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Abstra
tThe report investigates the relation between global attra
tors of hyperboli
 balan
e lawsand vis
ous balan
e laws on the 
ir
le. Hen
e it is themati
ally lo
ated at the 
rossroads ofhyperboli
 and paraboli
 partial di�erential equations with one-dimensional spa
e variableand periodi
 boundary 
onditions. The two equations are given by:
ut + f(u)x = g(u). (H)and

ut + f(u)x = εuxx + g(u) (P)where x ∈ S1. The results of the work 
an be split into two areas: The des
ription of theglobal attra
tor of equation (H) and the question regarding persisten
e of solutions on theglobal attra
tor of (P) when ε vanishes.The key idea of the work is the introdu
tion of �nite dimensional sub-attra
tors. This toolallows to over
ome several di�
ulties in the des
ription of the global attra
tor of equation(H) and 
loses one of the last remaining gaps in its 
omplete des
ription: Theorem 2.6.1yields a 
omplete parameterization of all �nite dimensional sub-attra
tors in the hyperboli
setting.The se
ond main result 
orre
ts a result on the persisten
e of hetero
lini
 
onne
tions byFan and Hale [FH95℄ for the 
ase ε→ 0 (Conne
tion Lemma 3.2.8). The Cas
ading Theo-rem 3.2.9 then yields 
onvergen
e of hetero
lini
 
onne
tions to a 
as
ade of hetero
lini
sin 
ase of non-persisten
e.The report 
on
ludes with geometri
 investigations of the low dimensional sub-attra
tors.
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Chapter 1Introdu
tionParaboli
 di�erential equations with s
alar spatial variable have been studied for a longtime. In parti
ular vis
ous balan
e laws 
an be des
ribed as ex
eptionally well understood:existen
e, uniqueness of solutions, long time behaviour, global attra
tors, hetero
lini
 orbitset
. have been analysed in detail for a range of boundary 
onditions.The same is true for s
alar hyperboli
 partial di�erential equations. In parti
ular for hyper-boli
 balan
e laws, where again questions of existen
e, uniqueness, the long time behaviour,global attra
tors and hetero
lini
s have been studied thoroughly.However, when the two �elds, vis
ous balan
e laws and hyperboli
 balan
e laws 
ometogether many question marks appear.This thesis is devoted to the study of solutions on the global attra
tors of vis
ous balan
elaws and their relation to solutions of hyperboli
 balan
e laws when the vis
osity is small orvanishes. Before going into further details we set the formal stage that 
lari�es the settingin whi
h we will be working.The hyperboli
 balan
e law is given by
ut(x, t) + [f(u(x, t))]x = g(u(x, t)). (H)The vis
ous balan
e law is then given by

ut(x, t) + [f(u(x, t))]x = εuxx(x, t) + g(u(x, t)). (P)The subindex denotes the partial derivative with respe
t to the index. We solve for x ∈ S1with S1 := R/(2πZ). This is equivalent to imposing periodi
 boundary 
onditions on adomain of length 2π. By an easy s
aling argument all our results remain true for thesituation of periodi
 boundary 
onditions in a domain of size L for any bounded and �xed
L ∈ R. u is a fun
tion mapping from S1 × R→ R.The non-linearities f, g map from R → R. Furthermore we make additional hypothesesthat are assumed to hold throughout the whole work ex
ept if expli
itly stated otherwise.We impose:(H1) f is C2 and stri
tly 
onvex (∃α ∈ R s.t. f ′′ > α > 0) and f ′(0) = 0.(H2) g is C1 and dissipative, i.e. there exists a 
onstant M > 0 su
h that

ug(u) < M (1.1)5



for all |u| > M .(H3) g has three simple zeros at u− < u0 < u+, where we assume u0 = 0.A dis
ussion of the assumptions will follow in the next 
hapter. They guarantee the exis-ten
e and uniqueness of solutions and the existen
e of a global attra
tor in both equations.Roughly, (H1) is required in order to obtain unique admissible solutions for the hyperboli
equation, (H2) will guarantee the existen
e of global attra
tors for (H) and (P).Vis
ous balan
e laws 
an be understood as a paraboli
 regularisation of hyperboli
 balan
elaws. The latter are generalisations of 
onservation laws whi
h do not possess a sour
e term.The hyperboli
 equation (H) is the limiting equation of the paraboli
 equation (P) whenthe vis
osity vanishes.Small or vanishing vis
osity means that the vis
osity parameter denoted by ε goes to zero.In terms of solutions there are two ways to look at this problem. From the perspe
tive ofthe balan
e law, by asking what happens to solutions when vis
osity is added. This is thetransition form ε = 0 to ε > 0.Or from the perspe
tive of the vis
ous balan
e law, by asking what happens to vis
oussolutions when vis
osity tends to zero, i.e. ε→ 0.The answers to both questions are di�erent in some 
ases but 
ertainly there is a relationbetween these.Both equations possess global attra
tors (see Chapter 2), denoted by Aε and A0, whi
hattra
t solutions in forward time. Thus the question about the relation between solutions
an be understood as a question about the global attra
tors.It is unknown whether
lim
ε→0
Aε = A0 (1.2)in the 
ase of periodi
 boundary 
onditions. There are many ways how to understandequation (1.2):

• In the sense of sequen
es: all u0 ∈ A0 are a limit of a sequen
e of uε ∈ Aε and all
onverging sequen
es uε ∈ Aε have a limit that is 
ontained in A0.
• In the sense of sets: Aε 
onverges in the Hausdor� metri
 for sets in L1, L∞ or L2to A0.
• In the sense of solutions: all 
onverging sequen
es of solutions uε(·, t) ∈ Aε 
onvergeto a solution u0 ∈ A0, and all solutions u0 ∈ A0 are a limit of a 
onverging sequen
eof solutions uε ∈ Aε.
• In the sense of C0-orbit equivalen
e: this would mean that the orbit stru
ture on Aεand A0 is the same, hen
e there exists a C0 bije
tive map mapping orbits of Aε toorbits of A0.For Neumann boundary 
onditions Härteri
h [Haer97℄ 
ould prove a very interesting result.He proved under mild assumptions (i.e. f ′ does not vanish at zeros of g) that the dimensionof the paraboli
 attra
tor Aε stays �nite even for ε → 0 whereas the global attra
tor for

ε = 0 is in�nite dimensional. However, the problem here is that for Neumann boundary
onditions the limiting equation is not well posed and the right hand side of equation (1.2)6



has no interpretation. In Se
tion 2.2 we will see that the �nite dimensionality of the limitdoes not hold for the S1 
ase.If we assume 
onvergen
e of the limit in (1.2) in the sense of sub-sets of L∞ or L1 then itis a dire
t 
onsequen
e of our Theorem 3.2.1 that
lim
ε→0
Aε ⊂ A0.However this still does not answer the question about the relations of solutions. It is one ofthe main results of this work that hetero
lini
 solutions in Aε do in general not persist for

ε→ 0. This 
orre
ts an outstanding result of Fan and Hale [FH95℄ that states otherwise.The Conne
tion Lemma 3.2.8 states a purely algebrai
 ne
essary 
ondition for the per-sisten
e of hetero
lini
s: if a hetero
lini
 
onne
tion between a sour
e u2 and a target u1persists, then the zero-number of the sour
e is a multiple of the zero-number of the target.This ex
ludes persisten
e for a lot of 
onne
tions!If a hetero
lini
 
onne
tion does not persist, the Cas
ading Theorem 3.2.9 yields 
onver-gen
e to a 
as
ade of hetero
lini
s. This means the limit 
onsists of hetero
lini
 
onne
tionsof (H) separated by se
tions of equilibria. Be
ause we have pointwise 
onvergen
e of solu-tions, this implies that for small ε the hetero
lini
 
arries a fast-slow dynami
 stru
ture.This dynami
al stru
ture is the fo
us of Chapter 4 where we explore the geometry of themanifolds that form the global attra
tors. The tool of �nite sub-attra
tors, introdu
edin Se
tions 2.4 and 2.5 proves extremely useful here, espe
ially in 
ombination with themain result of Chapter 2, Theorem 2.6.1, that provides an expli
it parameterisation of allsub-attra
tors of equation (H).This 
hara
terises the general ideas behind the main results of this work: the Conne
tionLemma, the Cas
ading Theorem and Theorem 2.6.1 on the sub-attra
tors of (H). Thestru
ture of the dissertation is as follows:Chapter 2 will present a detailed review of what is known about the global attra
tors ofequations (H) and (P), and will provide the ne
essary te
hni
al ba
kground. We begin withde�nitions of global attra
tors in Se
tion 2.1 followed by three se
tions on the paraboli
equation: after the existen
e of a global attra
tor is settled in Se
tion 2.2, we apply thedeveloped theory to our equation to 
lassify all rotating waves of the paraboli
 equation inSe
tion 2.3. This is possible by virtue of geometri
 singular perturbation theory, developedby Feni
hel in the 70s [Fen79℄, in 
ombination with rotated ve
tor �elds for ODEs.Se
tion 2.4 then solves the 
onne
tion problem and allows us to fully 
lassify the globalattra
tor of the paraboli
 equation. This goes ba
k to results of Fiedler, Ro
ha andWolfrum[FRW04℄. At the end of this se
tion we introdu
e our new tool, the �nite dimensional sub-attra
tors of order n in the paraboli
 setting.Two se
tions on the hyperboli
 equation then follow: Se
tion 2.5 reviews questions on theexisten
e and uniqueness of solutions, the existen
e of a global attra
tor and the 
onne
tionproblem. Many people have 
ontributed to these results, the latest referen
e is [Haer99℄.In the last part of Se
tion 2.5 we introdu
e the sub-attra
tors of order n for the hyperboli
balan
e law.Se
tion 2.6 
ontains the main result of Chapter 2: Theorem 2.6.1. It yields an expli
itparameterisation of and the �ow on all sub-attra
tors of �nite order and proves their �nitedimensionality. It yields uniqueness of hetero
lini
 
onne
tions when the zero-numbers of7



sour
e and target only di�er by two. The zero-number limitation is unsatisfa
tory, be
auseI believe it to be a purely te
hni
al 
onstrain, however even this result will provide us withan important tool in the analysis of the geometri
 stru
ture of hetero
lini
 
onne
tions ofthe paraboli
 equation.Chapter 3 is devoted to the main theoreti
al results of this work on persiten
e of solutions:the Cas
ading Theorem and the Conne
tion Lemma already des
ribed above.Chapter 4 explores the impli
ations of these theorems. The 
hapter pro
eeds by slowlyin
reasing the dimension of the sub-attra
tors i.e. the number of zeros in the rotatingwaves that are involved. Se
tion 4.1 deals with the paraboli
 sub-attra
tor of order 2: Aε
2.By virtue of the uniqueness for hetero
lini
s in the hyperboli
 equation to homogeneousequilibria (Theorem 2.6.1 (e)), the result of this se
tion yields 
onvergen
e of sub-attra
torsfor ε→ 0. Hen
e we 
an des
ribe the solution manifolds of the paraboli
 equation on thissubattra
tor and their geometry whi
h has not been done rigorously before.Se
tion 4.2 investigates the relation of solutions between Aε

4 and A0
4. Here we use anadditional assumption that the dimensionality of Aε is preserved when performing thelimit ε→ 0.The se
tion on geometry �nishes with a proposition on how to 
onstru
t the 
as
adesof hetero
lini
s in Se
tion 4.3. The suggested 
onstru
tion is a generalisation from theprevious se
tion's result, but it is not rigorous. It gives interesting insights on how thelimits of hetero
lini
s might look.We 
on
lude in Chapter 5 with a dis
ussion on the unanswered questions of this work anda dis
ussion on the possibilities of �nding answers to some of them.

