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1.6 Energy-based Solution Concepts for a Geophysical Fluid

Model

Thomas Eiter and Robert Lasarzik

The motion of tectonic plates, which results from convective processes within the Earth’s mantle,

is nowadays a widely accepted theory to explain the formation of many of the Earth’s geological

structures like the Himalaya mountain range in Asia or the San Andreas Fault in California, USA.

These tectonic plates as a whole form the Earth’s lithosphere, which consists of the Earth’s crust

and the uppermost part of its mantle (see Figure 1). Geophysicists at the German Research Centre

for Geosciences in Potsdam describe this process of rock deformation as the flow of a fluid, which

happens on large time scales and usually moves only several centimeters per year. Initiated from

discussions within the project B01 of the Collaborative Research Center 1114: Scaling Cascades in

Complex Systems, a group at WIAS started an analytical study of the corresponding models.
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Fig. 1: A schematic diagram of the
Earth’s internal structure

A suitable model for such kind of geophysical flow has to take into account viscous, elastic, and
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Fig. 2: After removing forces,
an elastic material returns to
the original state (a), while a
plastic material keeps its
shape (b)

plastic properties. These terms describe the resistance of the flow to deformations: viscosity in

terms of deformation rates, but elasticity and plasticity in terms of the actual displacement, which

differ in the property whether or not the system returns to the original state when forces are

removed (see Figure 2). The plastic effects reflect the brittle nature of rocks and lead to highly

nonlinear and nonsmooth terms in the corresponding partial differential equations (PDEs), so that

solutions can neither be expected to be smooth nor to satisfy the equations in a pointwise sense.

Therefore, a rigorous analytic investigation of the model has to overcome the limitations of classical

smooth solutions and needs to be founded on generalized solution concepts. Specifying a suitable

notion of generalized solutions to a nonlinear PDE can already be a nontrivial task. Besides the

accessibility via mathematical tools, a good choice should also reflect physical principles like the

laws of thermodynamics.

Based on these ideas, we investigated solution concepts and combined energetic considerations

with a variational approach suitable for treating the nonsmooth plasticity term and for establishing

existence of global-in-time solutions. However, as is also the case for much simpler fluid models, the

uniqueness of solutions cannot be guaranteed. Instead, we established a weak-strong uniqueness

property for these generalized solutions, which means that a generalized solution coincides with
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the (unique) smooth solution as long as the latter exists. This result is based on a relative energy

inequality, which expresses the difference of a generalized solution to any function in terms of a

relative energy.

In a first step, we introduced a diffusive term for the stress evolution. There are viscoelastic models

where this term can be justified from physical principles, but it also improved the mathematical

properties of the problem and enabled us to obtain existence of solutions in a generalized sense [1].

To also treat the case without stress diffusion, which corresponds to the scenario of the numerical

investigations in [5], we introduced the notion of energy-variational solutions based on the afore-

mentioned relative energy inequality. In this inequality, a passage to vanishing stress diffusion was

possible, and we could show existence of energy-variational solutions in this case [2]. Additionally,

we obtained a weak-strong uniqueness principle as an immediate consequence of the relative

energy inequality. The idea to base a solution concept on a relative energy inequality goes back to

Pierre-Louis Lions, who used a similar approach to define the so-called dissipative solutions to the

Euler equations.

Modeling of viscoelastoplastic fluids

The fundamental equations for modeling fluid flow as a continuum are the Navier–Stokes equations.

They describe the evolution of the Eulerian velocity field vvv that represents the velocity vvv(t, x) of

a fluid particle at point x in space at time t in terms of two physical principles from classical

mechanics: conservation of mass and balance of momentum. In particular, the latter contains

the internal forces, described in terms of the Cauchy stress tensor T . The physical properties

represented by the model depend on the relation between the stress tensor T and the strain rate

D = 1
2 (∇vvv + ∇vvv

>) , which is the symmetric part of the velocity gradient and describes the relative

motion between the particles. For example, if T is independent of the strain rate D , then the model

does not consider friction between fluid particles, and we obtain the Euler equations for a perfect

fluid.

