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1.6 Data-driven Regularization and Quantitative Imaging
Moritz Flaschel, Michael Hintermüller, Clemens Sirotenko, and Karsten Tabelow

Inverse problems are ubiquitous in all areas of science where measurements and data play a role.

Numerous examples can be found in physics, economics, engineering, or medical imaging, which

is the particular subject of this article. In general, inverse problems focus on the reconstruction

of quantities utrue ∈ X from measured noisy and degraded data f ∈ Y . Here, X, Y are typically

normed vector spaces. It is often assumed that the process that generates the data is at least

partially known a priory and can be described by a possibly nonlinear function A : X → Y called

forward mapping. In the case of image reconstruction, we often consider an image domain � ⊂ Rd ,

e.g., a rectangle in R2 . A continuous image on this domain is a function u : � → Rm where

u(x) describes, for instance, the image intensity or the color at the location x ∈ � . To account for

unknown errors in the data, we introduce the variable η ∈ Y . While in the field of nonparametric

statistics, this error is modeled as a random variable following some known distribution η ∼ PY on

Y , the deterministic viewpoint assumes η just to be a norm-bounded highly oscillating function in

Y . The overall data-generating process can eventually be described by the equation

f = A(utrue)+ η (1)

with f being either a Y -valued random variable or simply an element of Y , when the noise

distribution is not modeled explicitly.

Model-based reconstruction. A natural approach to recovering utrue from measured data f could

be to solve the least-squares problem

A†( f ) = argmin
u∈X

1
2
‖A(u)− f ‖2Y , (2)

which defines an operator called pseudo-inverse A† : R(A) → X on the range R(A) of the

operator A . However, it is well known that this operator can be set valued, and even for bounded

and linear A , the pseudo-inverse A† is known to be discontinuous in many applications. This

results in amplified errors and unstable reconstruction processes. The classical way to overcome

these problems is to regularize the problem. Regularization generally describes the process of using

prior knowledge about the appearance of the true solution. These are often properties like sparsity

or additional smoothness. This approach leads to optimization problems of the type

minimize
u∈X

D(A(u), f )+ℛ(α, u). (3)

Here, D : Y × Y → R denotes a distance-like function on Y , also called data fidelity, which

is chosen depending on the noise distribution. The term ℛ(α, u) is used to penalize undesired

behavior of the solution, e.g., fast oscillations. The parameter α ∈ U balances the influence of

the regularizer ℛ(α, u) and the data-fidelity term D(A(u), f ) . Often, α > 0 is chosen to be scalar,

but in order to account also for different regularization in different parts of the image domain, we

allow that α lies in some general vector space U . The approach of representing estimators of clean

images as minimization problems of type (3) is often called variational or model-based approach.
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For a comparison of the least-squares and a regularized solution using a total variation (TV) penalty

with scalar parameter; see Figure 1.

Weighted magnetic resonance imaging. The main examples that we want to focus on are weighted

magnetic resonance imaging (MRI) and quantitative MRI (qMRI). The reconstruction of sensor data

for complex weighted MRI can be mathematically described by the continuous Fourier transform.

The forward operator reads in this case A : L2(�,C) → L2(�k ,C) defined as Au = P ◦ ℱu

where ℱ denotes the continuous Fourier transform, and P is a projection-type linear operator that

selects a set of frequencies �k ⊂ R2 in the space of possible all frequencies, also called k -space.

In Figure 1, a prototypical MRI setup and two reconstructions are depicted. A sampling mask is

shown on the right-hand side, in which the white lines represent the frequencies in �k that are

actually sampled. If there are only a few white lines, this is referred to as highly under-sampled

images. A practical disadvantage of classical weighted MRI is that the images depend on acquisition

parameters that are not comparable across time and site. This problem will be addressed later by

qMRI.

Fig. 1: Different solutions of
the MRI inverse problem.
From left to right: Clean
image utrue , least-squares
solution A† f , total variation
regularization, sampling
mask.

