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1.2 Biophysics-based Modeling and Simulation in Medical

Imaging

Alfonso Caiazzo, Sarah Katz, and Karsten Tabelow

Modern image acquisition technologies allow clinicians to record detailed information not only on

patient anatomy, but also related to biophysical processes, such as fluid and tissue mechanics

water diffusion, and metabolic activities. Those data can support clinicians in the quantitative

estimation of relevant biomarkers for identifying and staging pathologies, as well as non-invasive

patient monitoring, making medical imaging a pillar of non-invasive clinical diagnostics.

This article focuses on three selected applications of mathematical methods in the context of

medical imaging: the estimation of pressure-related biomarkers from tissue displacement data,

the estimation of tissue properties from magnetic resonance imaging (MRI) images, and usage of

computational fluid dynamics to quantify complex blood flow behavior in the aorta, to highlight

how different biophysical models and suitable computational frameworks can be used to exploit

the information contained in the available data.

Data assimilation for magnetic resonance elastography
Magnetic resonance elastography (MRE) is an imaging acquisition technique sensitive to tissue

mechanical properties. During the examination, the living tissue undergoes a mechanical excita-

tion (10–100 Hz) whose response is recorded via motion-sensitive (phase-contrast MRI) images,

resulting in a three-dimensional displacement field on selected tissue regions. Combined with

suitable physical models, these displacement data allow to obtain non-invasive estimates of tissue

mechanical parameters.

Elastography has been widely used for the quantitative estimation of biomarkers (e.g., stiffness,

tissue fluidity, viscoelasticity) related to different tissue pathologies, supporting the diagnosing

and staging of diseases, such as cancer and fibrosis. This section discusses the applicability of

elastography for quantifying an increase of brain intracranial pressure (ICP), i.e., the pressure of

the cerebrospinal fluid (CSF) within the brain, a condition that might be responsible for different

neurological diseases or cerebral damages. This application is particularly challenging, for at least

two reasons. Firstly, data are only available on a portion of the domain (typically a thin slice of

the brain), which does not necessarily include the regions where the pressure shall be quantified.

Secondly, these data are limited to the displacement field, i.e., the pressure is not observed. These

aspects make the application of standard variational frameworks unsuitable, due to the high di-

mension of the unknown state and to the absence of consistent boundary conditions for the state

variables.

We address this state estimation combining the numerical solutions of suitable partial differen-

tial equations (PDEs) with an optimization problem solved on a low-dimensional space. Namely,

assuming to be given a set of displacement data over a few slices of the computational domain –

mimicking the setting of an MRE acquisition – our goals are to (i) reconstruct suitable displacement

and pressure fields on the whole brain, and (ii) to provide quantitative estimation of the pressure

difference between the ventricles and the outer domain [2].
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A computational model of a human brain was generated using full brain anatomical MRI images,

segmented into a triangulated surface and filled with an unstructured tetrahedral mesh. Denoting

Fig. 1: Surface of the
computational model
including the outer CSF (gray)
and the ventricles (green)

with � ⊂ R3 the resulting computational domain, the dynamics of the tissue is assumed to be

described in terms of a displacement field u : �→ R3 and a pressure field p : �→ R in a time

interval [0, T ] :

ρ ∂t tu−∇·
(

E
1+ ν

(∇u+∇uT )

)
+∇ ·

Eν
(1+ ν)(1− ν)

∇ · u+∇p = 0 in�× [0, T ] ,

Sε ∂t p +∇· ∂tu−
κ

µ
∇

2 p = 0 in�× [0, T ] .
(1)

The system of PDE (1)[1] couples a linear, elastic solid phase with the motion of the fluid phase in

the porous tissue. It depends on biophysical and mechanical parameters, such as tissue density

(ρ ), Young modulus ( E ), Poisson modulus ( ν ), tissue permeability ( κ ), fluid viscosity (µ ), and

mass-storage parameter ( Sε ). Moreover, it depends on the boundary conditions to be imposed on

the solid displacement and on the fluid pressure on the external and on the internal surfaces (the

ventricles; see Figure 1).

The joint solution v = (u, p) is sought in a Hilbert ambient space Vh (e.g., piecewise linear finite

elements for u and p ), and we model the available measurements as m independent linear

functionals `i : Vh → R ( i = 1, . . . ,m ), acting on the space Vh . In the target application, the

images represent a three-dimensional displacement field on Nv voxels in the upper part of the

brain, i.e., a total of m = 3× Nv scalar measurements. As next, we construct an m -dimensional

subspace that models how the solution is observed, as

Wm = Span(wi , . . . , wm) ⊂ Vh , (2)

spanned by the unique Riesz representers of the functionals `i , i = 1, . . . ,m , i.e., such that it

holds `i (v) = 〈wi , v〉 , for all v ∈ Vh and for all i = 1, . . . ,m . The space Wm is also called the

space of observations.