8



Chapter 2Global Attra
torsThe aim of this 
hapter is to introdu
e global attra
tors and to present an overview aboutwhat is known about attra
tors and their stru
ture in the hyperboli
 and paraboli
 
ases. Inthe paraboli
 setting we will apply these known results and adapt them to our equation; inthe hyperboli
 setting we will push the limits a little further and obtain some new �ndingson the geometri
 representation of �nite dimensional parts of the global attra
tor. We will
ombine the results of both equations to obtain our main result on the non-persisten
e ofhetero
lini
 
onne
tions in Chapter 3.This 
hapter is organised as follows: in the �rst se
tion we give a de�nition of globalattra
tors. The following two Se
tions 2.2 and 2.3 will present the general properties ofglobal attra
tors for the paraboli
 equation and use them in the following Se
tion 2.4 tosolve the full 
onne
tion problem. At the end of this se
tion we introdu
e a new tool:sub-attra
tors of order n.The �fth and sixth se
tions are devoted to the study of the attra
tor of the hyperboli
equation. In 2.5 we present the general properties of the global attra
tor and additionallyde�ne � in analogy to the paraboli
 setting � the sub-attra
tors for the hyperboli
 equation.Theorem 2.6.1 in Se
tion 2.6 proves a 
omplete expli
it parameterisation of all �nite di-mensional sub-attra
tors and yields uniqueness of 
ertain hetero
lini
 
onne
tions. Thistheorem thus 
loses one of the last remaining gaps of a full geometri
 des
ription of theglobal attra
tor of equation (H) and is one of the main results of this work.It will help us to better 
ompare the attra
tors of the hyperboli
 and paraboli
 setting forsmall ε and will bring us a step further towards understanding the question of whether theattra
tor of the paraboli
 equation 
onverges to that of the hyperboli
 equation for ε→ 0.2.1 Preliminaries and De�nitionsAlthough the attra
tors for the two equations show many similarities, we will present theresults separately. The tools and methods involved in the two settings are quite di�erent.Even the underlying spa
es di�er. We will see later that the paraboli
 equation �lives� in
H2, whereas the hyperboli
 balan
e law �lives� in BV , thus the two equations have to betreated in di�erent frameworks.The fun
tional analysis setup 
on
erning existen
e, uniqueness, regularity et
. is standard9



material and has entered text books. I will not show proofs for most of the results, as they
an be found in the works quoted. I do in
lude these results for a better readability of thisdissertation. Moreover the basi
 theory in ea
h se
tion will help us to understand fromwhere the assumptions (H1)-(H3) we have made originally 
ome.Let us now address the de�nition of global attra
tors. In general there are several di�erentways to do this; some de�nitions are more suitable for the one or the other equation. Thefollowing de�nition, however, will serve us well as a starting point:De�nition 2.1.1 Let
ut = F(u, ux, uxx) (2.1)for x ∈ S1 de�ne a semi�ow denoted by Φ on a fun
tion spa
e X. Then the global attra
torof the above PDE (2.1) is de�ned - if it exists - as the subset A of the phase spa
e X that
onsists of all global orbits of the equation.A global solution here is de�ned as a solution that exists for all times t ∈ R and staysbounded. It is far from obvious that su
h solutions exist, espe
ially in ba
kward time,be
ause the PDE (2.1) only de�nes a semi�ow. Hen
e it 
annot be solved in ba
kwardtime in general.Thus we have to 
larify what �exists for all times� means. We use the following (standard)de�nition:De�nition 2.1.2 Let t ∈ R

+ be a positive time and u0(x) be an initial 
ondition. We say
Φ(u0,−t) exists if there is a ũ ∈ X su
h that Φ(ũ, t) = u0. We 
all a solution u(x, t) thatexists for all t ∈ R a global solution.In other words, Φ(u0, t) exists for negative times if u0 lies on a forward orbit for someinitial 
ondition ũ. This does not imply that we solve the equation ba
kwards be
ause ingeneral ũ is not unique.An alternative des
ription of a global attra
tor yields the following de�nition:De�nition 2.1.3 The global attra
tor of equation (2.1) is de�ned - if it exists - as themaximal 
ompa
t invariant subset A of the phase spa
e X of equation (2.1), that attra
tsall bounded subsets B ⊂ X.Both de�nitions are equivalent for the paraboli
 equation (P) and the hyperboli
 equation(H) if we impose (H1)-(H3). However, this is far from obvious. The next se
tions willprovide for referen
es.The di�eren
e between De�nition 2.1.1 and De�nition 2.1.3 
learly lies in the starting pointof the de�nition. The �rst one uses global orbits that are 
olle
ted to sets, the se
ond fo
useson attra
ting sets in phase spa
e. The se
ond makes it 
lear where the term �attra
tor�
omes from.2.2 The paraboli
 equationIn this se
tion we will present general results on the solution theory of paraboli
 equationsand the properties of the global attra
tor. The results are true for more general equationsthan equation (P). 10



We therefore introdu
e a more general form of a paraboli
 equation than equation (P),whi
h we will use throughout this se
tion:
ut = εuxx + h(u, ux) (2.2)where h ∈ C2 and again x ∈ S1. Obviously, if we set

h(u, ux) = g(u) − f ′(u)uxour equation (P) is of the above form.For a more extensive overview than the one presented here of global attra
tors and patternsin general rea
tion di�usion equations, I refer to the arti
le of Fiedler and S
heel [FS03℄ orthe book of Chepyzhov and Vishik [CV02℄. The latter even treats the non-autonomous 
ase.The �rst half of the �rst arti
le is ex
lusively devoted to one dimensional rea
tion di�usionequations under several boundary 
onditions in
luding periodi
 boundary 
onditions.It is known that the initial value problem (Cau
hy problem) of PDE (2.2) together withNeumann, Diri
hlet or periodi
 boundary 
onditions is well posed and has unique solutionsfor su�
iently regular initial 
onditions.On the Sobolev spa
e of twi
e weakly di�erentiable L2-fun
tions
X = W 2,2([0, 2π],R) = H2([0, 2π],R)that satisfy the boundary 
onditions, the PDE generates a C1 semi�ow with the asso
iatedsemigroup

Φε : X × R
+ −→ Xwhi
h assigns ea
h pair (u0(x), t) ∈ X × R

+ the solution u(·, t) at time t with initial
ondition u0:
Φε(uε(·, t0), t) := uε(·, t0 + t).The books of Henry [Hen81℄ or Pazy [Pazy83℄ whi
h give a more detailed des
ription arethe standard referen
es for the semigroup theory related to paraboli
 PDEs.The existen
e and stru
ture of global attra
tors for (2.2) were �rst des
ribed for separatedboundary 
onditions su
h as Neumann or Diri
hlet. In fa
t many publi
ations fo
us up tothis day on these two 
ases.Dissipativity of the non-linearity is the key for the existen
e of global attra
tors. Dissi-pativity here is understood in the sense of Hale [Hale88℄ or Babin and Vishik [BV92℄. Asu�
ient 
ondition for dissipativity of h in the Neumann or Diri
hlet 
ase is:
uh(u, 0) < 0 for |u| > Mfor su�
iently large M ∈ R.In 1968 Zeleniak [Zel68℄ and later in 1978 Matano [Ma78℄ 
ould a
hieve results not onlyregarding existen
e but also giving an e�
ient des
ription of the attra
tor in the 
ase ofNeumann boundary 
onditions. They proved that any bounded solution tends to a singleequilibrium for t → ∞. This is due to the existen
e of a Lyapunov fun
tional on thephase spa
e X. In fa
t, this holds true in negative time dire
tion as well, if the solutionexists in negative time dire
tion and stays bounded. This leads to the des
ription of global11



attra
tors for the Neumann 
ase as the set of equilibria and their 
onne
ting hetero
lini
orbits (for a pre
ise de�nition of hetero
lini
 orbit see equation (2.5)).In the 90s Fiedler and Ro
ha proved in [FR96℄ that the 
onne
tion problem 
an be solvedex
lusively with information about the stationary solutions of the PDE. In other words,on
e all equilibria are des
ribed, it is possible to de
ide whi
h of the stationary solutionsare 
onne
ted. We do not go into further detail here for Neumann b.
. as we are onlyinterested in the S1 
ase.In the S1 
ase again dissipativity of h is su�
ient for the existen
e of a global attra
tor on
X = H2. We quote the 
ondition given by Matano and Nakamura in [MN97℄ that ensuresexisten
e:(A) For ea
h K > 0 there exists C > 0 su
h that |h(p, q)| ≤ C(1 + q2) for |p| ≤ K.(B) There exists M > 0 su
h that h(p, 0)p < 0 for all |p| > M .In other words, the non-linearity has to be positive for negative �rst argument and negativefor positive �rst argument. In addition it has to grow sub-quadrati
ally in the se
ondvariable.It is easy to see that our PDE (P) is dissipative in this sense. The above 
ondition (B) isthe same as our 
ondition (H2). Furthermore our non-linearity only grows linearly in these
ond variable ux by de�nition. Hen
e we have existen
e of a global attra
tor.In terms of the stru
ture of the global attra
tor periodi
 boundary 
onditions are mu
hmore 
ompli
ated to deal with than separated boundary 
onditions. This is due to theexisten
e of rotating waves whi
h 
annot exist for separated boundary 
onditions.If h depends in addition expli
itly on x, the situation is even more 
ompli
ated and fewresults are known. The problem is that the Morse-Smale property of the attra
tor is de-stroyed in this 
ase. This is the main reason for not 
onsidering the x-dependent 
ase.For the homogenous 
ase Angenent and Fielder [AF88℄ and Matano [Ma88℄ 
ould showthat, similar to the Neumann 
ase, any solution of (2.2) tends to a set of fun
tions Γ(v) :=
{v(·+θ) : θ ∈ S1} for t→ +∞. Here v(x) is given by a solution of the ordinary di�erentialequation

vxx + cvx + h(v, vx) = 0 (2.3)for some value of c ∈ R and x ∈ S1. This equation is usually 
alled travelling or, in the
S1 
ase, rotating wave equation. Any non-homogenous solution v of (2.3) with non-zero cis a time periodi
 solution u(x, t) of (2.2) if we de�ne u(x, t) := v(x− ct). This solution is
alled a rotating wave with wave-speed c. The orbit of this rotating wave is given by Γ(v).The above equation 
an be obtained by plugging a travelling wave ansatz u(x, t) := v(x−ct)into the PDE (2.2) and then requiring the time-derivative to vanish. In fa
t, if u(x, t) is atravelling wave, i.e. there is some v(·) and c 6= 0 su
h that

u(x, t) = v(x− ct), (2.4)then v solves the rotating wave equation (2.3) and vi
e versa. This is an �if and only if�relation. The above equation is 
ommonly used to de�ne the notion of rotating waves.For c = 0 equation (2.3) turns into the stationary problem of (2.2). The non-homogenousequilibria then will be 
alled frozen waves. For these Γ(v) is an embedded 
ir
le of equilibria.12



