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1.5 Solving Parametric PDEs with Neural Networks
Martin Eigel and Janina Schütte

Deep learning has emerged as a versatile numerical tool in many application areas, recently ex-
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tending its reach beyond natural language processing, image recognition and generation also into

the realms of solving partial differential equations (PDEs). PDEs are mathematical models for a

wide range of physical phenomena used in science and engineering, ranging from heat conduction,

electrostatics, and (quantum) mechanics to fluid dynamics. Parametric PDEs (pPDEs) generalize the

concept by adding (possibly infinitely many) parameters describing the data of the models. The

significance of solving pPDEs lies in their crucial role for practical problems where uncertainties or

a large set of data realizations have to be taken into account. Understanding the impact of varying
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model parameters, determined by prescribed probability distributions, is essential for predicting

outcome statistics and for making reliable simulation-driven decisions. Deep learning offers a

modern approach to tackle the high complexity of pPDEs. By training deep neural networks on

appropriate data sets, these models learn intricate relationships between parameters and the

corresponding system behavior. This expedites the solution process and, therefore, enables one to

observe different states of the system under the influence of very many different parameters and

efficiently evaluate statistical properties.

Deep learning. Deep learning evolves around training neural networks (NNs), a class of function

representations loosely inspired by the interconnections of neurons in a human brain. There are
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two main challenges when utilizing NNs for a problem at hand. First, the architecture of the NN

has to be decided upon. This includes the number of neurons and the assumed connections

between them. Second, the weights in the network, i.e., the strengths of the connections, need

to be learned. The depth in deep learning comes from the way neurons are organized in an NN.

It corresponds to the number of layers that an input passes through, as depicted in Figure 3. To

solve pPDEs, it is possible to employ a special network architecture, called convolutional neural

networks (CNNs), which are typically used for image data. It can be proven that the number weights

and their values can be chosen such that the parameter-to-solution map is approximated arbitrarily

well. To find these weights, the network has to be trained with many data points, consisting of pairs

of parameters and corresponding solutions of the pPDE at hand. Since computing high resolution

solutions with classical algorithms for given parameters as training data is expensive, we proposed

a multilevel decomposition of the solutions, which works efficiently with a combination of a large set

of computationally inexpensive coarse resolution data and a small set of expensive high resolution

data.

Deep learning framework

Different deep learning methods have been proposed to tackle the task of finding a functional

representation of the parameter-to-solution map. This can, e.g., be based on a reduced basis

method [5], deep operator networks [6], Fourier neural operators [7], and physics-informed NNs

(PINNs) [8]. Despite their large expressivity, these architectures have difficulties to live up to the
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promising theoretical results in practical experiments, which is largely due to the challenging

Fig. 4: Visualization of the
application of a kernel in a
CNN architecture

training process. In this article, a neural network architecture based on CNNs is constructed that can

be trained efficiently in practice, reaching state-of-the-art accuracy for a class of pPDEs. Moreover,

theoretical guarantees can be shown for the existence of CNNs that are able to approximate the

solution operator arbitrarily well.

CNNs are a special class of neural networks designed for tasks involving visual data such as

image recognition and computer vision. Applying the action of a network on an image involves the

application of local kernels. Here, a kernel (equivalent to a small image) is multiplied to regions of

the input image and summed over to yield an entry of the output image as illustrated in Figure 4.

Furthermore, a nonlinear activation function, which decides how important a neuron is, such as

the rectified linear unit function, or pooling operators are usually applied. An efficient architecture

of CNNs is the U-Net, originally developed for biomedical image segmentation. It gets its name

from the shape of its visualization as shown in Figure 5. By first contracting the input resolution to

Fig. 5: Visualization of a
U-Net architecture

capture context of the input image and then expanding it to allow for localization, U-Nets are able to

capture fine-scale as well as coarse-scale features of an image. Skip connections incorporate earlier

computed results in later steps on each resolution level of the images, which gives the architecture

the power to combine the information of different scales.

When applied to solving pPDEs on a uniform grid, we have shown that the U-Net is able to approx-

imate one step in a classical multigrid solver as used in finite element (FE) simulations; see [1].

