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1.3 RKHS Regularization of Singular Local Stochastic

Volatility McKean–Vlasov Models

Christan Bayer, Oleg Butkovsky, and John Schoenmakers

Introduction

In financial markets, including stock and energy markets, options on future prices of stocks, interest

rates, and different kinds of energy are very popular and intensively traded. In this note, we focus on

call or put options in stock markets. Suppose St is the price of a stock at time t ≥ 0. The dynamics

of S is generally considered as a random process that satisfies so-called no-arbitrage conditions.

Then, for example, a standard call option with strike price K and maturity time T is the option to

receive ST − K if ST ≥ K , and 0, or nothing, if ST < K . By standard financial theory, the value

of the option at time t = 0 , i.e., today, equals

C(T, K ) = E [max (ST − K ,0)] , T ≥ 0, K ≥ 0, (1)

under the simplifying assumption that interest rates are zero.

The call prices C(T, K ) are quoted for various T and K on the stock market. We here assume

the idealized situation where C(T, K ) is available for all 0 ≤ T ≤ Tmax and all K ≥ 0. Now, the

crucial problem, also called the calibration problem, is to find a suitable model for S such that (1)

holds, at least approximately but with high accuracy, for all 0 ≤ T ≤ Tmax and all 0 ≤ K ≤ Kmax.

One of the most striking results of the late nineties in finance was that (1) can be achieved exactly

with a so-called local volatility model,

d St = StσDupire (t, St ) dWt (2)

with W being a standard Brownian motion, provided that the function (T, K ) → C(T, K ) is

sufficiently smooth. In particular, σDupire in (2) is given by Dupire’s formula,

σDupire(T, K ) =
1
K

√
2∂T C(T, K )
∂K K C(T, K )

.

Unfortunately, while Dupire’s model (2) is a model that solves (1), i.e., perfectly fits to market prices

of call options, it is well understood that it exhibits unrealistic random price behavior. On the other

hand, stochastic volatility models

d St = St
√
vt dWt ,

for a suitably chosen stochastic variance process vt , may lead to realistic (in particular, time-

homogeneous) dynamics, but are typically difficult or impossible to calibrate to the observed

market prices (1).

As a natural way out, one may combine a local volatility model with a stochastic volatility model to a

local stochastic volatility model that combines the advantages of both local and stochastic volatility
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models. Indeed, if the stock price is given by

d St = Stσ(t, St )
√
vt dWt , (3)

then it exactly fits the observed market option prices via (1), provided that

σDupire(t, x)2 = σ(t, x)2E [vt | St = x ] . (4)

This is a consequence of the celebrated Markovian projection theorem by Gyöngy [4, Theorem 4.6].

By solving for σ in (4) and inserting the result in (3), we get the stochastic dynamics

d St = StσDupire(t, St )

√
vt

E [vt | St ]
dWt . (5)

As recognized by Guyon and Henry-Labordère [3], in principle, the stock price dynamics (5) is the

solution of a McKean-Vlasov Stochastic Differential Equation (MVSDE) due to the presence of the

conditional expectation E [vt | St ] , which can be regarded as a complicated functional of the joint

distribution of (St , vt ) . MVSDEs are usually solved by Monte Carlo simulation of a particle system,

and so was done in [3]. In a nutshell, in [3], one simulates, for i = 1, . . . , N , the “particles,”

d Si
t = Si

t σDupire(t, Si
t )

√√√√√√ vi
t∑N

j=1 v
j
t φδ(S

j
t −Si

t )∑N
j=1 φδ(S

j
t −Si

t )

dW i
t , i = 1, . . . , N , (6)

where φδ is some “delta-shaped” density function with band width δ > 0. For example, φδ(x) =

δ−1φ(x/δ), where φ is the standard normal density. The conditional expectation in the MVSDE

(5) is thus approximated by the blue expression in the particle system (6), a kind of weighted

Nadaraya-Watson estimator, for some small (but not too small) δ .