Finally the zeros ui of h(p, 0) solve equation (2.3) for v(x) ≡ ui and de�ne the homogenousequilibria.This leads to de�nition the following sets. Let
• Eε denote the set of homogenous equilibria;
• Fε denote the set of frozen waves;
• Rε denote the set of rotating waves and
• Hε denote the set of hetero
lini
 
onne
tions.We de�ne a hetero
lini
 
onne
tion as a solution u(x, t) of (2.2) that has the property that

lim
t→+∞

u(x, t) ∈ Eε ∪ Fε ∪Rε

lim
t→−∞

u(x, t) ∈ Eε ∪ Fε ∪Rε.
(2.5)The result of Angenent and Fiedler or Matano quoted above means that any boundedsolution of (2.2) 
onverges towards either a rotating wave, a frozen wave or a homogenousequilibria in forward time dire
tion. The same is true in ba
kward time dire
tion if thesolution stays bounded. Thus, they have obtained the following theorem:Theorem 2.2.1 Let the non-linearity of equation (2.2) be dissipative and C2. Then theglobal attra
tor Aεof the PDE 
an be des
ribed as follows:

Aε = Eε ∪ Fε ∪Rε ∪Hε. (2.6)In parti
ular, any time periodi
 orbit is a rotating wave and any orbit in Aε\(Eε∪Fε∪Rε)is a hetero
lini
 
onne
tion 
onne
ting u1, u2 ∈ Eε ∪ Fε ∪Rε with u1 6= u2.In [FRW04℄ Fiedler, Ro
ha and Wolfrum were able to resolve the 
onne
tion problem forthe periodi
 
ase as well. Their idea was to use homotopies, su
h that every solution ofthe S1 
ase solves a Neumann problem and vi
e versa. Then they 
ould use their earlierresults on the Neumann 
ase and extend it to the periodi
 
ase.The key ingredient is the 
on
ept of k− (P)-adja
en
y (see De�nition 2.4.1 in Se
tion 2.4),that was developed and used for the Neumann 
ase in [FR96℄ and later in [Wol02a℄ and[Wol02b℄. The whole approa
h relies heavily on nodal properties that have their origin inthe fa
t that the linearisation of the PDE (2.2) is a Sturm-Liouville type problem. This goesba
k to Sturm [Stu1836℄. A key observation is that the number of stri
t sign 
hanges in asolution 
an only drop along traje
tories, hen
e 
an be 
onsidered as a dis
rete Lyapunovfun
tion. This remains true for the di�eren
e of two solutions.Information on the equilibria, the frozen and rotating waves is su�
ient to determine whi
hobje
ts are 
onne
ted to ea
h other by hetero
lini
 orbits. The relation of the maxima ofthe rotating and frozen waves plays a key role in this analysis. Moreover, the dire
tion ofthe 
onne
tion is given by the Morse indi
es; the target always has smaller Morse indexthan the sour
e. We will 
over this in detail in Se
tion 2.4 on the 
onne
tion problem.Let us 
on
lude this se
tion about the general properties of the global attra
tor by some ad-ditional remarks. We have seen that the attra
tor both for Neumann and periodi
 boundary13




onditions 
an be des
ribed in terms of stationary and periodi
 solutions and hetero
lini

onne
tions between these solutions. Moreover the existen
e of 
onne
tions 
an in prin
i-ple be 
omputed if the travelling wave ODE (that turns into the stationary problem for
c = 0) is well understood. However the problem still remains to des
ribe the hetero
lini
solutions in terms of their geometry in the phase spa
e. So a proof about how solutions
hange in time within a hetero
lini
 
onne
tion is in general not known. In Chapter 4 wewill prove some results in that dire
tion for some low dimensional 
ases. At this point theworks of Carr and Pego should be mentioned. In two long and very te
hni
al papers [CP89℄and [CP90℄, using invariant manifold te
hniques, they proved that the dynami
s on thehetero
lini
 
onne
tions in the simplest 
ase (f = 0, g a 
ubi
 fun
tion) are exponentiallyslow for ε→ 0.Their proof strongly relies on the the fa
t that the vis
osity parameter ε is small andtheir approa
h is not suitable to des
ribe the full hetero
lini
 
onne
tion via the manifoldapproa
h. The reason for this is that their des
ription breaks down in neighbourhoods ofpoints, where the 
onne
ting orbit (viewed as a manifold in the extended phase spa
e) is notnormally hyperboli
. In other words the linearisation in transverse dire
tion 
annot haveeigenvalues with zero real part. But the Morse index (for a pre
ise de�nition see 2.3.10)ne
essarily de
reases along the hetero
lini
 
onne
tion (see Theorem C in [MN97℄). At thepoint where it a
tually gets smaller at least one eigenvalue has to 
ross the imaginary line,hen
e this is a point on the hetero
lini
 
onne
tion where normal hyperboli
ity breaksdown.Another important question relates to the dimension of the global attra
tor. A generalresult of Mallet-Paret [MP76℄ already shows that the Hausdor� dimension of the globalattra
tor of (2.2) is �nite if ε > 0.However it might not stay �nite for ε → 0. Even in the simpler Neumann 
ase there areexamples where the dimension of the attra
tor approa
hes ∞ for ε→ 0. The most famousresult is probably that of Cha�ee and Infante [CI74℄, where already the number of isolatedequilibria goes to in�nity for ε→ 0, and so does the number of hetero
lini
 
onne
tions.Härteri
h [Haer97℄ 
ould prove under mild assumptions, that in the Neumann 
ase thedimension of the attra
tor stays generi
ally �nite for vis
ous balan
e laws su
h as ourequation (P). In fa
t if the zero of f ′ does not 
oin
ide with the middle zero of g in (P)then this is the 
ase. However, the example stays arti�
ial, be
ause the limiting equationis not well posed for Neuman boundary 
onditions.If the assumption of Härteri
h is violated and the middle zero of g and the zero of f ′
oin
ide then a Cha�ee Infante type me
hanism leads to a blow up of the dimension: moreand more stationary solutions with in
reasing zero-number appear when ε approa
hes 0.Any Neumann solution 
an be extended by an easy re�e
tion to a periodi
 solution on thedoubled domain. One might expe
t that the result of Härteri
h 
ould be generalised to theperiodi
 
ase, where there is a well posed limiting equation. However, this is not possible,be
ause as we will see in Se
tion 2.3 there is always a wave speed c, su
h that the zero of
(f ′ − c) and the middle zero of g 
oin
ide. This again leads for ε→ 0 to the generation ofin�nitely many rotating waves with that parti
ular wave speed. The waves have in
reasingzero-numbers, similar to the Cha�ee-Infante example. A 
onsequen
e is a divergen
e of theattra
tor's dimension.This is not as surprising as it might at �rst seem in this 
ontext. In the se
tion on global14



attra
tors in the hyperboli
 equation 2.5 we will see that for the hyperboli
 equation where
ε = 0, 
ontinua of linearly independent stationary solutions exist and the global attra
torof the hyperboli
 equation thus is in�nite dimensional.It has be
ome 
lear that the rotating waves in the paraboli
 equation are important for theanalysis of the attra
tor. The following se
tion is devoted to the study and 
lassi�
ationof these waves.2.3 Rotating waves for the paraboli
 equationIn the des
ription of the global attra
tor of the paraboli
 equation rotating waves play akey role.We �rst state our version of the rotating wave equation. If we set

h(u, ux) = g(u) − f ′(u)uxin equation (2.3) then all rotating waves of the PDE (P) are solutions of the ODE
εvxx = (f(v)− c(ε)v)x − g(v) (2.7)with boundary 
onditions

v(0) =v(2π) (2.8)
vx(0) =vx(2π). (2.9)Hen
e they are periodi
 solutions of equation (2.7) with minimal x-period 2π

n for some
n ∈ N.In the following we will des
ribe all periodi
 solutions of (2.7), in
luding those satisfying(2.8) and (2.9). This analysis makes use of three aspe
ts of the equation. The �rst is itssingular perturbed nature; the se
ond is the fa
t, that (2.7) 
an be transformed to a planarrotated ve
tor �eld and the third is the fa
t, that one of the equilibria of the ODE (2.7)undergoes a Hopf bifur
ation for c = 0.We begin by rewriting equation (2.7) as a �rst order system in Lienard 
oordinates. Theequation then reads

εvx = f(v)− c(ε)v + p
px = −g(v). (2.10)These 
oordinates are adapted to the geometry of the problem. However, sometimes it ismore 
onvenient to work with standard phase plane 
oordinates:

εwx = q

qx = (f ′(w)−c(ε))q
ε − g(w)

(2.11)We will use both sets of 
oordinates as ea
h one has its own advantages. We will alwaysuse (v, p) when referring to the Lienard version and (w, q) when utilising phase plane
oordinates.The 
oordinates 
an be transformed into ea
h other by the transformation:
w(v, p) = v v(w, q) = w (2.12)

q(v, p) = f(v)− p p(w, q) = f(w)− q. (2.13)15



To not be
ome 
onfused by the rotating wave as a solution of the ODEs (2.10) or (2.11),and the (time) dependent rotating wave solution of the PDE (P) we will use the letters
v(x) or w(x) when referring to the solution of the ODE, and we will use u(x, t) when werefer to the solution of the PDE. Both solutions will be 
alled �rotating wave�. Sometimeswe will drop the arguments for a better readability.The ODEs are singularly perturbed in both 
oordinates. We use the theory developed byFeni
hel in the '70s and '80s [Fen79℄ to analyse the properties of the two systems. Feni
hel'sidea was to split the dynami
s into a slow part whi
h is given by just putting ε = 0 and afast part whi
h is obtained by res
aling ξ = x

ε and again putting ε = 0.The slow dynami
s then are 
on�ned to a manifold that 
onsists of stationary solutions ofthe fast equation. Feni
hel 
ould prove that the manifold persists for ε > 0 if the manifoldis normally hyperboli
 i.e. the linearisation of the fast �eld on the slow manifold has nopurely imaginary eigenvalues in the transverse dire
tion.In the Lienard 
ase we obtain for the slow part after putting ε = 0,
0 = f(v)− c(0)v + p
px = −g(v).Therefore the slow dynami
 is 
on�ned in the manifold given by

Fl := {(v, p); p = cv − f(v), v ∈ R}, whi
h is just the graph of cv− f . The dynami
s 
an be obtained by di�erentiation of the�rst equation 0 = (f ′(v)− c)vx + px, whi
h leads together with px = −g(v) to:
vx =

g(v)

f ′(v)− c. (2.14)This equation has in general one singularity depending on c, but for the appropriate 
hoi
eof c this singularity 
an be removed.For the fast dynami
s we obtain upon res
aling and again putting ε = 0 the equations
vξ = f(v)− c(0)v + p
pξ = 0.This means that the fast ve
tor �eld is given by horizontal lines and vanishes on theslow manifold. Every point on the slow manifold has at least one zero eigenvalue with aneigenve
tor that is tangential to the manifold.An easy 
al
ulation yields that the se
ond eigenvalue is non-zero ex
ept at a point (v0, cv0−

f(v0)) depending on c, where f ′(v0) − c = 0. Due to the 
onvexity of f the point v0 isunique. At (v0, cv0 − f(v0)) the fast ve
tor �eld is tangential to the slow manifold.This means Fl is normally hyperboli
 ex
ept at the point (v0, cv0 − f(v0). The manifoldpersists outside a neighbourhood of this point. It is therefore not 
lear if the persistingunstable manifold Wu(u−, cu− − f(u−)) and the stable manifold Ws(u+, cu+ − f(u+))
oin
ide and form a hetero
lini
 
onne
tion for ε > 0. Later we will see that there is aunique wave-speed c su
h that they do in fa
t 
onne
t. Figure 2.1 shows a s
hemati
 plotof the ve
tor �eld in Lienard 
oordinates for c = 0.16
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Figure 2.1: Phaseportrait of equation (2.10) in Lienard 
oordinates for c = 0. The dottedbox is the area where the slow manifold does not ne
essarily persist . The unstable andstable manifolds of (u±, f(u±)) might not 
oin
ide.For phase plane 
oordinates the situation is a little di�erent. Here the slow manifold Fp isjust given by the line with q ≡ 0. The fast ve
tor �eld reads after res
aling
wξ = q
qξ = (f ′(w)− c)q − εg(w).