Multigrid solvers leverage a hierarchical discretization of the problem to achieve fast convergence,

combining coarse-scale solutions with smoothing and fine-scale corrections. When multiplying a

0− 1 mask to each image in the U-Net, we have shown that successive subspace algorithms can be

approximated by the NN architecture; see [2]. This is required when the pPDE should be solved on

an adaptively refined grid instead of a uniform grid, leading to more efficient approximations of the

solution operator.

Parametric partial differential equations

There exist well-developed numerical methods to solve partial differential equations, specifically FE

and finite volume methods. These methods can be extended to accommodate the setting of pPDEs.

Prominent examples are, e.g., adaptive stochastic Galerkin FEM [4] or the variational Monte Carlo

method [3], which are based on a polynomial chaos expansion and low-rank tensor approximations.

The newly introduced NN-based methods are sample based and can be applied to data generated

with a large class of linear and nonlinear pPDEs. In the analysis, the focus lies on the parametric

(stationary diffusion) Darcy problem, which is also used as a benchmark problem in the numerical

experiments and in many papers on uncertainty quantification. We define the problem in the

following: Let D ⊂ Rd be a sufficiently smooth physical domain, here D̄ = [0,1]2 is considered.

Let 0 ⊂ RN be a possibly countable infinite-dimensional parameter space and f : D → R . We

aim to approximate the map u : 0 × D→ R , which satisfies∇x · (κ(y, x)∇x u(y, x)) = f (x) for x ∈ D,

u(x) = 0 for x ∈ ∂D
(1)
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for the coefficient field κ : 0× D→ R and with derivatives with respect to the variable x ∈ D . The

dependence of the parameter field on the parameter vector y is often characterized by a truncated

Karhunen–Loéve expansion (KLE) for some p ∈ N given by

κ(y, x) = a0(x)+
p∑

k=1

ykak(x),

with ak : D→ R for k = 0, . . . , p . We consider two problem settings, determined by the structure

of κ . First, the cookie problem is defined for 0 = [0,1]p , y ∈ 0 with uniformly distributed

yk ∼ U [0,1] for k = 1, . . . , p , a0 = 0.1 , and ak = χDk indicator functions equal to 1 in Dk and

0 otherwise, where Dk are disks with fixed centers. Second, the log-normal Gaussian coefficient

is defined for 0 = Rp , normally distributed yk ∼ 𝒩 (0,1) , and κ(y, x) = exp(κ̃(y, x)) , where κ̃

is defined by the KLE with a0 = 0 and ‖ak‖∞ = 0.1k−2 for k = 1, . . . , p . A visualization of the

cookie parameters, the log-normal coefficients, and the corresponding FE solutions can be seen in

Figure 6 in the top and bottom row, respectively.

Fig. 6: Realizations of
parameter fields for the
cookie problem (first two
columns), the log-normal
coefficient (last two columns),
and the corresponding
solutions of the parametric
Darcy problem

Solving parametric PDEs with neural networks

Multilevel decomposition. Training large NNs with many parameters is a key challenge in deep

learning due to the nonlinearity and nonconvexity of the model class. Many aspects of the learning

algorithm, such as the chosen optimizer, the learning rate, the batch sizes, and several more have

to be considered. To circumvent the handling of large intractable NNs, we propose a multilevel

decomposition of the data as depicted in Figure 7 and described in the following.

Fig. 7: Visualization of the
multilevel decomposition
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Let V1 ⊂ H1
0 (D) be a conforming piecewise linear ( P1 ) FE space on a uniform grid and let V` be

the space on the uniformly refined grid of V`−1 for ` = 2, . . . , L , where L ∈ N is the number of

levels. For the Galerkin projection v` of the solution of the PDE (1) for a fixed parameter y ∈ 0

onto the space V` , let v̂` := v` − v`−1 be the correction of v`−1 to the solution on the finer grid

for ` = 2, . . . , L . Then, individual CNNs can be trained to approximate the solution on the coarse

grid v1 and the corrections on the finer grids v̂` for ` = 2, . . . L . Due to solution smoothness, the

entries of the corrections decrease exponentially over the levels. This yields a rapid decrease of

importance and, therefore, of required accuracy in the fine grid-corrections, which can be translated

to a reduced number of parameters in the CNN and a small number of expensive fine-grid training

samples. In contrast, on coarse grids the accuracy has to be high, but only few FE coefficients have

to be approximated, by which the network sizes can be controlled. Therefore, the decomposition

leads to two advantages. On the one hand, the CNNs to be trained do not consist of a large amount

of parameters. On the other hand, a small set of expensive-to-compute solutions on a fine grid

suffices for training.