Data-driven regularization

While the model-based approach features nice theoretical properties, there might be some under-

lying structure in the data that is not captured by these handcrafted regularizers. One possible

approach to incorporate additional knowledge, which is hidden in the data, is proposed in [2]

where the classical TV minimization and its second-order extension, the total generalized variation

(TGV), are combined with spatial adaptive regularization parameter choice; see also Figure 1 for

an example of TV reconstruction with scalar parameters. In fact, we consider for the linear forward

operator A : X → Y the problem

minimize
u∈X

1
2
‖Au − f ‖2Y +

∫
�
α(x) d|Du| . (4)

Recall that |Du| denotes the total variation of the measure-valued distributional derivative Du

of u . For the sake of simplicity, we will concentrate here on TV only. The idea is to choose the

spatially-dependent regularization parameter α ∈ C(�)>0 adapted to the data f . In [2], the

following unsupervised loss function is proposed:

Lk,σ (u, f ) =
∫
�

max(k ∗ (Au − f )2 − σ2,0)+min(k ∗ (Au − f )2 − σ2,0) dx . (5)
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Here, the true variance σ2 > 0 of η ∈ Y must be known in advance, and k : Rn
→ R denotes a

suitable L1 -normalized kernel with small support including zero. The function Lk,σ (u, f ) locally

penalizes deviations of the averaged squared residual (Au − f )2 from a small neighborhood

(σ2, σ2) around the known true variance σ2 > 0 . The approach results in the bilevel optimization

problem 
minimize
u∈X,α∈Uad

Lk,σ (u, f )+ r(α)

s.t. u = u(α, f ) ∈ argmin
u∈X

1
2
‖Au − f ‖2Y +

∫
�
α(x) d|Du|,

(6)

where r : U → R enforces additional smoothness on α , and Uad ⊂ U is the set of admissible

Fig. 2: Spatially-dependent
parameter for TGV
regularization, which is
found using the approach
in [2]

parameters. While this approach does not require training data, we still face a nonconvex, non-

differentiable bilevel problem with solution in a nonreflexive Banach space. This problem class

is notoriously difficult to solve due to the lack of standard constraint qualifications. To overcome

these issues, additional smoothing techniques are presented in [2], which are known from optimal

control theory to eventually find stationary points of an optimization problem where the constraints

are given by a quasi-linear elliptic partial differential equation (PDE). These stationary points are

found by utilizing a projected gradient descent approach, whose analysis is presented in an infinite-

dimensional setup. The results of the proposed method are presented in Figure 2. Note that the

regularization parameter, found by (6), is low in areas around the neck, where fine structures must

be preserved, and high in smoother areas of the image. A natural extension of this work is presented

in [3]. Here, the lower-level problem is approximated by k steps of an iterative solver that is known

to converge to a solution of (4). Let the k-th step of this solver be denoted by Sk(α, f, u0) when

initialized at u0 . The spatially-adaptive regularization parameter α ∈ C(�) is then replaced by a

learnable structure, e.g., a neural network αθ : X → C(�) with parameters θ ∈ 2 . The resulting

learning problem then reads

minimize
θ∈2

1
2M

M∑
i=1

‖u†
i − ui‖

2
X +

1
2
‖θ‖2 s.t. ui = Sk(αθ (A

† fi ), fi , A† fi ) , (7)

where training pairs (u†
i , fi )Mi=1 are used that are generated according to fi = Au†

i + ηi . The

overall unrolled optimization algorithm has the structure of a multi-layer neural network, and (7)

is a classical supervised learning problem whose solution can be approximated by using of the

shelf stochastic optimizers like Adam (Kingma & Ba, 2014) alongside techniques from automatic

differentiation. The setup is analyzed in [3] in finite dimensions for an unrolled primal-dual splitting

algorithm (PDHG), and the convergence of the solutions of (7) to solutions of a suitable bilevel

problem is addressed for k →∞ .

Quantitative imaging

In contrast to weighted MRI, the goal of qMRI is the voxel-wise reconstruction of tissue parameters

such as proton-spin density ρ and relaxation times T1, T2 . These are sensitive to the biological

tissue properties, allow for a quantitative comparison across different scanners and can be used

as non-invasive disease markers. The general idea is to collect not only one, but multiple highly
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under-sampled Fourier images fi = Piℱui , i = 1, . . . L at subsequent time points t1 < . . . < tL .

The images u = (u1, . . . , uL ) are implicitly connected to the physical quantity q by an equation

e(u, q) = 0 , where e : X × Q → Z is an operator describing some physical law, and q ∈ Q

denotes the physical quantity of interest. In many cases, e(u, q) = 0 consists of partial or ordinary

differential equations. This type of problem setting particularly fits for qMRI, which has been

intensively investigated recently in [1]. Here, ui (x) = ρ(x)[m1(x, ti )+im2(x, ti )] ∈ C , where ρ(x) is

the proton-spin density, and m(x, t) = (m1,m2,m3)(x, t) denotes the average magnetization of the

hydrogen protons located at x at time t under the influence of some externally controlled magnetic

field B(x, t) . The differential equation that describes this process is called Bloch equation:

∂t m(x, t) = m(x, t)× γ B(x, t)−
(

m1(x, t)
T2(x)

,
m2(x, t)

T2(x)
,

m3(x, t)− meq

T1(x)

)>
. (Bloch)

Here q = (ρ, T1, T2)(x)> denotes the physical quantity of interest. In [1] and forthcoming articles,

Fig. 3: The results from the
work [1]. The parameters
T 1, T 2 , and ρ are presented
from top to bottom.

a series of problems is analyzed that aim at extracting q ∈ Q from the measurements f . Starting

from the smooth constrained optimization problem

minimize
q∈𝒞ad

1
2
‖A5(q)− f ‖2Y +

α

2
‖q‖2Q , (8)

fast solvers are developed and analyzed in function space using a smooth solution operator

5 : Q → X of the equation e(u, q) = 0 . However, this assumption is only rarely met in practice,

where not every Bloch equation has an explicit solution operator. Moreover, the Bloch equation

is only a mathematical model that uses simplified experimental assumptions that are far more

complicated in reality. In order to account for this model uncertainty, the equation e(u, q) = 0 is

replaced by some learned equation eθ (u, y) = 0 in which some parts or even the whole operator

eθ (·, ·) is learned a priori from training data using a neural network with weights θ . The resulting

optimization problem eventually reads in this case

minimize
u∈X,q∈Q

1
2
‖Au − f ‖2Y +

α

2
‖q‖2Q subject to eθ (u, q) = 0 and q ∈ 𝒞ad . (9)

As above, 𝒞ad ⊂ Q denotes a convex, closed set of admissible parameters. This problem is much

more involved than (8), due to the nondifferentiability that is introduced by using typical non-

smooth activation functions of the neural network. In [1], stationarity concepts for these types

of problems in infinite dimensions are developed and a sequential quadratic programming-type

descent algorithm is proposed. One set of recovered physical parameters from noisy data is depicted

in Figure 3.

Estimation bias

Even if we know the operator A from physics exactly or are convinced that it describes an appro-

priate model for the observed data f , the noise distribution η and the operator A do influence

whether the estimates of utrue using, e.g., Eq. (2), are biased due to some nonlinearity of A or

the noise η being non-Gaussian. As a real-world example, we consider measurements S from
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diffusion-weigthed MRI (dMRI) which can be modeled by a diffusion kurtosis model (DKI):

Sb,Eg = S0 · exp

(
−bD +

b2

6

(
Tr(D)

3

)2
W

)
+ η , (10)

where D =
∑3

i, j=1 gi g j Di j , W =
∑3

i, j,k,l=1 gi g j gk gl W i jkl , and acquisition parameters b, Eg .

Here, u = (Di j ,W i jkl ) are the components of the diffusion and kurtosis tensor and form the basic

parameters of interest. This general DKI model can be simplified assuming a symmetry that can

be justified by biophysical considerations. Moreover, the noise η is not Gaussian but Rician or,

more generally, noncentral χ distributed as it refers to magnitude data from complex Gaussian

noise. The resulting estimation bias has been examined in [4, 5], which shows different severity

for different parameters from u due to the non-Gaussian noise, the nonlinearity of the operator,

and the violation of assumptions for real data. Consequently, for parameter estimation not only

noise reduction, e.g., through regularization, is important, but also appropriate bias reduction; see,

e.g., Polzehl and Tabelow, Low SNR in diffusion MRI models, J. Amer. Statist. Assoc., 111 (2016),

pp. 1480–1490.

Conclusions and outlook

The development and mathematical analysis of quantitative imaging methodologies is still at the

beginning stage. Relevant topics for the application of qMRI range from the development of more

sophisticated physical models encoded in the equation e(u, q) = 0 to the usage of modern data-

driven regularization techniques, such as (coupled) dictionary learning or plug-and-play methods,

that are able to incorporate prior knowledge from data while retaining interpretability and which

can also be combined with handcrafted regularization techniques. Usually, these regularizers

lead to high-dimensional nonconvex and nondifferentiable optimization problems for which the

analysis is delicate. Current mathematical research focuses on the development and analysis of

fast solvers for such problems and on the analysis of their regularization properties in dependence

of the sampling methodology. Moreover, algorithms involving learned structures often are used

in a finite-dimensional context. However, an infinite-dimensional setup is particularly important

in physical imaging. Not only because the algorithms should work resolution-independently, but

also because the physical models are provided in the continuous regime. For this reason, there is a

natural demand to extend these data-driven regularization techniques to an infinite-dimensional

setup. This topic is also of particular relevance in the current work.
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