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Introduction

Diffusion is an irreversible process governing the movement of particles from regions of higher toThe term diffusion stems from

the Latin word diffundere,

which means to spread.

regions of lower concentration. The phenomenon of diffusion is ubiquitous in nature and can be

observed in gas, liquids, and even in solids. Everyday examples include the spread of perfume,

smoke, and other airborne particles through the surrounding air, and the dispersion of a droplet

Fig. 1: Diffusing particles

of ink in a glass of water until the solution becomes uniformly colored. The continuum approach,

which treats diffusion as a continuous process rather than focusing on individual particles, traces

back to Fick’s laws in the 19th century. This approach, which we adopt in this article, is well-suited

for studying physical systems from a macroscopic viewpoint.

In systems with multiple components, diffusive processes can become intricate, and the flux of a

species S1 may be influenced by the density gradient of a second species S2 . This is when cross-

diffusion occurs. Physical systems that can exhibit cross-diffusive behavior comprise electrolytes,

temperature-responsive materials, and thermoelectric materials where a temperature gradient may

induce an electric current.

The mathematical concept of cross-diffusion also encompasses certain biological processes, in-

cluding chemotaxis and cross-effects arising in predator-prey systems. Cross-diffusion may induce

intriguing patterns in reaction–diffusion systems. It may lead to the surprising phenomenon of

uphill diffusion, which in contrast to the classical Fickian diffusion downhill, i.e., in the direction

of the negative density gradient, describes a movement uphill, towards higher density. For an

illustration in one space dimension we refer to Figure 2, where, loosely speaking, in the region

x ≈ 0.5 the red species gets pushed away uphill by the blue species. (Detailed descriptions of the

numerical experiments will be omitted in this short highlight article.)

Fig. 2: Uphill diffusion in the
segregation cross-diffusion
system (6) ( n=2, k1=17,
k2=1 & no-flux boundary c)
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(a) Density profiles at initial time (b) Effect of uphill diffusion in u1

Cross-diffusion systems are challenging to analyze mathematically, and explicit solution formulas

are rarely available. Effective methods for their analysis often rely on specific structural conditions.

In this article, we outline our recent results on the analysis of cross-diffusion systems enjoying a

structure motivated by thermodynamics: the systems considered are driven by an entropy, and
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dissipative effects are induced by a symmetric and positive semidefinite tensor acting on the

driving forces. The symmetry of the dissipation tensor is linked to the famous reciprocal relations,

also called Onsager symmetry—a concept attributed to the Nobel Prize laureate Lars Onsager that

expresses a symmetry property of the transport coefficients in nonequilibrium systems modeling

an irreversible thermodynamic process.

In the next section, we introduce key notions with a focus on parabolic cross-diffusion and briefly

discuss the example in [2, 3]. Subsequently, we focus on a cross-diffusion system of hyperbolic–

parabolic type, which arises in mathematical biology, and describe our approach in [1] towards its

analysis. Certain types of symmetry properties turn out to be useful if not indispensable when it

comes to deriving a priori estimates.

Entropy structure and Onsager symmetry

Consider a quasilinear second-order system of partial differential equations (PDEs) of the form

∂u
∂t
= ∇ · (A(u)∇u), where u = (u1, . . . , un)

T , A(u) ∈ Rn×n . (1)

Formally, cross-diffusion is characterized by the presence of a non-vanishing off-diagonal term in

the so-called diffusion matrix A(u) . A fundamental question in the mathematical analysis of PDEs

such as (1) concerns their well-posedness, which comprises three properties: the existence of a

solution, its uniqueness, and the continuous dependence of the solution on the data. In order for

system (1) to be well posed for suitable initial and boundary conditions, it is necessary to impose a

structural condition on the matrix A . Sufficient for the well-posedness on a short time interval is

the spectral condition σ(A(u)) ⊂ {z ∈ C : <(z) > 0} , in which case the system is parabolic (in the

sense of Petrovskii). For understanding the global well-posedness, spectral properties alone are

insufficient.

Diffusive systems arising in thermodynamics often exhibit a formal gradient-flow structure, ex-

pressed as (cf. [6])

u̇ = −𝒦(u)Dℋ(u), (2)

where u̇ = d
dt u , ℋ denotes a (differentiable) driving functional and 𝒦 the Onsager operator, a

symmetric and positive semidefinite linear operator, whose symmetry property reflects the Onsager

principle. In this article, we focus on systems (2) with u = u(t, x) ∈ [0,∞)n, t > 0, x ∈ Td , n, d ∈ N,
where ℋ is given by an integral functional ℋ(u) =

