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The modern world has brought numerous technological advancements in a wide variety of fields,
many of them dependent on the proper design of new materials, especially composites. First of
all, the demand for specialized, high-performance materials is ever increasing as more and more
use cases emerge; think of light-weight but sturdy wings for airplanes or degradation-resistant but
efficiently functioning photovoltaic cells. The use of compound substances is almost ubiquitous
here as many contrasting properties have to be combined. But also for less spectacular everyday
life applications, we increasingly depend on a profound understanding of our materials across all
ranges of size, since the scale at which we employ these materials is massive. The Hoover dam
is a prominent and almost a century-old example, where the underlying geometric structure, like
the steel beams inside the concrete or the microstructure of the concrete itself, has a tremendous
impact on the stability of the entire object. Hence, a deeper understanding of not only the underlying

materials but also the emerging macrostructures of these materials becomes necessary.

Fig. 1: Polished concrete

surface. Coarse black basalt
A concrete example:  Concrete is a mixture of cement, sand, and gravel, see[Figure 1| Atthe same s embedded in gray cement.

time, it is a perfect example of a porous medium: If not properly sealed, air and water, along with
various aggressive chemicals, can penetrate deep into the material, slowly eroding it over time. This
becomes problematic, for example, in bridges, sewage pipes, or dams, as the material eventually
will erode even if sealed. To analyze the behavior of this mixture, one could try to track every
single grain of sand and gravel and every pore in numerical simulations, but that would be way
too complicated and time consuming. On the other hand, mathematical homogenization lets us
simplify this problem by averaging out the tiny details of the material and look at it on a larger scale.
Instead of focusing on each individual grain, we treat the concrete as if it were a single, uniform
material with average properties. This method is extremely useful since

W it allows for simpler calculations as we only have to deal with one averaged substance now.
B Inturn, this helps us to predict the macroscopic behavior of the compound material.

Such composite structures are common not only in engineered materials, but also in the natural

world like volcanic rocks. Unfortunately, this averaging out proves to be far from simple. The
effective physical properties of a composite material cannot be obtained by simple averaging over

its constituents. Instead, we find that the underlying microscopic structure plays a vital role. Fig. 2: Plywood consisting of
multiple horizontal wooden

Iayers. https://commons.

wikimedia.org/wiki/File:

A brief introduction to homogenization

Spruce_plywood.JPG

The goal of mathematical homogenization is to derive formulas that describe the macroscopic
coefficients of the material in terms of their microstructure as well as the macroscopic equations
that describe the material’s effective behavior. It is important to emphasize that the macroscopic
behavior may differ significantly from the microscopic behavior, particularly if certain effects domi-
nate a complex system. A popular example for this is the dominance of friction between water and
sand grains when water seeps into ground. This causes the microscopic Navier—Stokes equation to
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Fig. 3: Composite with
non-isotropic apom - Given
conductance aq,ay on
dark/light regions, the
effective vertical conductance
is (a1 +ay)/2, but

2/(a; ! +ayt) inthe
horizontal direction.
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Fig. 4: Foam at scale ¢ = 1
(left) and ¢ = 1/4 (right)
with the solid depicted in
gray and the air bubbles in
white

turn into the simple Darcy equation. The prime example that is typically presented to students first
is the stationary diffusion equation

-V. (a(x/s)Vu(S)) = f, (1)

which—as the name suggests—can describe the diffusion of a substance in a carrier material. Also,
it describes the flow of heat inside such a microstructure and other phenomena. Here, a(x/¢) > 0
denotes the conductivity of our heterogeneous medium in the point x, at scale ¢ of the microstruc-
ture, and f is some fixed function governing the heat source density. Given that a solution u®
exists for the partial differential equation (PDE), we study its behavior when ¢ tends to 0, i.e.,
when the scale of the microstructure becomes smaller and smaller. In this regard, we can formulate
at least two goals, which are

1. examining the convergence of u®) (in a suitable sense) to some u := u©® as ¢ — 0 and
2. identifying the governing PDE that is solved by u.

In contrast to the above-mentioned example of the Navier-Stokes to Darcy transition, the governing
equation for the evolution of u remains the diffusion equation

=V - (ahomVu) = f, @

where f is proportionalto f.The coefficient ahom € RY*4 is the macroscopic mobility, which is
now independent from x . This opens an opportunity for numerical simulations since the discretiza-
tion of a uniform medium is much easier than the one for the original heterogeneous structures.