Viscoelastic fluids. The simplest models for viscoelastic rheology combine linear viscous and

Fig. 3: A model for Jeffreys
rheology. Two linear viscous
elements (dashpots) are
combined with a linear
elastic element (spring).

elastic effects. In our work, we decomposed the Cauchy stress into a radial part, governed by the

pressure p , and a deviatoric part, which is a symmetric matrix with vanishing trace. Similarly to [5],

we considered a rheology model of Jeffreys type, where the deviatoric stress consists of a linear

viscous part and an additional part S satisfying a stress-strain relation of Maxwell type, i.e., the

strain rate decomposes into an elastic and a viscous contribution (see Figure 3). The elastic part is

determined by the objective stress rate
O
S , which is a notion of time derivative independent of the

reference frame. In the literature, there are different choices for this stress rate, and we used the

Zaremba–Jaumann rate, which is a common choice in geophysical flow models, cf. [5]. In summary,

we obtain

T = S+ 2µD− pI, 1
η

O
S + aS = D , with

O
S = ∂tS+ vvv · ∇S+ SW−WS , (1)

for viscosity constants µ, a > 0 , an elastic shear modulus η > 0 , and for the spin tensor W =
1
2 (∇vvv −∇vvv

>) , i.e., the skew-symmetric part of the velocity gradient.
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Modeling plasticity. To model plasticity, the stress-strain relation (1) needs to be further modified.

For so-called perfect plasticity, one fixes a yield stress σyield > 0 , which is an upper bound for the

stress magnitude, and plastic deformation sets in when this threshold is reached. We include this

behavior in the previous model by replacing the evolution equation for S in (1) with

|S| ≤ σyield and 1
η

O
S + aS+ λS = D for λ ≥ 0 with λ(σyield − |S|) = 0,

such that the parameter λ ≥ 0 can be arbitrarily large in the case |S| = σyield . This allows for

arbitrarily large strain rates D , which can be physically observed in the form of the onset of sudden

motion that may result in earthquakes. In particular, this nonsmooth stress-strain relation can lead

−σyield σyield
S

P(S)

Fig. 4: The density P of the
dissipation potential 𝒫 in
one dimension

to a highly nonlinear behavior. We can abbreviate the previous relation as

1
η

O
S + ∂𝒫(S) 3 D with 𝒫(S) =

∫
�
P(S(x)) dx, (2)

where ∂𝒫 denotes the subdifferential of a convex dissipation potential 𝒫 induced by the density P

given by P(S) = a
2 |S|

2 if |S| ≤ σyield and P(S) = ∞ else (see Figure 4). For the carried-out analysis,

the exact form of 𝒫 was not relevant, and we studied a general convex, lower semicontinuous

dissipation potential 𝒫 : L2(�)3×3
→ [0,∞] with 𝒫(0) = 0 .

Generalized solution concepts

We consider the viscoelastoplastic fluid inside a bounded domain � ⊂ R3 and in a time interval

(0, T ) with T > 0 . Combining the above stress-strain relation with the Navier–Stokes equations

for incompressible fluids, we obtain the system

ρ(∂tvvv + vvv · ∇vvv) = div
(
S+ 2µD− pI

)
, divvvv = 0, 1

η

O
S + ∂𝒫(S)− γ1S 3 D (3)

in �× (0, T ) equipped with appropriate initial and boundary conditions, where ρ > 0 denotes

the constant density. Observe that the stress-strain relation (3)3 does not coincide with (2), but

we introduced a term for stress diffusion with coefficient γ > 0 . This makes the problem a fully

parabolic problem, while for γ = 0 , system (3) is of mixed parabolic-hyperbolic type.

The total energy of the system is given by ℰ(vvv,S) = ρ
2‖vvv‖

2
L2(�)

+
1

2η ‖S‖
2
L2(�)

and consists of the

kinetic energy and the stored elastic energy. By formally multiplying (3)1 and (3)3 with vvv and S ,

respectively, and integrating in space and time, we obtain the energy-dissipation balance

ℰ(vvv(t),S(t))+ µ
∫ t

0
‖∇vvv‖2L2(�)

ds +
∫ t

0

∫
�
∂𝒫(S) : S dxds + γ

∫ t

0
‖∇S‖2L2(�)

ds = ℰ(vvv0,S0), (4)

where we used the matrix scalar product A : B := Tr(A>B) and that divvvv = 0 implies the relation

‖∇vvv‖2L2(�)
= 2‖D‖2L2(�)

. This shows that the total energy decreases along solutions due to the

dissipative effects of the viscosity, the dissipation potential 𝒫 , and the stress diffusion. Note that

(4) only holds formally since the dissipation potential may be nonsmooth, and the subdifferential