(2.15)Again the slow manifold is normally hyperboli
 ex
ept in the unique point w0 where
f ′(w0)− c = 0. The phase portrait in phase plane 
oordinates is given in Figure 2.2.Again the �ow on the slow manifold is given by

wx =
g(w)

f ′(w) − c. (2.16)To see this, we observe that qx = 0 in the slow manifold. We use this in the se
ond equationof (2.11) and plug in εwx = q from the �rst equation to obtain the above expression.The reason why we introdu
ed phase plane 
oordinates at all, is that the system (2.11) isa rotated ve
tor �eld (mod q = 0) with respe
t to the parameter c.The notion of rotated ve
tor �elds was introdu
ed by Du� [Duf53℄ and re�ned by Perko[Per75, Per93℄. For exa
t de�nitions I refer to their papers or to De�nition 4.1 in [Haer03℄.The geometri
 interpretation of this is that the whole ve
tor �eld rotates in the samedire
tion when 
hanging the parameter c ex
ept on the 
urve q = 0. A 
onsequen
e of thisis the following result:Lemma 2.3.1 (Du�,Perko) Consider a family of rotated ve
tor �elds. Suppose there isan equilibrium whi
h for all values of c possesses a one-dimensional unstable manifold. Then17



fast ve
tor �eld
q

w

Fp(u−, 0) (u+, 0)

Figure 2.2: Phaseportrait of equation (2.11) when c = 0. The dotted box is the area wherethe slow manifold does not ne
essarily persist.this manifold moves either 
lo
kwise or anti-
lo
kwise as the parameter c is in
reased. Thestable manifold moves in the same dire
tion. Moreover, these dire
tions are the same forall saddle equilibria of the system.Before we state the main proposition of this se
tion 
on
erning the stru
ture and existen
eof all periodi
 orbits of (2.7), we introdu
e the 
y
li
ity set C. This set was used already in[FRW04℄ in this form, but the idea was introdu
ed earlier in similar problems, for examplein [MN97℄.De�nition 2.3.2 The 
y
li
ity set Cp 
onsists of all points (w, q) ∈ R
2 that lie on aperiodi
 orbit of equation (2.11) for some value of c or 
orrespond to homogenous equilibria

(e, 0) of (P) that undergo a Hopf bifur
ation for some value of c.We immediately observe that in our situation Cp is non-empty be
ause the homogenoussolution asso
iated with the middle equilibrium w ≡ 0 undergoes a Hopf bifur
ation at
c = 0:There are three homogenous equilibria of equation (P) that 
orrespond to (w0, 0) =
{(u−, 0), (0, 0), (u+ , 0)}. The 
hara
teristi
 polynomial of the linearisation of (2.11) in theseequilibria is given by

λ1/2 = −f
′(w0)− c

2ε
±

√(
f ′(w0)− c

2ε

)2

− g′(w0)

ε
. (2.17)For w0 = u± both eigenvalues are real. For w0 = 0 the eigenvalues are imaginary with theproperty that

sign(c) = sign(Re(λ))18



and therefore undergo a Hopf bifur
ation at c = 0.A

ording to Lemma 4.2 in [FRW04℄ the 
y
li
ity set has in the 
ase that it is not emptythe following propertiesLemma 2.3.3 The 
y
li
ity set Cp is bounded and open. There exist C2-fun
tions
c,T : Cp → R (2.18)with the properties:(i) For ea
h non-stationary point (w, q) ∈ Cp the value c(w, q) de�nes the unique wavespeed for whi
h (w, q) lies on a periodi
 orbit of (2.11). Similarly, T (w, q) de�nesthe minimal period of this orbit.(ii) The wave speeds c are uniformally bounded.(iii) The minimal periods T tend to in�nity at the boundary ∂Cp of Cp.(iv) ∂Cp 
onsists of saddles and of points whi
h are homo
lini
 or hetero
lini
 to saddlesfor some parameter value of c.We do not give a proof here but refer the reader to the paper quoted above. We now provethree Lemmata that will allow us to 
lassify all periodi
 orbits of our system (2.11) andtherefore all rotating waves.Lemma 2.3.4 Let ε > 0 be arbitrary. Then the following is true:a) The 
y
li
ity set Cp is homeomorphi
 to a dis
, i.e. it 
onsists of one 
onne
ted
omponent and has no holes.b) All periodi
 orbits (w(x), q(x)) have the property that w(x) 6= 0 ex
ept at exa
tly twopoints x1, x2 where w(x1) = w(x2) = 0.
) All periodi
 orbits 
an be uniquely parameterised by their maxima (α, 0), with α > 0.Proof.We �rst prove 
): we assume that v1 6= v2 are two rotating waves with wave speeds

c1 and c2 and identi
al maximum
α = max

x∈S1
{v1(x)} = max

x∈S1
{v2(x)}. (2.19)We observe that the origin (0, 0) has to lie in the interior of the area en
ir
led by v1 and v2respe
tively. This is a dire
t 
onsequen
e of the Poin
are-Bendixson Theorem for planar�ows.If the 
urves do not interse
t or tou
h ea
h other, then ne
essarily either

v1(x) < max
x∈S1
{v2(x)}or vi
e versa. This 
ontradi
ts (2.19). See Panel 
) in Figure 2.3 for illustration. The 
urvestherefore have to tou
h or interse
t.We now distinguish two 
ases: 19
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Figure 2.3: Illustration for the proof of Lemma 2.3.4.(i) Assume c1 = c2. In this 
ase the two 
urves have at least one point in 
ommon.Be
ause traje
tories of the same equation 
annot interse
t, we obtain v1 = v2.(ii) Assume c1 6= c2. We investigate the ve
tor �eld of (2.11) for c = c2 on the 
urvede�ned by v1. Due to the fa
t that (2.11) is a rotated ve
tor �eld with respe
t to cwe obtain, that the ve
tor �eld has to either point stri
tly to the outside or stri
tlyto the inside of the area en
ir
led by v1. This ex
ludes tou
hing points. Assume theve
tor �eld points inwards, then the area en
ir
led by v1 is positive invariant. Seeagain Panel 
) for illustration.Therefore v1 enters at the interse
tion point but 
annot interse
t twi
e due to thepositive invarian
e of the area en
ir
led by v1 � and thus 
annot be 
losed. This
ontradi
ts that v1 is a periodi
 orbit.If the ve
tor �eld points to the outside, the same argument holds (just reverse the"time dire
tion" x).This proves 
).For b) we observe that the number of zeros is ne
essarily even. The fa
t that (0, 0) liesin the area en
ir
led by the periodi
 orbit ex
ludes the no-zero 
ase. The fa
t that theperiodi
 orbit 
annot interse
t itself ex
ludes the 
ase of more than two zeros (see Panelb) in Figure 2.3). This proves b). 20



For a) we assume that Cp is not homeomorphi
 to a dis
. The nesting property of theperiodi
 orbits in 
) ex
ludes holes in Cp. Hen
e ∂Cp must 
onsists of nested 
losed 
urves.Due to the boundedness of Cp and the fa
t that (0, 0) ∈ Cp, there must be a minimum ofthree 
urves. See Panel a) for su
h a situation.A

ording to 2.3.3 (iv) these 
urves must 
onsist of saddles, homo
lini
 and hetero
lini

onne
tions. There are only three equilibria
(u−, 0), (0, 0), (u+ , 0).The se
ond one (0, 0) is 
ontained in the interior of the open set C̊p. Therefore it is enoughto analyse homo
lini
 orbits of and hetero
lini
 orbits between (u−, 0), (u+, 0).Due to Lemma 2.3.1 there 
an at most be one wave-speed c+ su
h that (u+, 0) has ahomo
lini
 orbit. The same is true for at most one c− and (u−, 0).Moreover, Theorem 1.2 in [Haer03℄ states that there is a unique value

c∗(ε) = −1

2

d

dw

(
g′(w)

f ′′(w)

)∣∣∣∣
w=0

ε+O(ε3/2) (2.20)for whi
h there exists a hetero
lini
 
onne
tion that 
onne
ts (u−, 0) with (u+, 0). Againthe rotated ve
tor �eld property is the key to the proof. Using the same argument there
an be at most one value of c su
h that there is a hetero
lini
 
onne
tion from (u+, 0) to
(u−, 0). (Note here that the fast orbits are given by 
urves de�ned through q = f(w)−cw).From this we 
on
lude that ∂Cp 
onsists of maximal three 
urves, one given by the twohetero
lini
 
onne
tions, two by the homo
lini
 ones.We now prove that the equilibrium (0, 0) is the only equilibrium inside ea
h of the ho-mo
lini
 
onne
tions, whi
h 
ompletes the proof, be
ause then, the two homo
lini
 
urves
annot be nested.However this is obvious, be
ause the slow manifold given by q = 0 persists due to Feni
helfor w > u+ and w < u−. This proves a).

�The next Lemma gives a �rst-order des
ription of all rotating waves. Here the singularperturbed nature of the problem yields the result.Lemma 2.3.5 Let T > 0 be given. Then there exists ε0 > 0 su
h that for all 0 < ε < ε0there exists a rotating wave w with minimal period T .Through a shift we 
an assume that w(0) = 0 and wx(0) > 0, then w(x) 
an be written inthe following way:
w(x) = φ(x) + o(ε) for x ∈ [0, x2 − ε log ε] ∪ [x2 + ε log ε, T ] (2.21)
w(x) = ψ(

x

ε
, x2) + o(ε) for x ∈ [x2 − ε log ε, x2 + ε log ε] (2.22)where x2 is the se
ond zero of w. φ(·) is a solution of

φx =
g(φ)

f ′(φ)
φ(0) = 0and ψ(·, x2) is a solution of

ψx
ε

= f
(
ψ(
x

ε
)
)

+ φ(x2) ψ(0) = 021



Proof. For existen
e we observe that the 
entre in the origin (0, 0) undergoes a Hopfbifur
ation. The two eigenvalues λ1/2 were already given in equation (2.17). The imaginarypart of λ1/2 is given by
ν := Im(λ1/2) =

√
g′(0)√
ε

.Thus, the limiting period at the Hopf bifur
ation emerging limiting 
y
le is given by
THopf =

2π

ν
=

2π
√
ε√

g(0)
.We already know that T → ∞ when ∂C is approa
hed. As T is a C2 fun
tion on C and inparti
ular 
ontinuous we obtain existen
e if

ε < T 2 g
′(0)

4π2
:= ε0by virtue of the intermediate value theorem.It remains to prove equations (2.21),(2.22). For this we have to assume that

0 < ε0 << T
g′(0)

4π
. (2.23)We need ε to be small to be able to apply Feni
hel's his results. From Lemma 2.3.4 
) weknow that the periodi
 orbits 
an be parameterised by their maxima.Moreover, Lemma 2.3.4 b) proves that wε has exa
tly two zeros. Without loss of generalitywe shift the one with positive slope to x1 = 0. We denote the other zero with x2 andnote that w′(x)|x=x2