Network architecture. We derived a CNN architecture that can provably approximate the solution

of the parametric Darcy problem in the conforming P1 FE function space VL on a uniformly refined

square grid in the following sense: Denote by fL and κL (y) the coefficients of the interpolation

of f and κ(y, ·) in VL , respectively. Assume that κL (y) is uniformly bounded for all y ∈ 0 .

We have shown that there exists a constant C > 0 such that for any ε > 0 there exists a CNN

9 : R2×dim VL → Rdim VL with the number of parameters bounded by C L log(ε−1)+ C L2 such

that

‖9(κL , fL )− v
c
L (y)‖H 1(D) ≤ ε‖ f ‖∗,

where vc
L (y) denotes the coefficients vL (y) with parameter field κL (y, ·) . The architecture of the

considered CNN is depicted in Figure 8. Here, the first two yellow images depict the input containing

the coefficients of the interpolated parameter field and the right-hand side in VL . The orange

outputs of the network correspond to the solution and corrections of the solution v1, v̂2, . . . , v̂L .

The different colored U-Nets have been shown to approximate multigrid solvers in the spaces

V1, . . . , VL .

Fig. 8: Example architecture
of our multilevel CNN
approximating the solution
on L = 3 levels
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Numerical results. In the experiments, the overall error ℰ ref and the network error ℰnet are

considered separately, where ℰ ref is the average H1(D) distance of the network output to a

reference solution on a twice-uniformly refined grid, and ℰnet is the average H1(D) error of the

network output to the Galerkin solution on the same grid.

Table 1: Multilevel CNN
evaluated on test sets to
solve the parametric Darcy
problem

problem parameter dimension p ℰ ref ℰnet

cookie 16 7.09e−2± 1.87e−5 9.41e−4± 1.12e−4

64 9.73e−2± 1.16e−5 1.85e−3± 1.38e−4

log-normal 10 5.33e−3± 2.93e−6 2.15e−4± 6.18e−5

200 5.34e−3± 3.03e−6 3.00e−4± 1.43e−5

In the experiments, it is evident that the network error is at least one magnitude smaller than

the reference error, which implies that the reduction of the overall error can only be achieved

by considering finer resolutions or better-suited FE discretization spaces. Uniformly refining the

spaces quickly leads to an infeasible computational complexity as the number of parameters grows

exponentially in the number of levels.

Adaptive refinement. Efficient discretization spaces Vh can be built iteratively to control the

overall error ℰ = ‖u(y, ·)− uh(y, ·)‖H 1
0 (D)

for any y ∈ 0 , where u is the solution of (1) in H1
0 (D)

and uh is its Galerkin projection onto Vh . The space is built in an adaptive way by starting with a

coarse space V1 and repeating the procedure:

Solve on current space→ Estimate ℰ locally→ Mark large error regions→ Refine marked regions.

The resulting meshes for the cookie problem are visualized in Figure 9. A CNN architecture can

be derived that approximates every step of the above iteration. Let ℱ : R
∑L
`=1 dim V` → VL map

coefficients to the corresponding FE function. Then, there exists a constant C > 0 such that

for any ε > 0 , number of iterations K ∈ N , and local refinements L ∈ N , there exists a CNN

9 : R2×dim VL → R
∑L
`=1 dim V` with at most C L K log(ε−1) parameters such that

‖u(y, ·)− ℱ(9(κL (y), fL ))‖H 1(D) ≤ ‖u(y, ·)− uh(y, ·)‖H 1(D) + ε.

Conclusions and outlook

Convolutional neural networks are an efficient tool to solve pPDEs and are amenable to a thorough

mathematical analysis. Theoretically, small approximation errors can be achieved with network

sizes growing only logarithmically with the inverse of the required error bound. Numerically, the

multilevel decomposition of the data allows for efficient training of small networks and with only

few expensive and many cheap data samples. Solving a pPDE for a given parameter with the trained

neural network only takes one forward pass of the network, which can be evaluated quickly to obtain

statistical estimates of the solution. Interesting directions for future research are the application

of this network architecture to more challenging (nonlinear, instationary) PDEs and using it in the

context of statistical inverse problems.
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Fig. 9: Adaptively refined
meshes for the cookie
problem with p = 16
inclusions
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