Finally, we note in this context that even if a is chosen to be a non-negative scalar, apom might turn
out to be a non-isotropic matrix. Intuitively speaking, the flow may very well be dependent on the
direction considered due to the underlying microstructure. This is evident in the cases of[Figure 2]
and[Flgure 3}

A small periodic example. We introduce a standard geometry model, which is used as an example
for foams or concrete. We assume that inclusions into a carrying material are periodically repeating
discs. Then, we can describe the conductivity of this material by choosing

a(x) =1- XB1/4(Z[1)(X) >

where B1/4(Zd) is the set of all points with a distance less than 1/4 to the next pointin Z4 and

X By 4(24) is the characteristic function of this set, see In this simple case, apom iSa d x d
matrix given by

ahom(i, J) == /Y lei + Vuoi] - Tej + Voo 1dy, 3)

where the ¢; € R? are standard unit vectors and the (w;)i=1,..,q are 1-periodic functions given as
the solutions to the PDE —V - [¢; + Vw;] =0 in Y =[-1/2, 1/2]‘1\81/4(0) with periodic boundary
conditions. The latter are referred to as cell solutions. As can be seen from the formulas, apom is
symmetric, but a calculation of the eigenvalues shows that it is typically not isotropic. With not too
much effort, one can also prove that apoy, is positive semidefinite.
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The realm of uncertainty: Stochastic homogenization

The above is a classical case of periodic homogenization. This makes sense for materials that have
a predictable, often periodic structure, e.g., highly engineered materials or carefully planned out
constructions. However, most real-world materials are far more erratic. Hence, the need to study
random microstructures arises.

The setup is mostly the same. Let U ¢ R? be a bounded, open domain. To model the randomness,
we need a stationary ergodic dynamical system, that is, a tuple (Q, F, P, ) consisting of a probabil-
ity space (Q, F,P) and an underlying family of shift operators 7 = (zx),cpa, 7x: Q — Q. These
must satisfy stationarity and ergodicity; meaning that the space is homogeneous and averaging
over shifts. We assume that all randomness is driven by such a dynamical system. Consider a
random closed set G ¢ R? satisfying G(rxw) = G(w) + x for almost every w € Q and every
x e RY. G serves as our random perforation. Thus, our new, random PDE is of the form

V. (a(fx/gw)w(é')(w)) —f  inU® = U\(:G(w)) )

for some fixed realization w € Q. A classical example can be constructed via point processes

X c R4 like in[Figure 5|and(Figure 6} Consider a stationary ergodic point process X and denote
its distribution by P. Choosing r, as the shift operatorin R? by x e RY, 7, X := X + x, yields a
stationary ergodic dynamical system. Then, we can consider its Boolean model with radius » > 0 as
a perforation, that is, G(X) := B, (X). However, even this most natural perforation model highlights

a plethora of problems.

Challenges. Stochastic homogenization presents several challenges, adding up to the already
existing ones in periodic homogenization.

B Multiscale analysis: As before, capturing behavior at both microscopic and macroscopic scales
necessitates careful asymptotic analysis.

B Convergence: Rigorously proving the convergence of the solutions u® to the homogenized
equation is often technically demanding. In the case of perforated domains, one often relies on
extension operators.

B Randomness: Dealing with random coefficients requires probabilistic tools. However, completely
new effects arise, which are unique to random geometries: arbitrarily large holes, sharp corners,
thin tubes of material and, in general, a lacking control over geometric features.

It is, therefore, prudent to gather what is known and how the periodic setting can be translated
to the stochastic one. One key aspect is dealing with the cell solutions. For that, we need some
notion of partial derivatives on the probability space Q. This can be defined as the dynamical
system t = (tx),gd » Which introduces a strongly continuous group action on L2(Q) — L?(Q)
by virtue of Ty f(w) := f(zxw). Periodicity is replaced by ergodicity, and so the form of apoy, and
the (supposed) limiting equation can be easily guessed. ayoy has the same form as in with
Y :={ow e Q|Ops ¢ G(w)}, while the limiting equation should be of the form

—V - (ayomVu) =0f  inU, (5)
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Fig. 5: Random perforation
based on a perturbed lattice
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Fig. 6: Boolean model of a
Poisson point process
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Fig. 7: An approximation of
an irregular perforation by
regular ones

where § = P(Y) = limg_¢o |U(€)|/|U| is the average density of our perforated domain. However,
two key issues become apparent: showing convergence of the u®) and the exact shape of apom - In
the following, we will give some insights into these.

Stochastic homogenization on irreqularly perforated domains

While the homogenization of linear PDEs as introduced above is well understood, problems arise
when the right-hand side f isreplaced by a nonlinearity f(u®)) orif nonlinear boundary conditions
are supplemented on the interface between the union of all balls and their complements. In
these cases, so-called compactness results as well as extension and trace operators become
necessary. Unlike the periodic case, it is not possible to establish these statements for many
random geometries, which is in part due to the already mentioned irregularities that may become
arbitrarily bad locally (sharp corners, large holes, etc.).