< 0 ne
essarily. We assume that the wave-speed c(ε) = 0 and proveequations (2.21,2.22). Then we will argue that the 
orre
t wave-speed is in fa
t small andhen
e does not destroy the approximation.We start 
omputing the traje
tory of (w(x), wx(x)) in x = x2 and assume that
|wx(x)|x=x2

| >> ε0. (2.24)This is always possible be
ause we are free in the 
hoi
e of ε0. We use phase plane 
oordi-nates.Due to equation (2.24) and (2.23) we 
an use the fast ve
tor �eld to des
ribe the solutionup to the �rst order. In forward time dire
tion the solution will 
onverge exponentiallyto a ε-neighbourhood of the unstable manifold of (u−, 0). In ba
kward time dire
tion thesolution will 
onverge exponentially to a ε-neighbourhood of the stable manifold of (u+, 0).This part 
an be des
ribed due to Feni
hel [Fen79℄ by the fast equations (2.15). This provesequation in (2.22).The unstable manifold of (u−, 0) is transversally stable in forward time dire
tion. So is thestable manifold of (u+, 0) in negative time dire
tion. Thus in both 
ases the solution isgiven up to the �rst order by the slow equations (2.16) outside a neighbourhood of (0, 0)where the normal hyperboli
ity of the slow manifold breaks down; but we already knowthat w is periodi
, thus the two ends have to meet at (0, 0). This proves equation (2.21).We now argue that this remains true for non-zero wave-speeds c(ε). To do so we quoteLemma 4.3 in [Haer03℄. The lemma states that the wave-speed c∗ for whi
h the hetero
lini

onne
tion between u− and u+ persists obeys
|c∗(ε)| < σε22



for some σ > 0. The same equality holds for the wave-speed c(ε) of the periodi
 orbit byvirtue of the same argumentation as in [Haer03℄.Härteri
h argues that W u(u−) lies below the 
urve
γ(φ) := −f(φ) + ε

g(φ)

f ′(φ)− c(ε)for c(ε) < σε whereas W s(u+) lies above γ. This order reverses for c(ε) > σε. Be
auseour periodi
 solution (w(x), wx(x)) 
onverges exponentially to W u(u−) and W s(u+) asargued above a intermediate value argument yields the desired inequality. This impliesthat equations (2.21) and(2.22) hold as well for c = c(ε).Remark: I believe that in fa
t c(ε) is given by equation (2.20). However in order to provethat one would have to go through the whole blow-up 
onstru
tion in Chapter 5 of [Haer03℄.
�Remark 2.3.6 A di�erent des
ription of the periodi
 orbit that is sometimes usefull isgiven by

w(x) =

{
φ(x− x2) +

[
ψ

(
x2

ε

)
− φ(−x2)

]
+ o(ε) for x ∈ [0, x2]

φ(x− x2) +
[
ψ

(
x2−2π

ε

)
− φ(2π − x2)

]
+ o(ε) for x ∈ [x2, T ]

(2.25)Proof. A simple, straightforward 
al
ulation shows that this is true. The reason for thisis the exponential 
onvergen
e of ψ to the states φ(x2) and φ(2π − x2).
�The next Lemma uses the above des
riptions to prove hyperboli
ity of all rotating wavesin our equation whi
h is a dire
t 
onsequen
e of the monotoni
ity of T (w, q). This resultforms the basis of a relation between the zeros of a solution and the number of its unstableeigenvalues.Lemma 2.3.7 Let T be arbitrary but �xed. Then there exists a ε0 > 0 su
h that for all

0 < ε < ε0 the minimal period T (w, q) grows monotone with the maxima of the periodi
orbits.Proof. We use the formula of the periodi
 orbit w(x) obtained in equation (2.21). Let usassume we have two periodi
 orbits w1 and w2 with period T1 and T2 and the propertythat
max

x∈[0,T1]
w1 =: α1 < α1 + δ1 := α2 := max

x∈[0,T2]
w2for some δ1 > 0. It is su�
ient to prove T1 < T2 − δ2 for su�
iently small ε and some

δ2 > 0.Due to the fa
t that the periodi
 orbits are nested (Lemma 2.3.4 
)) α1 < α2 impliesimmediately
0 > min

x∈[0.T1]
w1 =: β1 > β2 := min

x∈[0,T2]
w2.The solution φ(x) is stri
t monotoni
ally growing be
ause

φx =
g(φ)

f ′(φ)
> 023



due to the 
onvexity of f and the fa
t that the zero of f ′ and the zero of g at u = 0 aresimple. This implies invertibility of φ and monotoni
ity of φ−1We now have
T1 =φ−1(α1)− φ−1(β1) + o(ε log ε) (2.26)
T2 =φ−1(α2)− φ−1(β2) + o(ε log ε) (2.27)The monotoni
ity of φ implies

φ−1(α2) = φ−1(α1 + δ1) = φ−1(α1) + (φ−1)′(α1)δ1 + o(δ1) > φ−1(α1) + δ2for some δ2 > 0 and
−φ−1(β1) < −φ−1(β2).For su�
iently small 0 < ε we obtain the desired inequality for some δ2 independent of ε.

�Corollary 2.3.8 Let T ∈ R
+ be given. Then there is a unique periodi
 orbit with minimalperiod T , and it is hyperboli
 as a rotating wave of (P).Proof. The uniqueness is a dire
t 
onsequen
e of the monotoni
ity of the T -map. Thehyperboli
ity is also a dire
t 
onsequen
e of the monotoni
ity of the T -map. A periodi
orbit is non-hyperboli
 if, and only if, the time T map has a vanishing derivative. See forexample Lemma 4.4 in [FRW04℄. This would 
ontradi
t monotoni
ity.

�We are now set to 
onstru
t rotating waves of the PDE (P) by using the periodi
 orbits
onstru
ted earlier in this se
tion. We introdu
e the zero-number of a fun
tion u : S1 → R.Let therefore u : S1 → R then we de�ne
z(u) := ♯{x ∈ S1;u(x) = 0}, (2.28)if the zero set of u is not 
ountable we de�ne z(u) =∞.Theorem 2.3.9 Let n ∈ 2N be given, then there exists 0 < εn su
h that for all 0 < ε < εnthere exists an up to shift unique rotating wave vε

n with the property
z(vε

n) = n.Proof. Every rotating wave with n zeros 
orresponds to a periodi
 solution of the rotatingwave equation (2.7) with period Tn = 2π
n .Corollary 2.3.8 provides for the unique existen
e of a periodi
 orbit of the rotating waveequation with period
Tn =

2π

n
.This proves the Theorem.A qualitative bifur
ation diagram of how periodi
 solutions are generated is given in Figure2.4. The numbers at the bran
hes indi
ate the numbers of zeros, the verti
al axis showsthe maximum of the rotating wave on the bran
h.24



z=8 z=10z=6z=4 z=12z=2 z=14

max(u)

1
εFigure 2.4: S
hemati
 bifur
ation diagram of the Hopf bifur
ation generating bran
hes ofrotating waves (lines) with in
reasing zero-number.

�The remainder of this se
tion is devoted to the Morse index of solutions and the relationbetween the Morse index i(u) and the zero-number z(u) of a rotating or frozen wave u.The Morse index is the 
lassi
al and generi
 tool to des
ribe properties of solutions onthe global attra
tor. However, in the hyperboli
 setting it is rather un
ommon to evenintrodu
e a Morse index. There the zero-number is more 
ommonly used. This is the mainreason why we have already introdu
ed the zero-number here.Let L(u) de�ne the linear operator obtained when the PDE (P) is linearised in the solution
u, and let σ(L(u)) denote the spe
trum of L(u). We follow the de�nition given in [MN97℄for the Morse index i(u).De�nition 2.3.10 For ea
h u ∈ Eε ∪ Fε ∪ Rε we de�ne the Morse index i(u) and thegeneralised Morse index i0(u) by

i(u) := ♯{λ ∈ L(u);Re(λ) > 0}and
i0(u) := ♯{λ ∈ L(u);Re(λ) ≥ 0}.Here ♯ 
ounts eigenvalues repeatedly a

ording to their multipli
ity.In terms of the Morse index we 
all a homogenous stationary solution u hyperboli
, if

i0(u) = i(u).We 
all a rotating wave u hyperboli
, if
i0(u) = i(u) + 1.Note that ux is always an eigenfun
tion of L(u) to λ = 0. The wave is 
alled hyperboli
, ifzero is a simple eigenvalue, hen
e ux is the only eigenve
tor to λ = 0.Remark 2.3.11 The Morse index i 
orresponds the number of strong unstable eigendire
-tions of the solution uε ∈ Eε ∪ Fε ∪Rε, hen
e equals the dimension of the strong unstablemanifold of uε in 
ase of �xed points. For rotating waves uε the dimension of the strongunstable manifold is given by the Morse index +1.25



There is a one-to-one 
orresponden
e between the Morse index and the number of zeros ina solution.Lemma 2.3.12 Let uε ∈ Rε ∪ Fε then
i(uε) = z(uε)− 1. (2.29)For uε ≡ u± we have
i(uε ≡ u±) = 0. (2.30)To prove this Lemma we �rst quote a result that 
an be found for example in [FRW04℄Lemma 5.3:Lemma 2.3.13 Let

Ṫ = ∂αTbe the derivative of the minimal period with respe
t to the maximum of the periodi
 orbitsjust as in Lemma 2.3.7. Then the Morse index of a rotating or frozen wave u is given bythe following relations:
i(u) = z(u)− 1⇐⇒ Ṫ > 0 (2.31)

i(u) = z(u)⇐⇒ Ṫ < 0. (2.32)Proof of Lemma 2.3.12We obtain from Lemma 2.3.7 Ṫ > 0 whi
h yields the result together with 2.3.13 for
uε ∈ Rε ∪ Fε.For uε ≡ u± we use the fa
t that in Sturm-Liouville eigenvalue problems the eigenfun
tionto the leading eigenvalue λ0 (eigenvalue with largest real part) has a sign, i.e. has no zeros.This 
an be found in [CL55℄ in Chapter 8, Theorem 3.1.A small 
al
ulation shows that λ0 = g′(u±) < 0 with 
onstant eigenfun
tion. Hen
e i(u±) =
0.