We employ the physical model (1) to generate a training set ℳ , i.e., a manifold of solutions, by

Fig. 2: Snapshot (cross
section) of the reconstructed
pressure field p∗ , obtained
solving (3)

solving numerically (1) for different values of the biophysical parameters κ , E , ν , and pventricles

(CSF pressure at the ventricle boundary). The parameter ranges for the sampling can be chosen

according to available literature, accounting automatically for parameter uncertainty. Moreover,

including the pressure as parameter in the training set allows for considering different scenarios,

such as distinguishing between healthy and increased pressure cases. As next, we compute an

n -dimensional reduced-order subspace Vn ⊂ Vh that approximates sufficiently well the training

set ℳ and whose dimension is much lower than the original ambient space (typically n = O(10) ,

while dimVh = O(105) ). The space Vn encodes the physics of the model within the relevant

parameter range, as it is spanned by solutions of system (1).

The considered state reconstruction problem reads: For a given set of observations λ̂ ∈ Rm , find a

state v∗ = (u∗, p∗) ∈ Vh , with

v∗ = arginfv∈Vh

∥∥v −5Vnv
∥∥2
, with 〈wi , v〉 = λ̂i , i = 1, . . . ,m . (3)

(5Vn stands for the orthogonal projection on Vn ). Namely, we look for a solution in the whole space

Vh that minimizes the distance from the Vn , i.e.,
∥∥v −5Vnv

∥∥ , but fits the available measurements.
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Problem (3) can be formulated as a saddle-point problem of dimension n+m , whose well-posedness

is ensured if n ≤ m and if the following condition is satisfied. The quantity β(Vn, Wm) can be Healthy Range Pathological RangePhysiological Range Increased Range

Fig. 3: Characterization of
normal and increased
ventricle pressure,
comparing the reconstructed
and the synthetic true
solutions

estimated numerically solving a singular value problem, and it can be seen as the angle between the

reduced-order space Vn and the space of the observations Wm , and it quantifies the observability

of the state with respect to the considered observation space.

β(Vn, Wm) := inf
v∈Vn

∥∥�Wm v
∥∥

‖v‖
> 0 . (4)

Figure 2 shows an example of the reconstructed pressure using partial displacement measurements,

while Figure 3 shows the application for pressure increase characterization. Namely, the pressure

difference between ventricle and outer CSF for reconstructed pressure p∗ is used to assess whether

it refers to a normal or to an increased pressure case. The algorithm is validated using synthetic

measurements, comparing the classification to the one obtained using the true pressure field,

showing that it is able to separate correctly the two regimes.

Estimation of tissue parameters from inversion recovery MRI

Biological tissues are characterized by complex structures, whose dynamics reflects the interac-

tion of fluid and solid compartments at very small spatial scales. Understanding this microscale

properties is therefore of utmost importance in order to characterize mechanical and constitutive

parameters that are used in tissue mechanical models at larger scales (e.g., the poroelastic models

used in the previous section). Inversion recovery MRI (IRMRI) is an image acquisition technique that

allows to obtain a time-dependent image intensity, sensitive to the presence of fluid in the tissue.

This section focuses on mathematical methods to obtain improved tissue property estimation from

brain IRMRI data, taking into account the inherent noise present in the images.

We consider a two-compartment model with a fluid and a solid phase. For each phase, the noise-free

Fig. 4: Results for smoothed
estimated compartment
parameter f for simulated
data

MR signal ξ depends on the time at which the sequence is acquired (the inversion time) and on

the longitudinal relaxation rate R1 = 1/T1 (the reciprocal of the longitudinal relaxation time T1 )

of the tissue within a voxel. In this simple model, the combined noise-free MR signal ξ can be

described by a mixture model [3]

ξ(TI ; f, I f , R f
1 , I s , Rs

1) =
∣∣ f I f

(
1 − 2e−TI ·R f

1

)
︸ ︷︷ ︸

fluid contribution

+ (1 − f )I s
(

1 − 2e−TI ·Rs
1
)

︸ ︷︷ ︸
solid contribution

∣∣, (5)

as a function of the inversion time TI , of the partial voxel volume containing the fluid phase f ,

and the parameters for the base signal intensity ( I f , I s for fluid and solid, respectively) and the

longitudinal relaxation rate in the fluid and solid phases ( R f
1 and Rs

1 , respectively). We distinguish

between two main types of brain solid tissue, i.e., white and grey matter (WM and GM), while the

fluid phase is constituted by the cerebrospinal fluid (CSF). The parameters related to the solid phase

depend on the type of tissue (WM or GM). Furthermore, within the CSF, f is considered to be 1.