In a joint project [I] between research group RG 1 Partial Differential Equations/and Leibniz Group
DYCOMNET Probabilistic Methods for Dynamic Communication Networks, we were able to alleviate
this issue. We established an indirect homogenization scheme justifying the limit solution in (5).
This is driven by a regularization of the irregular perforation as depicted in[Figure 7} For each of the
regularized domains G , we are able to homogenize the corresponding equation , arriving at a
homogenized limit uff) — u, with corresponding limit equation. Then, we were able to establish

up — u as n — oo, where u solves (5). The situation is depicted in[Figure 8|

wl) > 1U
e—0
_ _ Fig. 8: Convergences of the various
n—= o0 =00 Solutions to {@ and (3) under
regularization (n — oo) and microscale
'U,«Ef) > U (¢ = 0). The dotted arrow is not known
c— 0 > in general.

Furthermore, this diagram is commutative in all cases where classical, direct homogenization
results are available. Interestingly, our procedure requires apom > 0, i.e., a strictly positive definite
apom —a requirement that is automatically fulfilled in the periodic case but may fail in the stochastic
one.

Zero conductivity models

As previously mentioned, the shape of ayoy, is highly dependent on the underlying stochastic
model. It is difficult to calculate its exact shape even in the periodic case and regularity remains
unclear in the stochastic one. This question marks the topic of our other collaborative project [2].
We study the pathological case of connected, albeit non-conductive random domains. As previously
mentioned, this is a peculiarity of stochastic geometries. We move to a discrete lattice for simplicity,
but the model and all equations easily translate to a continuous setting of a channel network. We
constructed a stationary ergodic Z< -lattice model featuring apom = 0. Furthermore, for any fixed
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volume fraction, the model can be tweaked to exceed that density. In other words, even though the
material looks arbitrarily close to a solid block on a microscopic scale, the random perforations
are aligned in such a way that the resulting macroscopic structure is non-conducting. To that end,
we essentially exploit the following idea: elongating edges retains connectivity but may decrease
conductivity. Performing this modification on a suitable percolation model generates a lattice as
in[Figure 9] We briefly sketch the model for d = 2. It is based on the randomly stretched lattice,
which is a two-stage random lattice. Given p, g € (0, 1), we first generate independent, identically
distributed geometric random variables N(x) N(y), i, ] € Z, with P(N(x) >1+1)=g4'.Then, an
edge @i, j) & (i +1,)) is open with probability p t (and analogously (i, j) < (i, j + 1) with
p J ) It was proved in [3] that this lattice model percolates for p > 1/2 and ¢ sufficiently small,
i.e., it contains an infinite cluster of open edges. To establish zero conductivity, we now elongate
these edges. Instead of having length 1, we stretch edges of the form (i, j) < (i + 1, j) to have
length S(Nl.(x)) ,where
SNy =g~ N1, NeN,

and o € (0,1) is chosen such that ¢° > p. Doing the same for vertical edges, we obtain an
elongated lattice similar to Since E[S(N(gx))] < 00, we may stationarize the modified
lattice to obtain a stationary ergodic model on Z2 . To ensure that a given fraction of edges is open, Fig. 9: A connected lattice
we may fill up blocks where Ni(x) and NJ(.y) are low. This results in To establish anom = 0,  model featuring no

we rely on a variational formulation of (3), that is, almost surely conductance

Sanomer = lim_ ot 2 S V@ -VEP,
2,2€[0,n)2NZ2 : z~%

with e7 = (1,0)! € R2, is the first standard unit vector and test function space D, consisting

of functions [0,1]2 —» R taking values 0 on the left and 1 on the right of the box. Here, z ~ %

denotes that the summation is only done over open edges z <> Z (in the elongated lattice). Control

over the probabilistic behavior of the lattice allows us to minimize the expression above, yielding

ahom = 0.

Conclusions and outlook

In our group collaboration between RG 1/and|LG DYCOMNET, we were able to combine our expertise in
homogenization and stochastic geometry to provide new models and methods for examining random

materials via stochastic homogenization as a rigorous and versatile approach to understanding
and modeling the behavior of systems in random media. By replacing detailed, computationally

expensive microscopic models with effective macroscopic descriptions, this enables the analysis ~ Fig. 10: A connected lattice
model featuring no

of complex systems with improved efficiency. As such, we strive to prove direct homogenization
conductance

schemes for a wider class of models as well as to gain a better understanding of the effective
conductivity in specific cases.
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