�The next se
tion will apply the results on rotating waves to solve the 
onne
tion problemon the attra
tor. The Morse index will play a key role in this.2.4 The 
onne
tion problemWith the results of the previous se
tion we are now ready to solve the 
onne
tion problemand to des
ribe the stru
ture of the global attra
tor.The remaining question 
on
erning the global attra
tor is whi
h of the rotating wavesare 
onne
ted. Let therefore uε
a and uε

b be two rotating or frozen waves or homogenousequilibria of equation (P) with Morse indi
es
i(uε

a) = a− 1 i(uε
b) = b− 1.26



We want to know if there is a hetero
lini
 orbit with sour
e uε
a and target uε

b, i.e. if thereexists a solution uε(x, t) with
lim

t→−∞
uε(·, t) =uε

a(·, t)

lim
t→∞

uε(·, t) =uε
b(·, t)where uε

a and uε
b are appropriately shifted. A key ingredient here is k − (P)-adja
en
y ofrotating waves. The 
on
ept of k-adja
en
y was developed and used in [FR96℄ and later in[Wol02a℄ and [Wol02b℄ for the Neumann 
ase. Fiedler, Ro
ha and Wolfrum presented in[FRW04℄ a version for the S1 
ase whi
h we will use:De�nition 2.4.1 (k − (P)-adja
en
y) Let uε

a, u
ε
b ∈ Eε ∪ Fε ∪ Rε. Then uε

a and uε
b are
alled k − (P)-adja
ent if the following holds:

z(uε
a − uε

b) = kfor some k ∈ N and there does not exist a solution aε
c ∈ Eε ∪ Fε ∪Rε with the property

z(uε
a − uε

c) = z(uε
b − uε

c) = k and (2.33)
max
x∈S1

uε
c(x) is stri
tly between max

x∈S1
uε

a(x) and max
x∈S1

uε
b(x). (2.34)This notion of k − (P)-adja
en
y is the 
riti
al ingredient in Theorem 1.3 in [FRW04℄answering the 
onne
tion question. This theorem states that uε

a and uε
b are 
onne
ted if,and only if, they are k − (P)-adja
ent. The authors 
all a violation of k − (P)-adja
en
ythe blo
king prin
iple be
ause in this 
ase there is another rotating wave uε

c that blo
ksthe 
onne
tion. If blo
king does not o

ur, then the �prin
iple of liberalism� states thatthe two solutions uε
a and uε

b are 
onne
ted. We use these results to prove the followingTheorem 2.4.2 Let uε
a, u

ε
b ∈ Eε ∪ Fε ∪Rε with Morse indi
es i(uε

a) = a− 1 and i(uε
b) =

b− 1. Then there exists a hetero
lini
 orbit 
onne
ting uε
a and uε

b, i.e. a hetero
lini
 orbitwith sour
e uε
a and target uε

b if, and only if, a > b.Proof. The �only if� has already been proven by Matano and Nakamura in [MN97℄. Thestatement 
an be found in Theorem C on page 5. It is a dire
t 
onsequen
e of the fa
t thatdue to the Sturm property of the problem the zero-number 
an only drop along traje
toriesand so does the Morse index.For the �if� part we have to prove k − (P)-adja
en
y of uε
a and uε

b. The key observationlies in the fa
t that the number of zeros of the di�eren
e of two rotating waves is given bythe minimum of the zero-numbers individually. In other words, we have for ũ, û ∈ Fε ∪Rεthe following relation:
z(ũ− û) = min{z(ũ), z(û)}. (2.35)This is not true in general, but a dire
t 
onsequen
e of the fa
t that in our situation allperiodi
 orbits of the rotating wave equation are nested.Now assume aε

c ∈ Fε ∪Rε with the property
z(uε

a − uε
c) = z(uε

b − uε
c) = k and (2.36)

max
x∈S1

uε
c(x) is stri
tly between max

x∈S1
uε

a(x) and max
x∈S1

uε
b(x) (2.37)27



z = 8 i = 7

z = 6 i = 5

z = 4 i = 3

z = 2 i = 1

z = 0 i = 0Figure 2.5: Stru
ture of 
onne
tions between rotating and frozen waves and homogenousequilibria of Morse index i ≤ 7.exists.Due to Theorem 2.3.9 there is a unique rotating wave to ea
h zero-number k ∈ 2N0 for�xed and su�
iently small ε > 0. From this we 
on
lude that
a 6= k 6= botherwise uε

c = uε
a or uε

c = uε
b.In 
ase k > b equation (2.36) is violated. Hen
e, we have ne
essarily k < b. Due to thenested property of rotating waves this implies maxuε

c > max uε
a,b, whi
h violates (2.37).Thus uε

a and uε
b are k-(P)-adja
ent and therefore 
onne
ted.In 
ase uε

a ∈ Eε or uε
b ∈ Eε the same argument works, the zero properties are obviousbe
ause in this 
ase ua or ub is 
onstant.

�This yields that all rotating and frozen waves are 
onne
ted to rotating and frozen waveswith lower Morse index and to u ≡ u±. A representation of the 
onne
tion stru
ture of theglobal attra
tor for all rotating and frozen waves and homogeneous equilibria with Morseindex i ≤ 7 
an be found in Figure 2.5. In the �gure the arrows indi
ate the dire
tion ofthe �ow on the attra
tor.What might be misleading in the �gure is the fa
t that the 
onne
tions between rotatingor frozen waves look as if they were one-dimensional. This is not the 
ase!It is a 
lassi
al result by Henry [Hen85℄ and Angenent [Ang86℄ for Neumann boundary
onditions, that the unstable manifoldW u(u1) of an equilibrium u1 and the stable manifold
W s(u2) of another equilibrium u2 interse
t transversally in our setting:

W u(u1) ∩⊤ W s(u2). (2.38)28



Hen
e, the interse
tion is either empty or has maximal dimension.Fielder, Ro
ha and Wolfrum were able to prove in [FRW04℄ that the same is true in the S1
ase, thus, the dimension of an interse
tion is given by the di�eren
e of the Morse indi
esof the sour
e and the target. Note that in the S1 
ase equation (2.38) has to be properlyinterpreted. To obtain the full two-dimensional 
onne
tion manifold 
onne
ting u1 with u2the target u2 has to be properly shifted. We will dis
uss this in more detail in Se
tion 4.1.After we have solved the 
onne
tion problem we introdu
e a new tool for our analysis:sub-attra
tors of order n.We have already seen that for positive ε the attra
tor of the paraboli
 equation has �nitedimension. However for small ε the dimension be
omes very large. The idea of introdu
ingsub-attra
tors is that we only want to 
onsider a low dimensional part of the whole attra
torwhen we investigate the limit ε → 0. The 
lear advantage is that we do not have to dealwith di�
ulties arising from the divergen
e of the global attra
tor's dimension in this limit.For the paraboli
 attra
tor we de�ne the sub-attra
tors of order n as the part of the wholeattra
tor that 
onsists of the two stable homogenous equilibria and the rotating waves withzero-number less or equal than n and all hetero
lini
 orbits between these obje
ts. Notethat in order to have existen
e of a rotating or frozen wave solution with zero-number n,
ε has to be su�
iently small, a

ording to Theorem 2.3.9.De�nition 2.4.3 Let n = 2α for α ∈ N and let εn be su�
iently small. Then we de�nefor 0 < ε < εn:
• Eε

n := {u ∈ Eε; z(u) ≤ n} = {u ≡ u−, u ≡ u+};
• Fε

n := {u ∈ Fε; z(u) ≤ n};
• Rε

n := {u ∈ Rε; z(u) ≤ n};
• Hε

n := {u ∈ Hε; limt→±∞ u ∈ Eε
n ∪ Fε

n ∪Rε
n}.Then the �nite dimensional subattra
tor of order n of the paraboli
 equation (P) is givenby

Aε
n := Eε

n ∪ Fε
n ∪Rε

n ∪Hε
n. (2.39)It is immediately 
lear that the subattra
tors are 
ontained in ea
h other for in
reasing n.In other words we have

Aε
n ⊆ Aε

m ⇔ n ≤ m.Figure 2.5 shows the sub-attra
tor of order n = 8: Aε
8.From De�nition 2.4.3 and Theorem 2.4.2 it is 
lear that Aε

n 
ontains all unstable manifolds
W u(uε) of all waves uε with zero-number z(uε) ≤ n. On the other hand if uε ∈ Aε

n then
uε must be 
ontained in the 
losure of some unstable manifold W u(ũε) of an element
ũε ∈ Fε ∪Rε. By 
onstru
tion z(ũε) ≤ n must hold. This suggests another des
ription of

29



the sub-attra
tors Aε
n:
Aε

n =

n⋃

m=1

{W u(uε);uε ∈ Fε ∪Rε, z(uε) = m} ∪ Eε
n (2.40)

=

n⋃

m=1

{W u(uε);uε ∈ Fε ∪Rε, z(uε) = m}

= {W u(Fε
n ∪Rε

n)} .This des
ription 
learly is very useful. Be
ause i(uε) = z(uε) − 1 for every rotating orfrozen wave we immediately 
on
lude
dimW u(uε) = i(uε) = z(uε)− 1and hen
e

dimAε
n = nbe
ause all waves with given zero-number 
an be parameterised by S1 (see Theorem 2.3.9).It is a theorem that in fa
t

Aε
n =

{
W u((Fε

n ∪Rε
n)\(Fε

n−1 ∪Rε
n−1))

}
.We do not prove this here, but it is also a 
onsequen
e of the Morse-Smale property of theattra
tor.In the next se
tion we will give an overview of the relevant results 
on
erning the hyperboli
equation. The solution theory is somewhat more 
ompli
ated, but the stru
ture of theglobal attra
tor is very similar.2.5 The hyperboli
 equationIn the following we will provide the results 
on
erning global attra
tors of s
alar hyperboli
balan
e laws. As in the previous se
tion on paraboli
 equations, some of the results pre-sented hold for slightly more general equations. Nevertheless we do not introdu
e a moregeneral equation su
h as ut = h(u, ux) here be
ause in 
ontrast to the previous se
tionson the paraboli
 equation, the stru
ture of the attra
tor and questions of the existen
e ofunique solutions rely on the fa
t that we are investigating a balan
e law and not a 
om-pletely general hyperboli
 equation. Espe
ially the 
onvexity of f is a key feature. Without
onvexity none of the results presented holds true. Therefore we will state all results forequation (H) together with assumptions (H1),(H2) and (H3).Some of the theorems quoted will be written for the 
ase that g has n zeros lo
ated at

u1, . . . , un. In this 
ase we just set n = 3 and u1 = u−, u2 = 0 and u3 = u+.Before we investigate the question of global attra
tors we have to answer the question ofexisten
e and uniqueness of solutions. The initial value problem (Cau
hy problem) of (H)
an be solved by the method of 
hara
teristi
s. The 
lassi
al solution u(x, t) to a initial
ondition u(x, 0) =: u0(x) 
an be des
ribed in the following way:
u(χ(t), t) := v(t)30



where v, χ are 
urves that solve the following ODE:
χ′(t) = f ′(v)v′(t) = g(v)
χ(0) = x0v(0) = u0(x0)for all x0 ∈ S1. Unfortunately 
lassi
al solutions in general only exist for �nite time. Thisis even true for the simplest possible 
ase where g ≡ 0, f = 1

2u
2 and u0(x) ∈ C∞. Tosee this one just has to 
hoose an initial 
ondition with su�
iently large negative slopesomewhere. In fa
t, if the negative slope in the initial 
ondition be
omes large the time upto whi
h a unique 
lassi
al solution exists 
an be
ome arbitrarily small.Classi
al solvability breaks down due to the development of sho
ks. At the developmentpoint of a sho
k, 
hara
teristi
s meet ea
h other in a �nite angle. If both 
hara
teristi
swere to be 
ontinued they would interse
t at that point transversally. Due to the 
onvexityof f the values of v on both 
hara
teristi
s di�er from ea
h other at the interse
tion point.Hen
e the 
lassi
al solution develops a dis
ontinuity at this point so that the solution is inparti
ular not di�erentiable at this point as it would have to be in a 
lassi
al solution.However, there are weak solutions for times after 
lassi
al solvability has rea
hed its limit.To obtain weak solutions one has to multiply both sides of the di�erential equation (H)with C1 test fun
tions and integrate the equation over the whole domain. A weak solutionthen is de�ned as a solution that satis�es the resulting equation for all C1 test fun
tions,see equation (2.41).Unfortunately the uniqueness of solutions is lost in this pro
ess. In general there are manyweak solutions to the same initial 
ondition. To over
ome this obsta
le a additional entropy
ondition 
an be imposed, that singles out a unique weak solution. This idea derives fromthe physi
al entropy in thermodynami
s. Entropy 
onditions for hyperboli
 balan
e lawsin a weak framework were �rst 
onsidered by Volpert [Vol67℄ and Kruzhkov [Kr70℄.We therefore de�ne an entropy or admissible solution of the hyperboli
 balan
e law (H) inthe following way:De�nition 2.5.1 We 
all u ∈ BV ([0,∞) × S1,R) an entropy or admissible solution ofequation (H) to the initial 
ondition u0(x)