∫
Td h(u) with h ∈ C2 strictly convex and where

the Onsager operator takes the form 𝒦(u)ξ = −∇ · (M(u)∇ξ) with M(u) ∈ Rn×n symmetric and

positive semidefinite. Inserting these choices into (2) yields (1) with

A(u) =M(u)D2h(u). (3)

Observe that the matrix A(u) need not be symmetric. But identity (3) implies that A(u) is diagonal-

izable over R and all its eigenvalues are nonnegative. Thus, if in addition rankA(u) = n, the PDE

system (1) is parabolic. For parabolic cross-diffusion systems, the structure (3) is very useful in the

construction of global-in-time weak solutions.
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Entropy variables and symmetrization

Given an entropy function h on a convex domain 𝒟 ⊆ (0,∞)n , the so-called entropy variable

v := Dh(u) plays an important role in the construction of global (weak) solutions and the design of

suitable approximation schemes. Notice that for h strongly convex and smooth, the differential

Dh is a diffeomorphism onto its image. Recovering u from v via u = (Dh)−1(v) = Dh∗(v) , where

h∗ is the Legendre transform of h , we deduce u ∈ 𝒟 and thus ui ≥ 0 for all i = 1, . . . , n —a

conclusion that can be seen as a substitute for a weak form of the maximum principle. Importantly,

the change to entropy variables brings the PDE system (1), (3) in a symmetric form

D2h∗(v)∂tv = ∇ · (M(u)∇v), (4)

in which the entropy estimate is derived by taking as a test function the unknown v itself.

Example: Soret and Dufour effect

The Soret effect, also called thermodiffusion, refers to the occurrence of a diffusion flux caused by

a thermal gradient. Its counterpart, according to Onsager symmetry, is the Dufour effect—a heat

flux induced by a density gradient. In the joint paper [2], we established a global existence result

for nonisothermal reaction–diffusion systems accounting for cross-effects of Soret and Dufour

type. The approximation scheme in [2] is based on a variant of (4) including a higher-order elliptic

regularization term. The usefulness of the thermodynamic structure for establishing weak–strong

uniqueness of nonisothermal reaction–diffusion systems has been observed in [3] (see also [4]).

Cross-diffusion with incomplete diffusion

The condition rankA(u) = n is not satisfied in all applications. For instance, biological tissue

tends to separate into distinct regions, a behavior known as segregation, which is incompatible

with complete diffusive mixing. In this context, we considered in [1, 5] the following cross-diffusion

system

∂t ui = ∇ · (ui∇(Bu)i ), i = 1, . . . , n, (5)

where B ∈ Rn×n is such that BD(λ) ∈ Rn×n is symmetric and positive semidefinite for some

λ ∈ (0,∞)n , where D(λ) := diag(λ1, . . . , λn) . This system generalizes the equations

∂t ui = ∇ · (ki ui∇ p), i = 1, . . . , n, where p =
n∑

i=1

ui , ki > 0, (6)

obtained by the choice B = k⊗ 1, 1 := (1, . . . ,1)T , k := (k1, . . . , kn)
T , which is admissible with

λ = k . Equations (6) have been proposed in the mathematical biology literature and describe the

mass-preserving transport of a system of n species with densities ui , i = 1, . . . , n, along the

velocity fields −ki∇ p , each of which points in the direction of fastest spatial decay of the total

density p . Thus, the equations model species undergoing a directed motion in order to avoid

spatial crowding.
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System (5) has a gradient-flow structure of the form (3). Indeed, letting

h(u) =
n∑

i=1

1
λi
(ui log ui − ui ) and M(u) = D(u)BD(λ)D(u),

we recognize in the product M(u)D2h(u) the diffusion matrix A(u) = D(u)B. Notice that

rankA(u) = rankB for all u ∈ (0,∞)n . Hence, if r := rankB < n, the PDE system is not parabolic,

and we are faced with a borderline case, where local well-posedness cannot directly be inferred

from classical literature, but may still be expected given the nonnegativity of all eigenvalues of

A(u).

Normal form

To analyze the local well-posedness of (5), we introduced in [1] a change of variables that brings

the system in a more canonical form, a so-called normal form.

Change of variables. Let 8 : (0,∞)n → 𝒟 ⊆ Rn be a diffeomorphism with inverse 9 , and define

w := 8(u) . Then, the equation for w takes the form

∂tw = ∇ · (Â(w)∇w)− (∇D9(w)−1) · A(9(w))D9(w)∇w, (7)

where the diffusion matrix Â(w) := D9(w)−1A(9(w))D9(w) is conjugate to A(9(w)) . In particu-

lar, the two matrices share their spectrum and rank, which implies that rank Â(8(u)) = rankA(u) =
r for u ∈ (0,∞)n .