Parameter estimation of θ = ( f, I f , R f
1 , I s , Rs

1) from available data is done by a quasi-likelihood

estimation method. To this purpose, let I (TI ) denote the distribution of the MRI signal magnitude,

and let σ denote the standard deviation of the noise. The rescaled magnitude I (TI )/σ is assumed
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to be approximately χ -distributed with the non-centrality parameter ξ/σ and 2L ′ degrees of

freedom. Estimates θ̂ can be obtained in each voxel relating the observed magnitude intensities

I (TI ) with their expectations µ(ξ) by solving the optimization problem

θ̂ = arg min
θ

∑
i

[I (TI i )− µ(ξ(TI i , σ, L ′; θ)]2 , (6)

where µ(ξ) = σ
√
π
2 L(L

′
−1)

1/2

(
−

ξ2

2σ2

)
is the expected value of signal distribution, and L(L

′
−1)

1/2
is a generalized Laguerre polynomial. The analysis pipeline consists in the following steps (see

Figure 4). Firstly, we segment the imaged brain tissue into the common three segments CSF, WM,

and GM. Secondly, we estimate the parameters Ĩ f and R̃ f
1 for each voxel x within the CSF (using

f = 1 ). Thirdly, we estimate f (x) , I s(x) , and Rs
1(x) in each voxel x of the GM and WM segments

using model (5) and the parameters Ĩ f and R̃ f
1 from the previous step. Then, we perform local

(adaptive) smoothing of Ĩ (x) and R̃1(x) restricted to WM and GM (separately), to obtain estimates

Ĩ s(x) and R̃s
1(x) with a reduced variance. Finally, the mixture parameter f (x) of the model (5) is

estimated again using the newly computed estimates Ĩ f , R̃ f
1 , Ĩ s(x) , and R̃s

1(x) .

Biomarkers estimation in blood flow

Aortic coarctation denotes a congenital heart condition characterized by the narrowing of a section

of the aorta. The severity of the coarctation can be assessed using invasive measurement of the

pressure gradient across the narrowed region. Non-invasive diagnosis based on medical imaging

mainly consists in estimating the diameter of the narrowed area from anatomical data and the

aortic pressure gradient from velocity images, e.g., acquired via cardiac MRI or ultrasound echocar-

diography. Other relevant biomarkers are related to abnormal flow conditions, such as increased

Fig. 5: Surface mesh of the
segment of aorta considered
for the simulation. The cross
sections were used to
monitor averaged flow
indicators.

flow asymmetries, and abnormal oscillatory behaviors of the wall shear stresses (WSS). Due to

the limited resolution of image data, these quantities can only be quantified directly from medical

imaging with reduced accuracy.

Computational hemodynamics plays an important role in supporting available medical data by

performing patient specific simulations tuned to the particular physiological setting, which allows

to obtain quantitative biomarkers estimations using anatomical images and flow data. The blood

flow regime in the ascending aorta and the disturbances caused by aortic narrowing can yield to a

transition to turbulence, which has to be properly taken into account in the computational model.

The smallest scales of the turbulent dynamics cannot be neglected, for reasons of physical accuracy

of the results, but full-scale numerical simulations of the whole scale spectrum are prohibitive.

These challenges are addressed via turbulence modeling, i.e., with mathematical and numerical

techniques to model the impact of the unresolved (small) scales onto the (large) resolved ones, so

that important properties of the flow are preserved. The goal of this research is to study the impact

of different turbulence modeling choices on selected quantities of interests, which are clinically

relevant for the assessment of flow conditions in aortic coarctation [4].