• if u(x, 0) = u0(x);
• if it solves equation (H) in the weak sense:

∫

S1×R+

[uϕt + f(u)ϕx − g(u)ϕ]dxdt = 0 (2.41)for all ϕ ∈ C1
0 (S1 ×R+,R);

• and if the entropy 
ondition
u(x+, t) ≤ u(x−, t) (2.42)holds for all t > 0. 31



Here u(x+, t) de�nes the right hand, u(x−, t) the left hand limit of u in x at time t and
BV ([0,∞) × S1,R) denotes the spa
e of fun
tions with bounded variation mapping from
[0,∞)× S1 to R.Let P be the set of all partitions P = {x1, · · · , xnP

}. Then we de�ne the spa
e BV in thefollowing way:
BV (S1) :=

{
u ∈ L1(S1) : sup

P∈P

nP−1∑

i=1

|u(xi)− u(xi+1)| <∞
}
. (2.43)Volpert [Vol67℄ and later, and for more general initial 
onditions (L∞), Kruzhkov [Kr70℄were able to prove the following result on the existen
e of solutions:Proposition 2.5.2 If (H1) holds, then the Cau
hy problem of equation (H) possesses aunique entropy solution u with the property u : (0,∞) → L1 is 
ontinuous in time and

u(·, t) ∈ BV (S1) for every time t > 0.Therefore (H) together with (2.42) de�nes a semi�ow on BV (S1). We denote that semi�owby
Φh : BV × R

+ → BV
u0, t 7→ Φh(u0, t) := u(·, t)where u is the unique entropy solution to the initial 
ondition u0.Note that Kruzhkov proved that the initial 
ondition does not have to ful�l the entropy
ondition. Where the initial 
ondition has up-jumps, i.e. u(x+, t) > u(x−, t) for some x,these jumps are immediately smoothened by a rarefa
tion wave.In order to 
ompute weak solutions pra
ti
ally the notion of 
hara
teristi
s has to begeneralised. Generalised 
hara
teristi
s were �rst introdu
ed by Dafermos in [Daf77℄:De�nition 2.5.3 A Lips
hitz 
urve x = χ(t), de�ned on the interval [a, b] ⊂ R is 
alled ageneralised 
hara
teristi
 asso
iated with the solution u of (H) if it satis�es the inequality

χ̇ ∈ [f ′(u(χ+, t)), f ′(u(χ−, t))]for almost all t ∈ [a, b].With this de�nition it is 
lear that generalised 
hara
teristi
s 
oin
ide with the 
lassi
al
hara
teristi
s χ(t) de�ned above, when the solution is di�erentiable. At points of non-di�erentiability of u i.e. at sho
ks, the generalised 
hara
teristi
 is only required to satisfy
χ′(t) ∈ [f ′(u−), f ′(u+)] where u− and u+ are the lower and upper states of the sho
kat χ(t). Filippov was able to show in [Fi88℄ that there is at least one forward and oneba
kward 
hara
teristi
 through any point (x, t) ∈ S1 × R

+.It seems that there is a lot of freedom in 
omputing forward 
hara
teristi
s. That this isin fa
t not the 
ase is shown by a proposition to be found in [Fi88℄:Proposition 2.5.4 Let χ : [a, b] → R be a generelized 
hara
teristi
. Then the followingholds for almost all t ∈ [a, b]:
χ̇(t) =

{
f ′(u(χ(t)±, t)) if u(χ(t)−, t) = u(χ(t)+, t)

f(u(χ(t)+,t))−f(u(χ(t)−,t))
u(χ(t)+,t)−u(χ(t)−,t) if u(χ(t)−, t) > u(χ(t)+, t)

. (2.44)32



Hen
e, χ̇(t) is uniquely de�ned even at the position of sho
ks. If the solution u(x, t) pos-sesses a sho
k at position x0 then the sho
k speed is given by the Rankine-Hugoniot
ondition for sho
k speeds
cshock =

f(u(x0+))− f(u(x0−))

u(x0+)− u(x0−)
. (2.45)To distinguish between generalised 
hara
teristi
s and the 
hara
teristi
s of 
lassi
al solu-tions the notion of genuine 
hara
teristi
s is important:De�nition 2.5.5 A 
hara
teristi
 on the interval [a, b] is 
alled genuine, if

u(χ(t)−, t) = u(χ(t)+, t) for almost all t ∈ [a, b].The set of ba
kward 
hara
teristi
s through a point (x̄, t̄) spans a funnel between the
• minimal ba
kward 
hara
teristi
 χ−(t; x̄, t̄) and the
• maximal ba
kward 
hara
teristi
 χ+(t; x̄, t̄).The properties of 
hara
teristi
s that are of importan
e for us are summarised in the nextpropositions. For proofs we refer to Dafermos' arti
le [Daf77℄. We will use these results inthe following se
tion.Proposition 2.5.6 Let (x̄, t̄) ∈ S1 × R be arbitrary. Then the minimal ba
kward 
hara
-teristi
 χ−(t; x̄, t̄) and the maximal ba
kward 
hara
teristi
 χ+(t; x̄, t̄) are genuine.Proposition 2.5.7 Genuine 
hara
teristi
s interse
t only at their end points; ba
kward
hara
teristi
s do not interse
t in parti
ular.We now dire
t our attention to the existen
e of global attra
tors for equation (H). Fan andHale [FH95℄ were able to settle this question for the hyperboli
 balan
e laws in 1995. Asin the paraboli
 
ase, dissipativity of g is the key to the existen
e of a global attra
tor. Itessentially guarantees that solutions stay bounded in forward time. (Note that 
onvexityof f and the linear dependen
e on ux already guarantee dissipativity of f ′(u)ux.)Proposition 2.5.8 (Fan and Hale) Assume (H1), (H2) and (H3) hold. Then

A0 :=
{
u0 ∈ BV (S1) : Φ0(u0, t) exists for all t ∈ R and is bounded} (2.46)is the global attra
tor of (H) in Lp(S1), for any p ∈ [1,∞], i.e. it is invariant and attra
tsbounded sets in Lp(S1).This settles the existen
e of A0. We turn to the stru
ture of the global attra
tor. Manypeople have worked on this and for a good overview over the latest results we refer toHärteri
h [Haer97℄.Several authors proved Poin
aré Bendixson type results for the s
alar balan
e laws. See forexample Fan and Hale [FH93℄, Sinestrari [Sin97℄ or Lyberopoulos [Lyb94℄:33



Proposition 2.5.9 For t→∞ any solution of (H) tends either to a homogenous solution
u ≡ ui for some i ∈ {1, ...n} or it 
onverges to a rotating wave solution

u(x, t) = v(x− ct)where the wave-speed c 
an only take the values c = f ′(u2i) for i ∈ {1, · · · , n−1
2 }.In our 
ase this implies

c = f ′(u2) = f ′(0) = 0whi
h means that all waves are frozen waves. However the distin
tion is somewhat arbitrary,be
ause a 
oordinate 
hange x 7→ x − ct 
an freeze any wave, or make it rotate again. Inthis sense our assumptions f ′(0) = 0 = g′(0) �x a 
oordinate system in whi
h all wavesfreeze.For global solutions a theorem similar to 2.5.9 holds true in ba
kward time. This leadsto a des
ription of the global attra
tor A0 as the uni�
ation of the homogenous steadystates, the frozen waves and hetero
lini
 
onne
tions between all these obje
ts similar tothe paraboli
 
ase. Additionally the possible wave-speeds of all rotating waves are given apriori.Following the de�nitions made in the paraboli
 se
tion we de�ne
• E0 to be the set of homogenous equilibria of (H);
• F0 to be the set of frozen waves of (H);
• R0 to be the set of rotating waves of (H);
• H0 to be the set of hetero
lini
 
onne
tions between obje
ts in E0, F0 and R0 de�nedin the same way as in Se
tion 2.2 equation (2.5).Then the global attra
tor A0 of (H) 
an be des
ribed as

A0 = E0 ∪ F0 ∪R0 ∪H0. (2.47)In our 
ase we have R0 = ∅.In [Sin95℄ Sinestrari was able to settle the des
ription of all rotating or frozen waves. Heproved that for any possible wave speed c = f ′(a2i) and for any 
losed set Z ⊂ S1 thereexists a unique rotating wave uZ with the property
Z = {y ∈ S1 : uZ(y) = u2i}.The uniqueness automati
ally proves that these are all waves. Hen
e, only the 
onne
tion-question remains.For this it is 
onvenient to introdu
e the map Z(·) that assigns ea
h fun
tion u : S1 → Rits zero set:

Z(u(·, t)) := {x ∈ S1;u(x, t) = u0 = 0}. (2.48)This set plays a key role in understanding whi
h rotating waves are 
onne
ted to ea
hother when they have the same wave-speed. Note that
z(u) = ♯Z(u).34



If Z(u) is un
ountable we de�ne z(u) =∞.In addition we de�ne
uZ := u ∈ F0 su
h that Z(uZ) = Zto be the unique rotating wave with zero set Z.Fan and Hale were able to show in Theorem 3.7 in [FH95℄ that if two rotating waves are
onne
ted by hetero
lini
 orbits, then the waves must have the same velo
ity. Moreover,if hetero
lini
 orbits 
onne
t a homogenous equilibrium u ≡ uj and a rotating wave withspeed f ′(u2i), then |j − 2i| = 1.On the attra
tor the zero-number z de
ays along traje
tories, thus is a dis
rete Lyapunovfun
tion, just as in the paraboli
 setting.In 1997 Sinestrari was able to prove that a ne
essary 
ondition for a 
onne
tion from therotating wave uZ1

to the wave uZ2
was

Z2 ⊂ Z1. (2.49)Härteri
h was able to show that the above 
ondition was not only ne
essary but alsosu�
ient. This gives the following pi
ture of the stru
ture of the global attra
tor of equation(H), summarised in the three Theorems A, B and C in [Haer99℄:Theorem 2.5.10 (Theorem A) For any rotating wave u−∞ there exist hetero
lini
 or-bits whi
h 
onne
t u−∞ to the homogenous states u ≡ u− and u ≡ u+.Theorem 2.5.11 (Theorem B) For any rotating wave u+∞ there exist (several) hetero-
lini
 orbits that 
onne
t the spatially homogenous solution u ≡ u0 = 0 to u+∞.Theorem 2.5.12 (Theorem C) Suppose that for two rotating waves u−∞ and u+∞ the
ondition Z(u∞) ⊂ Z(u−∞) holds. Then there is a hetero
lini
 solution that approa
hes
u±∞ as the time t tends to ±∞.These three Theorems in prin
iple allow a full des
ription of the 
onne
tion problem onthe global attra
tor. Härteri
h 
ould even expli
itly 
onstru
t hetero
lini
 
onne
tions inthe phase spa
e, however up to now there has been no result on the uniqueness of these
onne
tions. The next se
tion will provide a �rst result in that dire
tion. Furthermore, wewill present some examples of how to 
onstru
t expli
itly frozen waves and hetero
lini

onne
tions.We 
on
lude this se
tion by de�ning the notion of sub-attra
tors in a similar way to theparaboli
 setting.De�nition 2.5.13 Let n = 2α for α ∈ N. Then we de�ne:
• E0

n := {u ≡ u+, u ≡ u−};
• F0

n :=
{
u ∈ F0; z(u) ≤ α

};
• H0

n :=
{
u ∈ H0; limt→±∞ ∈ E0

n ∪ F0
n

}.35



Then we de�ne the sub-attra
tor of order n of the hyperboli
 balan
e law (H) by
A0

n := E0
n ∪ F0

n ∪H0
n. (2.50)Just as in the paraboli
 setting it is 
lear that the sub-attra
tors are 
ontained in ea
hother, hen
e we have