Although the approach in [3] was well received in the financial community, there are two main

issues:

(I) The MVSDE (5) is singular in the sense that it does not satisfy the standard regularity conditions

in [2] that guarantee a unique solution. In particular, the general existence of a solution to (5) is

still an open question.

(II) The choice of the band width in (6) is very delicate and, generally, the simulation of (6) is rather

costly. A more efficient numerical approach is called for.

Both issues were addressed in our recent study [1], and below we will sketch the main lines.

Regularizing the MVSDE

In the MVSDE (5), the conditional expectation

m(x, µ) := E(S,v)∼µ [v | S = x ] , x > 0, (7)

is not Lipschitz continuous with respect to µ in the Wasserstein metric, and therefore the existence

of a solution to (5) is not guaranteed by the usual conditions in [2]. As a remedy, we regularize (7)

in the framework of a reproducing kernel Hilbert space (RKHS).
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Let ℋ be an RK H S of functions on R+ (state space of the stock price model) that is generated by

a positive definite symmetric kernel k(·, ·) on R+ × R+. Assuming that m(·, µ) ∈ ℋ for fixed µ,

we may formally write

cµ(·) :=
∫
R+×R+

k(·, x)yµ(dx, dy)

=

∫
R+

k(·, x)µ(dx,R+)
∫
R+

yµ(dy|x)

=

∫
R+

m(x, µ)k(·, x)µ(dx,R+) =: 𝒞µm(·, µ).

That is, formally, m(·, µ) =
(
𝒞µ
)−1 cµ. Unfortunately, the symmetric operator 𝒞µ is generally not

invertible. As 𝒞µ is positive definite, it is, however, possible to regularize the inversion by replacing

𝒞µ by the invertible operator 𝒞µ + λIℋ for (small) λ > 0. Furthermore, it turns out that

mλ(·, µ) :=
(
𝒞µ + λIℋ

)−1 cµ (8)

is the solution to the minimization problem

mλ(·, µ) = arg min
f ∈ℋ

(
E(S,v)∼µ

[
(v − f (S))2

]
+ λ ‖ f ‖2ℋ

)
,

and therefore, since conditional expectation is an L2 projection in fact, it is natural to expect that

if λ is small enough and ℋ is large enough, then mλ(·, µ) will be close to the true conditional

expectation m(·, µ).

Significantly, we were able to prove in [1] that the MVSDE, obtained by replacing in (5) the conditional

expectation with its regularized version (8),

d St = StσDupire(t, St )

√
vt

mλ(St , µt )
dWt , where (St , vt ) ∼ µt , (9)

is well posed in the sense of [2], and thus has a unique strong solution.

Particle system with ridge regression

In comparison to (6), the particle system corresponding to (9) now reads

d Si
t = Si

t σDupire(t, Si
t )

√√√√ vi
t

mλ(Si
t , µ

N
t )

dW i
t , i = 1, . . . , N , (10)

µN
t (dx, dy) =

1
N

N∑
j=1

δ
S j

t
(dx)δ

v
j
t
(dy),

where for any Borel measurable C, δx (C) := 1C (x), i.e. δx denotes the Dirac measure at point x .

In (10),

mλ(·, µN
t ) = arg min

f ∈ℋ

 1
N

N∑
j=1

(
v

j
t − f (S j

t )
)2
+ λ ‖ f ‖2ℋ

 (11)
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is computed via a ridge regression procedure. It follows from the representer theorem for RKHS [5,

Theorem 1] that the solution to (11) has a representation

mλ(·, µN
t ) =

N∑
i=1

αi k(·, Si
t ), (12)

for some αi ∈ R , i = 1, . . . , N , which can be found by plugging the ansatz 12 into the minimization

problem 11.

Numerical example

For any numerical implementation of the approach suggested above, the regularized MV problem

(10) together with (11) needs to be discretized in time, for which we use a straight-forward Euler–

Maruyama method. In this short note, we do not further consider time discretization, since no

phenomena specific to our approximation method seem to occur.