∂𝒫 is multi-valued in general. In this case, we can estimate the respective term in (4) by using the
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definition of the subdifferential

E ∈ ∂𝒫(S) ⇐⇒ ∀8 ∈ L2(�)3×3 :
∫
�
E : (S−8) dx ≥ 𝒫(S)− 𝒫(8). (5)

Finally, (4) suggests that for γ > 0 , a solution (vvv, S) should be searched within the class defined

−σyield σyield
S

P(S)

Fig. 5: While the
subdifferential is
single-valued at points
where 𝒫 is smooth (green),
it can be multi-valued where
this is not the case (red)

by

(vvv,S) ∈ L∞(0, T ; L2(�)3 × L2(�)3×3) ∩ L2(0, T ; H1(�)3 × H1(�)3×3). (6)

Generalized solutions. A first attempt to find a suitable notion of weak solutions is to multiply

the equations (3)1 and (3)3 with smooth test functions and to integrate. However, for (3)3 , we

again meet the problem that ∂𝒫 can be multi-valued. To circumvent this problem by means of (5),

we instead formally multiply (3)3 with S − 8 for a test function 8 , which leads to a variational

formulation. We proceed similarly for the evolution of vvv . In summary, we call a pair (vvv, S) with (6) a

generalized solution to (3) if it satisfies

ρ

2
‖vvv − ϕϕϕ‖2L2(�)

∣∣∣t
0
+

∫ t

0

∫
�

[
ρ∂tϕϕϕ · (vvv − ϕϕϕ)− ρvvv · ∇vvv · ϕϕϕ + (S+ µ∇vvv) : ∇(vvv − ϕϕϕ)

]
dxds ≤ 0, (7)

1
2η
‖S−8‖2L2(�)

∣∣∣t
0
+

∫ t

0

[ ∫
�

(
1
η

O
8−D

)
: (S−8)+ γ∇S : ∇(S−8) dx + 𝒫(S)−𝒫(8)

]
ds ≤ 0 (8)

for a.a. t ∈ (0, T ) and all suitable test functions (ϕϕϕ,8) . Note that the nonlinear terms are hidden

in the Zaremba–Jaumann rate
O
8 : S (see (1)3 ). In particular, choosing both test functions equal

to 0 , we obtain separate energy inequalities for the kinetic and the elastic energy. Summing

up and applying (5), these resemble (4) with an inequality. This energy estimate serves as an

a priori bound in our analysis. In [1], we showed existence of generalized solutions to (3) for

γ > 0 by regularization of the dissipation potential 𝒫 . This makes it possible to work with a weak

formulation and to show existence via a Galerkin approximation. As usual, this approach only yields

weak convergence of an approximating sequence, but to pass to the limit in the nonlinear terms

in (8), the strong convergence with respect to S is necessary. Within the function class from (6),

this follows from the famous Aubin–Lions lemma, which explains the necessity of stress diffusion,

that is, of the assumption γ > 0 .

Relative energy inequality. We further derived an inequality for the relative energy ℛ(vvv,S |
ϕϕϕ,8) = ℰ(vvv − ϕϕϕ,S−8) , which provides an energy-based way to measure distances. From (7), (8),

and Gronwall’s inequality, one concludes that the generalized solution satisfies the relative energy

inequality

ℛ(vvv(t),S(t) | ϕϕϕ(t),8(t))−ℛ(vvv0,S0 | ϕϕϕ(0),8(0))e
∫ t

0 𝒦(ϕϕϕ,8) ds

+

∫ t

0

(
𝒲(𝒦)(vvv−ϕϕϕ, S−8 | ϕϕϕ,8)+ 𝒫(S)−𝒫(8)+

〈
𝒜(ϕϕϕ,8),

(
vvv − ϕϕϕ

S−8

) 〉)
e
∫ t

s 𝒦(ϕϕϕ,8) dτ ds ≤ 0
(9)
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for a.e. t ∈ (0, T ) and all sufficiently regular (ϕϕϕ,8) ; see [2]. The weight 𝒦 ≥ 0 determines the

regularity of test functions (ϕϕϕ,8) , the function 𝒲(𝒦) denotes the relative dissipation-like quantity

𝒲(𝒦)(ṽvv, S̃|ϕϕϕ,8) := 𝒦(ϕϕϕ,8) ℰ(ṽvv, S̃)