Let � ⊂ R3 denote a computational model of ascending and thoracic aorta, which can be obtained

from medical images. The domain is bounded by the physical vessel wall 0wall , an inlet surface 0in

– close to the left ventricle – and four outlet surfaces 0out,i , i = 1,2,3,4 (brachiocephalic, left

common carotid, and left subclavian arteries, and downstream descending aorta), see Figure 5. The

Annual Research Report 2022



1.2 Biophysics-based Modeling and Simulations 19

blood flow in � is modeled as an incompressible, Newtonian fluid, whose dynamics is described in

terms of a velocity field u : �→ R3 and a pressure field p : �→ R satisfying, in a given time

interval (0, T ] , the incompressible Navier–Stokes equations

ρ∂tu− 2µ∇ · D(u)+ ρ(u · ∇)u+∇ p = 0 in (0, T ]×�,

∇ · u = 0 in (0, T ]×�.
(7)

In (7), ρ stands for the blood density, µ is the blood dynamic viscosity, and D(u) =
(
∇u+(∇u)T

)
/2

Fig. 6: Snapshot of the
numerical solution (velocity
magnitude) at a selected
instant, for the σ -turbulence
model

denotes the velocity deformation tensor (i.e., the symmetric part of the velocity gradient). Boundary

conditions for equations (7) are imposed using a measured inlet velocity profile on 0in and a

resistive Neumann-type boundary condition on the outlet boundaries, of the form

Pi (t) = Ri

∫
0out,i

u · n dµ0out,i , i = 1, . . . ,4 , (8)

where n stands for the outgoing normal vector. Equation (8) relates the boundary pressures to the

outgoing fluxes via resistance parameters R1, . . . R4 , which model the resistance of the downstream

circulation. The Ri are estimated to match observed systolic flow rates through each outlet.

Equations (7) and the boundary conditions are discretized using finite element spaces Vh and Qh

for velocity and pressure, introducing the variational form

A ((uh , ph), (vh , qh)) :=2ν (D(uh),D(vh))+ ((uh · ∇)uh ,vh)

− (∇ · vh , ph)+ (∇ · uh , qh)− f (uh ,vh)
(9)

(where f (uh ,vh) contains the outflow boundary condition terms), and solving the problem: Find

(uh , ph) : [0, T ]→ Vh × Qh , satisfying the initial and the boundary conditions, such that

(∂tuh ,vh) = −A ((uh , ph), (vh , qh)) , for all t ∈ (0, T ) and for all (vh , qh) ∈ Vh × Qh . (10)

We consider then two types of turbulence models. The first class are Large Eddy Simulation (LES)

methods, such as the original Smagorinsky model, the Vreman model, and the more recent σ -model.

These attempt to model the large turbulent scales surrogating the effect of the small scales into

explicit models for the stress tensor. In this case, the bilinear form (9) is modified as

Fig. 7: Pressure difference
across the narrowing for
different models, compared
with critical value used in
clinical assessment (dashed)

Âθ ((uh , ph), (vh , qh)) = A ((uh , ph), (vh , qh))+ (νt D(uh),D(vh)) , (11)

where νt denotes the eddy viscosity, i.e., additional modeled dissipation due to the smallest, not

resolved, scales, and θ stands for a set of model parameters to be properly chosen. A different

approach is the residual-based variational multiscale method (RB-VMS), which is based on a two-

scale decomposition of the analytic function spaces for velocity and pressure, surrogating the

influence of the small scales into additional terms in the finite element formulation. For the RB-VMS,

the bilinear form (9) is modified taking into account the momentum residue of the coarse scale

solution.

Figure 6 shows a snapshot of the simulated blood flow for the σ -model. Depending on the con-

sidered biomarkers, the obtained results for different turbulence models are either quite similar

(see Figure 7) or they are notably different. In summary, our results confirm that modeling and
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discretization choices have an important impact on the time-dependent dynamics. An extension of

this study to several non-Newtonian blood flow models can be found in [5].

Conclusions and outlook

In medical imaging, data quality and information density are closely linked. Increasing spatial

resolution, for example, requires longer acquisition times, which in turn can lead to inaccuracies

arising from intrinsic organ and patient motion. At WIAS, this research area is based on joint research

activities across different research groups as well as with interdisciplinary collaborations with

clinical and experimental partners, ensuring that the lines of research tackle relevant challenges,

both from the mathematical and from the clinical perspectives.

This article showed few examples on how biophysics-based data assimilation approaches can

compensate for the limited availability of data by combining the available data with advanced

mathematical models, numerical methods, and efficient algorithms. In the first example, reduced-

order modeling and linear poroelasticity were used to reconstruct a full solution of an unknown

pressure field using limited displacement data. The second example showed how statistical image

intensity models can be used to exploit the influence of tissue properties, such as porosity, on

tissue image intensity. The last example focused on the impact of different choices for turbulence

modeling in the context of patient-specific modeling of aortic coarctation. Future directions will

explore how these approaches can be used not only to enhance the physical consistency and

clinical relevance of imaging data, but also to support long-term prediction in conjunction with

follow-up imaging examination.
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