A more important practical concern directly related to (12) is the high cost of solving the mini-

mization problem (11): As the ansatz corresponds to a regression problem with N basis functions

and N samples, the expected asymptotic cost is O(N 2) , which is prohibitively expensive given

that the number of samples may be very large. Hence, instead of using all basis functions k(·, Si
t ) ,

i = 1, . . . , N , we pick a representative ensemble k(·, Z j
t ) , j = 1, . . . , L � N . The representative

samples Z j
t can be chosen in many different ways, for instance, as the j L/N th order statistic of

(Si
t )

N
i=1 or even as points on a deterministic grid.

In order to test our method, we chose a synthetic, but nonetheless realistic calibration problem. In

order to obtain realistic option prices, we fix a particular stochastic volatility model as a “ground-

truth model,” in which option prices are computed. In the second step, we choose a different

stochastic volatility model as our “backbone model,” which needs to be calibrated to the option

prices computed in the first step by adding a suitable local volatility factor.

In practice, both our ground-truth model and our backbone model are instances of the popular

Heston model, i.e.,

d St =
√
vt St dWt ,

dvt = κ(θ − vt )dt + ξ
√
vt d Bt ,

driven by standard Brownian motions W, B with correlation ρ . However, different sets of parame-

ters are chosen for the models. The concrete parameter choices are reported in Table 1.

κ θ ξ ρ v0
market 2.19 0.17023 1.04 −0.83 0.0045
backbone 1.0 0.0144 0.5751 −0.9 0.0144

Table 1: Parameter choices for the Heston models (market) used for generating option prices and
the backbone model to be calibrated. Both sets of parameters are realistic in the sense that they are
reported in the literature as calibrated Heston parameters.
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Fig. 1: Implied volatilities for
the calibrated Heston model
for maturities T = 4 years
(left) and T = 10 years
(right)

We consider the RKHS associated with the Gaussian kernel k(x, y) := exp(−|x − y|2/(2σ2)) with

σ2
= 5 . The representative samples Z j

t are chosen as the j ·100
L+1 percentiles of the empirical

distribution of the samples (Si
t )

N
i=1 based on the total number of samples N ∈ {104,105,106

} .

The weight λ for the ridge regression is chosen to be λ = 10−5 . In order to further mollify the

singularity in (10), we truncate the denominator at ε = 10−3 , i.e., we choose

d Si
t = Si

t σDupire(t, Si
t )

√
vi

t√
mλ(Si

t , µ
N
t ) ∨ ε

dW i
t .

We plot implied volatility surfaces at different maturities for the calibrated Heston model by the

described procedure in Figure 1. We note that the calibration is essentially exact for N ≥ 105

samples.

Fig. 2: Error of the implied
volatility smile for the
calibrated Heston model as a
function of λ (left) and as a
function of the number of
samples N (right)

Figure 2 shows the dependence of the error in the calibrated Heston model (i.e., difference between

the prices in the ground-truth model and the model (10)) in terms of the weight parameter λ in

the ridge regression and the number of samples N . For the former, we note that the choice of λ is

not important as long as it is small enough, which might indicate that the problem is actually more

robust than suggested by the theoretical analysis. On the other hand, the results converge with rate

1/2 in terms of N , faster than rate 1/4 obtained in the error analysis.
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Conclusions and outlook

We suggest a novel RKHS-based regularization method for the problem of calibrating local stochastic

volatility models and prove that this regularization guarantees well-posedness of the underlying

MVSDE. Our numerical results suggest that the proposed approach is quite efficient for the cali-

bration of various local stochastic volatility models and can outperform widely used local kernel

methods as in [3]. Nonetheless, it remains unclear whether the regularized MVSDE remains well

posed when the regularization parameter λ tends to zero. This limiting case needs a subsequent

study. Another important issue for future research is the choice of the RKHS kernel that ideally

should be adapted to the problem at hand.
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