A key point of the normal form is to choose 8 in such a way that Â(w) has a block structure

Â(w) =

(
0(n−r)×(n−r) 0(n−r)×r

0r×(n−r) AII
∗ (w)

)
, where AII

∗ (w) ∈ Rr×r has full rank. (8)

In this case, the last r components wII := (wn−r+1, . . . , wn) satisfy a parabolic subsystem, and it

remains to understand the structure of the (n−r)× (n−r) first-order subsystem that governs the

evolution of wI := (w1, . . . , wn−r ).

Symmetrization of first-order subsystem. If r < n−1 , the quasilinear first-order subsystem

of (7) satisfied by wI is nonscalar, in which case its local well-posedness, for wII fixed, becomes

nontrivial. Crucial for the derivation of a priori bounds from energy estimates is symmetrizability (in

a sense different from the Onsager principle). A first-order PDE system of the form

A0∂tv +

d∑
j=1

A j ∂x j v + F = 0, (9)

where v = (v1, . . . , vm), A j=A j (t, x) ∈ Rm×m , F=F(t, x) ∈ Rm , is called symmetric hyperbolic

if the matrices A j , j = 0, . . . ,m, are symmetric and if A0 is positive definite. System (9) is

called symmetrizable if it can be cast in a symmetric hyperbolic form upon left-multiplication by a

nonsingular matrix Ã0(t, x) . Symmetrizability is classical for hyperbolic systems of conservation
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laws with an entropy structure. However, the symmetrizability of the first-order subsystem in (7)

(assuming (8)) is not immediate. In [1], we have established it by an explicit calculation for a

(nonlinear) change of variables 8 based on an eigenbasis of the symmetric matrix BD(λ). As

a matter of fact, in the new variables w = 8(u) we obtained in [1] a system in normal form of

symmetric hyperbolic–parabolic type, which reads as

AI
0(w)∂twI +

d∑
j=1

AI
1(w, ∂x jwII)∂x jwI = fI(w,∇wII),

AII
0 ∂twII −∇ ·

(
AII
∗ (w)∇wII

)
= 0,

where AI
0 : 𝒟−→R(n−r)×(n−r)

spd , where AI
1 : 𝒟 × Rr

−→R(n−r)×(n−r)
sym is linear in its second ar-

gument, and where fI : 𝒟 × Rdr
−→Rn−r is quadratic in its second argument. Furthermore,

AII
0 ∈ Rr×r

spd is constant, and AII
∗ : 𝒟−→Rr×r

spd . By Rm×m
spd , we denote the cone of symmetric positive

definite real m×m matrices.

This normal form allowed us to apply existing methods for symmetric hyperbolic systems and

(symmetric) parabolic systems separately to the respective subsystem. A short-time classical

solution to the coupled hyperbolic–parabolic system, and thus also to (5), was then obtained by a

contraction mapping argument.

Fig. 3: Parabolic (middle) &
hyperbolic (bottom) part of
normal form (11), and
densities u1, u2 (top)
( k1=1, k2=17 )
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(a) Profiles at initial time (b) Shock in z at a later time

Example

For system (6) with n = 2 , the change of variables introduced in [1] takes the form

w = (z, p) := (8I(u),8II(u)) =
(

log(u1/k1
1 /u1/k2

2 ), u1+u2
)
, (10)
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and the PDE system in the new variables becomes an inhomogeneous quasilinear transport equation

coupled to a quasilinear parabolic equation:

∂t z − c(w)∇ p · ∇z = f (w,∇ p),

∂t p = ∇ · (a(w)∇ p),
(11)

where ( with u = 8−1(w) )

c(w) = k1 + (k2 − k1)
k1u1
a(w)

> 0, f (w,∇ p) = −
(k2 − k1)

a(w)
|∇ p|2, a(w) =

2∑
i=1

ki ui .

Figure 3 illustrates the change of variables (10) leading to the normal form. The hyperbolic character

of the z -evolution becomes apparent through the shock-type singularity that emerges when passing

from Figure 3 (a) to (b).

Conclusion and outlook

Thermodynamic structures give rise to effective methods to analyze cross-diffusion, including

change to entropy variables and symmetrization. For cross-diffusion with incomplete diffusion,

local-in-time well-posedness in spaces of smooth functions relies on a change of variables that

brings the underlying PDE system in a normal form. In this context, it would be interesting to

identify, in more generality, the relevant structural properties that ensure symmetrizability of the

resulting first-order subsystem. Another challenging question concerns the possibility of a finite-

time breakdown of the local classical solution to (6), which we have only captured numerically so

far (cf. Figure 3). Concerning the important questions of a global-in-time analysis of (5) for large

data based on generalized solution concepts as well as numerical approximations preserving the

thermodynamic structure, we refer to our recent preprint [5].
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