this question is to quantify the

occurrence of long edges on various scales via the effective decay exponent defined as

δeff := − lim
n→∞

log
∫ 1

1/n
∫ 1

1/n ρ(β
−1g(s, t)n) ds dt

log n
.

It turns out that δeff > 2 is a sufficient condition for the absence of percolation for small enough

β (Figure 7). Additionally, one can express in terms of δeff the decay of the probability that the

cardinality and/or the spatial extension of a typical component in the non-percolation regime

exceed a certain size [6]. The situation in dimension d = 1 is different. Here, the existence of

an infinite component is rather hard to achieve. Nevertheless, it turns out that δeff < 2 implies

the presence for large β and conversely δeff > 2 implies the absence of an infinite component

for all β . We also show the existence of a largest component of linear size in larger and larger

snapshots of the graph [2]. The idea behind the results is that n−δeff approximates the probability

of an edge between two vertices chosen uniformly among two sets of n vertices at distance roughly

n1/d when n is large. Ignoring correlations, there are n2 trials to form an edge between those sets

and, therefore, the probability of connecting two distant sets of nodes increases for δeff < 2 , but

decreases for δeff > 2 .

Limit theorems for exponential random graphs

Exponential random graphs are another ubiquitous class of models that can incorporate clustering

Fig. 8: Snapshot of a
weight-dependent random
connection model with
δeff < 2 and small β

amongst other network tendencies. From the point of view of sociology, one of the main desires is to

understand how the connectivity in local communities can influence the overall network structure.

This can be modeled by considering a probability distribution that biases the occurrence of certain

features, such as the number of edges or triangles, and then analyzing the large-scale properties of

random networks sampled according to this distribution. Mathematically, if this bias is introduced

by means of an exponential term, such a distribution is called a Gibbs measure, and the function

that encodes this biasing is called a Hamiltonian. For instance, for a simple graph G on n labeled

vertices with E(G) edges and T (G) triangles, we define the Hamiltonian

ℋn;α,h(G) :=
α

n
T (G)+ hE(G) , with α, h ∈ R . (1)

As a probability measure on the space 𝒢n of simple graphs with n vertices, we take the following
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Gibbs probability

µn;α,h(G) :=
exp

(
ℋn;α,h(G)

)
Zn;α,h

, with Zn;α,h :=
∑

G∈𝒢n

exp
(
ℋn;α,h(G)

)
, (2)

where the normalizing constant Zn;α,h is called partition function. Random graphs whose distribu-

tion is a Gibbs measure of the form (2) are called exponential random graphs. When the Hamiltonian

is of the form (1), we speak of the edge-triangle model; the well-known Erdős–Rényi random graph

is given by the special case α = 0 and h = log p
1−p . A crucial characteristic of the model is the

so-called limiting free energy associated with (2), which is defined as

fα,h := lim
n→+∞

1
n2 ln Zn;α,h .

A lack of analyticity in this function characterizes the presence of a phase transition. An explicit

Fig. 9: Illustration of the
phase space (α, h) for the
edge-triangle model (1) in
the replica-symmetric regime

expression of fα,h has been obtained in Chatterjee and Diaconis, 2013, when the parameters (α, h)

lie in a specific region called the replica-symmetric regime, corresponding to α > −2 , h ∈ R . This

term is borrowed from spin glass theory and is related to the fact that, in the limit, the model behaves

like a mean-field model. In particular, it has been proved (Radin and Yin, 2013) that the replica

symmetric region includes a (non-explicit) continuous and strictly decreasing curve ℳrs at which a

first-order phase transition in the limiting edge density u∗(α, h) occurs, and the first-order partial

derivatives of fα,h have jump discontinuities. At the critical point (αc, hc) =
(
27/8, log 2− 3/2

)
,

the phase transition is of second order, and the second-order partial derivatives of fα,h diverge

(see Figure 9 for a qualitative representation of the phase diagram).

One of the key results of our paper [1] is the determination of the asymptotic distribution of the

edge density 2E(G)
n2 (as the graph size n tends to infinity) within the replica-symmetric regime.

Our analysis provides a strong law of large numbers whenever the parameters (α, h) are taken

outside the critical curve and proves that the edge density concentrates with high probability

in a neighborhood of the free energy maximizers on the critical curve. Fluctuations of the edge

density are also investigated, and a central limit theorem is derived for parameters outside the

critical curve and away from the critical point (αc, hc) . These results are extended to a general

family of exponential random graphs where the Hamiltonian involves various sub-graphs counts.

A predominant part of our results includes the exploration of a simplified model, the mean-field

approximation of the edge-triangle model. A major advantage of this approximation is that the

Hamiltonian can be expressed as a function of the edge density, and exact computations are

possible (like in the Curie–Weiss model). In this setting, we can prove the analogous of the results

derived for the edge-triangle model (partially in a stronger form), and we can go further, in particular,

we are able to characterize the fluctuations at the critical point, presenting a non-standard central

limit theorem with scaling exponent 3/2 .

Some heuristic computations based on large deviation estimates suggest that the edge-triangle

model may exhibit the same behavior as the mean-field approximation when the parameters vary in

the phase space. We then formulate conjectures about fluctuations at the critical point and about

the behavior of the edge-triangle model on the critical curve.
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Conclusion and outlook

Our work deals with phase transitions arising from random graphs occurring in diverse contexts. The

models we consider reflect many real-world properties, such as clustering and being scale free, and

often exhibit important features associated with the networks: the distribution of edges amongst

nodes of certain weights, crucial connectivity properties, or the edge density. We therefore believe

that this is an important, rich area with interesting problems both in the context of new applications,

and mathematically. There are many more results in the pipeline!
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