+

∫
�
µ|∇ṽvv|2 + γ |∇S̃|2 − ρṽvv · ∇ṽvv · ϕϕϕ + 1

η (ṽvv ⊗ S̃) : ∇8− 1
η (S̃(∇ṽvv −∇ṽvv

>)) : 8 dx,
(10)

and 𝒜 = (𝒜1,𝒜2) is the system operator defined in such a way that a smooth pair (ϕϕϕ,8) satis-

fies (3) if and only if 𝒜1(ϕϕϕ,8) = 0 and 𝒜2(ϕϕϕ,8) ∈ ∂𝒫(8) in (0, T ) . In particular, if we choose 𝒦
such that 𝒲(𝒦) is nonnegative, e.g., 𝒦(ϕϕϕ,8) = C

(
‖ϕϕϕ‖sLr (�)+‖8‖

q
L p(�)+‖8‖

2
L p(�)

)
for a certain

constant C > 0 and suitable parameters p, q, r, s , then for any sufficiently regular solution (ϕϕϕ,8) ,

the inequality (9) reduces to ℛ(vvv(t),S(t) | ϕϕϕ(t),8(t)) ≤ ℛ(vvv0, S0 | ϕϕϕ(0),8(0))e
∫ t

0 𝒦(ϕϕϕ,8) ds . When

the initial values of (vvv,S) and (ϕϕϕ,8) coincide, we thus conclude vvv = ϕϕϕ and S = 8 . This shows

that generalized solutions satisfy the weak-strong uniqueness principle.

Energy-variational solutions. The notion of energy-variational solutions is based on the relative

energy inequality (9). As explained above, stress diffusion was necessary to show existence of

generalized solutions in the sense of (7), (8), since weak convergence in the function class (6) was

sufficient to perform the limit in the nonlinear terms. Without stress diffusion, we lose control of

∇S , so that a passage to the limit in (8) is not possible for γ = 0 , so that the above notion of

generalized solution seems not suitable in this case. Instead, we proposed a different solution

concept and called a pair (vvv, S) an energy-variational solution for the regularity weight 𝒦 if it

satisfies the relative energy inequality (9) for all test functions (ϕϕϕ,8) in a suitable class. If we take

𝒦(ϕϕϕ,8) = C
(
‖8‖L∞(�) + ‖∇8‖L3(�)

)
(11)

for a suitable constant C > 0 such that S appears in the function 𝒲(𝒦) in (10) in a convex way,

then weak convergence is sufficient to pass to the limit γ → 0 in (9). In this way, we showed

existence of energy-variational solutions in the case γ = 0 . Since the relative energy inequality (9)

holds by definition, nonnegativity of 𝒲(𝒦) implies a weak-strong uniqueness principle for energy-

variational solutions as above. This can not be deduced for 𝒦 as in (11), but for

K1

K2

Fig. 6: The set of
energy-variational solutions
depends on the regularity
weight 𝒦 . If 𝒦1 ≤ 𝒦2 , every
energy-variational solution
for 𝒦1 is an
energy-variational solution
for 𝒦2 .

𝒦(ϕϕϕ,8) = C
(
‖ϕϕϕ‖sLr (�) + ‖8‖

2
L∞(�) + ‖∇8‖

2
L3(�)

)
(12)

for sufficiently large C > 0 and suitable parameters r, s . Due to monotonicity properties with re-

spect to the regularity weight, a weak-strong uniqueness principle also follows for energy-variational

solutions with the weight 𝒦 as in (11).

Conclusions and outlook

We studied a model that describes the deformation of rocks in the lithosphere as the flow of

a fluid with viscous, elastic, and plastic properties. Since solutions are not smooth in general,

we proposed a generalized solution concept based on a variational formulation that takes into

account the energy of the system. In this framework, we could only show an existence result after

introducing stress diffusion. To omit this term, we introduced the notion of energy-variational
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solution, where a passage to the limit of vanishing stress diffusion was possible. This solution

concept is based on a relative energy inequality, which also ensures a weak-strong uniqueness

principle for energy-variational solutions.

Since the concept of energy-variational solutions is rather new, an extension to other systems might

also be of interest, which was done for a general class of hyperbolic conservation laws in the recent

preprint [3]. Although energy-variational solutions are not unique in general, a suitable choice of

the regularity weight may lead to a convex structure of the set of solutions, which may allow to

choose a unique physically relevant solution by a minimization procedure. For example, this idea

was successfully realized for simpler fluid models in [4].
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