A0
n ⊂ A0

m ⇔ n < m.At a �rst glan
e it seems strange to denote the hyperboli
 sub-attra
tors by A0
n and not

A0
α. However in the next se
tion and in Chapter 3 we will see that this makes a lot ofsense. Lemma 3.2.5 will yield that

lim
ε→0

(Rε
n ∪ Fε

n) ⊂ F0
nin the sense of solutions.By analogy to the des
ription of sub-attra
tors in the paraboli
 se
tion we present an alter-native representation of A0

n in terms of unstable manifolds. With the same argumentationas for equation (2.40) we 
on
lude that
A0

n =

α⋃

β=1

{
W u(u0);u0 ∈ F0, z(u0) = β

}
∪ E0

n (2.51)
=

α⋃

β=1

{W u(u0);u0 ∈ F0, z(u0) = β}

= {W u(F0
n)} .One of the results in the following se
tion will be dimA0

n = n, whi
h justi�es the notation.De�nition 2.5.13 expli
itly ex
ludes frozen waves v where the zero set Z(v) in
ludes wholeintervals. These solutions do not have a 
ounterpart in the paraboli
 equation. A rotatingwave of the paraboli
 equation that vanishes on a whole interval has to be identi
ally zero.The last se
tion of this 
hapter is devoted to the study of the sub-attra
tors A0
n. Theorem2.6.1 yields results on the parameterisation and the dimension of the A0

n; moreover, itproves uniqueness of some hetero
lini
s in A0
n. Theorem 2.6.1 is the main result of thewhole 
hapter and one of the main results of this dissertation.2.6 Parameterisations for A0

nBefore we prove the main theorem of this se
tion, Theorem 2.6.1 we will give two prepara-tional examples: First we 
onstru
t the unique frozen wave uZ for a given Z ⊂ S1, then wewill give an expli
it representation of a hetero
lini
 
onne
tion between two frozen waves
v1 and v2.We begin with the single frozen wave: In Sinestrari's result there are no restri
tions re-garding the zero set Z ex
ept 
losedness, so it 
ould be �nite, 
ountable or un
ountable.Even if whole intervals are 
ontained it is still possible to de�ne a rotating wave with thiszero set. 36



As an example of a frozen wave we will 
onstru
t a frozen wave solution for Burgersequation with a symmetri
 sour
e term
f(u) :=

1

2
u2 g(u) = u(1− u2)for the zero set Z = [π2 , π] ∪

{
3π
2

}.The rotating wave equation for c = 0 and the above f and g is given by
vx = 1− v2whi
h has the fundamental solution v(x) := tanh (x− x0).To give a des
ription of the travelling wave vZ one just has to use appropriately shifted
opies of v(x) on S1 \ Z in a way su
h that the resulting sho
ks are stationary a

ordingto the Rankine-Hugoniot 
ondition (2.45).For the above given Z we de�ne

vZ(x) :=






tanh(x− π
2 ) for x ∈ [0, π

2 ]
0 for x ∈ [π2 , π]

tanh(x− π) for x ∈ [π, 5
4π]

tanh(x− 3
2π) for x ∈ [54π, 2π].It is an easy exer
ise to show that this solution is in fa
t stationary. The uniqueness resultguarantees that it is the only rotating wave with this zero set. Figure 2.6 shows a plot of

vZ . We remark that this frozen wave has in�nitely many hetero
lini
 
onne
tions to otherfrozen waves. It has hetero
lini
 
onne
tions to every rotating wave
vZ̃with 
losed Z̃ ∈ P(Z) where P(Z) is the powerset of Z. All dire
tions are linearly indepen-dent and hen
e the unstable manifold of this wave is already in�nite dimensional.The se
ond example 
on
erns hetero
lini
 
onne
tions between two rotating waves. Againwe use Burgers equation together with the sour
e term g = u(1 − u2). We 
onstru
tthe hetero
lini
 
onne
tion between the frozen waves vZ1

and vZ2
with Z1 = {0, π} and

Z2 = {0}.Härteri
h 
ould 
onstru
t in [Haer99℄ a hetero
lini
 orbit by a sequen
e of solutions wherethe sho
ks travel along the pro�le de�ned by shifted 
opies of v(x). The sho
ks traveltowards ea
h other su
h that they form a stationary sho
k when they 
ollide. We set the
ollision time at t = 0 then the solution 
an be given in the following 
losed form:
v(x, t) =






tanh(x− π
8 ) for x ∈ [0, 3π

8 + ∆]
tanh(x− 5π

8 ) for x ∈ [3π
8 + ∆, 7π

8 −∆]
tanh(x− 7π

8 ) for x ∈ [7π
8 −∆, 2π]

(2.52)where ∆ solves the following ODE in ba
kward time
∆̇(t) =

tanh(π/4 + ∆) + tanh(π/4−∆)

tanh(π/4 + ∆)− tanh(π/4−∆)

∆(0) =
π

4
. 37
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πFigure 2.6: Stationary solution vZ for Z = [π2 , π] ∪

{
3π
2

}.The solution is plotted in Figure 2.6.We have now seen how hetero
lini
 
onne
tions 
an be 
onstru
ted in prin
iple for Burgersequation. A similar 
onstru
tion holds true for the general 
ase.The rest of this se
tion is devoted to the preparation and proof of Theorem 2.6.1 on theexpli
it parameterisation of the sub-attra
tors A0
n. We �rst 
onstru
t the manifold thatwill represent the lo
al unstable manifold of a frozen wave.Let φ(x) be the unique solution of the following equation:

vx =
g(v)

f ′(v)
(2.53)

v(0) = 0.Furthermore φ(x) exists for all x ∈ R and
lim

x→−∞
φ(x) = u− lim

x→∞
φ(x) = u+.Let n = 2α for some α ∈ N be given. Then we 
hoose a sequen
e of α zeros 0 < x1 < x2 <

· · · < xα < 2π.Due to Sinestrari there exists a unique frozen wave v0
α(x) with

Z(v0
α) = {x1, · · · , xα}.Without loss of generality we assume x1 = 0. All other 
ases 
an be generated by a shiftalong S1.Note that for every solution of equation (H) it is true that between two zeros there mustbe a sho
k and between two sho
ks with sign 
hanging left- and right-hand states theremust be a zero. This is even true in the 
ase where f depends expli
itly on x, see [Ehrt05℄.It is in parti
ular true for v0

α. Hen
e there is a unique sequen
e of sho
ks ŷ1, . . . , ŷα with
x1 < ŷ1 < x2 < ŷ2 < · · · < ŷα−1, xα < ŷα < x1 + 2π38
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Figure 2.7: Hetero
lini
 orbit 
onne
ting uZ1
and uZ2

. The left and right states of thesho
ks are indi
ated in red.su
h that v0
α is given by

v0
α =

{
φ(x− xi) for x ∈ [xi, ŷi]
φ(x− xi+1) for x ∈ [ŷi, xi+1]

(2.54)where we have set xα+1 = x1 + 2π = 2π. In 
ase that ŷα ≥ 2π we set ŷ0 := ŷα(mod2π).The sequen
e then reads 0 ≤ ŷ0 < x1 . . . . In the following we will not always makethis distin
tion but just identify x + 2π with x without expli
itly mentioning this. For
onvenien
e let us de�ne the notation
xα :={x1, · · · , xn}

v0
{xα}

:=v0
α.We now de�ne the solution u{xα,yα} with α sho
ks lo
ated between the zeros {x1, · · · , xα}that 
onsists pie
ewise of shifted 
opies of φ(x). In general u{xα,yα} is not stationary.Let 0 ≤ x1 ≤ y1 < x2 ≤ · · · < xα ≤ yα < 2π then we de�ne

u{xα,yα} =

{
φ(x− xi) for x ∈ [xi, yi]
φ(x− xi+1) for x ∈ [yi, xi+1]

(2.55)for i = 1, . . . , α and again xα+1 = 2π.Finally let us de�ne the general solution ũ{xα,yα} with α or less sho
ks that 
onsists pie
e-wise of shifted 
opies of φ(x) where all sho
ks are 
ontained in [0, 2π).Let 0 ≤ ỹ1 ≤ ỹ2 ≤ · · · ≤ ỹα < 2π then we de�ne if ỹi < ỹi+1

ũ{xα,yα} =

{
φ(x− xi) for x ∈ [xi, ỹi]
φ(x− xi+1) for x ∈ [ỹi, xi+1]

, (2.56)39



and if ỹi = ỹi+1 = · · · = ỹi+m

ũ{xα,yα} =

{
φ(x− xi) for x ∈ [xi, ỹi]

φ(x− xi+m+1) for x ∈ [ỹi+m, xi+m+1]
(2.57)Then the two sets of all these solutions with �xed {x1, · · · , xα} are given by

A{x1,...,xα} := {u{xα,yα}; 0 ≤ x1 ≤ y1 < x2 ≤ · · · < xα ≤ yα < 2π} (2.58)and
Ã{x1,...,xα} := {ũ{xα,ỹα}; 0 ≤ ỹ1 ≤ · · · ≤ ỹn < 2π}. (2.59)Clearly we have

v0
{xα}

∈ A{x1,...,xα} ⊆ Ã{x1,...,xα}and we have
Ã{x̃1,...,x̃β} ⊆ Ã{x1,...,xα}if x̃j ∈ {x1, . . . , xα} for all 1 ≤ j ≤ β and β ≤ α. Note that there is no solution 
onsistingpie
ewise of φ(x − xj) for xj ∈ {x1, . . . , xα} that has more than α sho
ks. We argue asfollows: We assume that the solution has a zero lo
ated at x1 = 0 and another zero at x2.Now we expli
itly 
onstru
t the set of all admissible solutions u(x) that 
onsist pie
ewiseof shifted 
opies of φ(x − xi − 2πkj) for some kj ∈ Z and i ∈ {1, 2}; with the additionalproperty that u(x1 = 0) = 0. Due to the monotoni
ity of φ it is 
lear that u possesses atleast one sho
k.Let us denote all sho
k positions by 0 < y1 < · · · < yβ ≤ 2π. By 
onstru
tion we will seethat β ≤ 2. Figure 2.6 illustrates the 
onstru
tion: all sho
ks are down sho
ks, therefore umust 
onsist of sequen
es given by

...φ(x + x1), φ(x), φ(x − x1), φ(x− 2π), φ(x − x1 − 2π), φ(x − 4π)... (2.60)Be
ause u(0) = 0 we start at x = 0 with u(x) = φ(x) lo
ally. At the �rst sho
k we 
anonly jump to a solution φ(·) that lies to the right of φ(·) in the sequen
e in equation (2.60)without violating the entropy 
ondition (2.42). This applies to all following sho
ks. In orderto obtain a solution on S1 we have to end at x = 2π with φ(x − 2π). Hen
e we 
an jumptwi
e at most. It is 
lear that the same argument works for arbitrary α ∈ N. The sameapplies to solutions that do not have a zero at all.Let us now state the main theorem:Theorem 2.6.1 Let n = 2α and α ∈ N. Then the following is true:a) The lo
al unstable manifold W u
loc(v

0
{xα}

) of v0
{xα}

is given by A{x1,...,xα} de�ned inequation (2.58):
W u

loc(v
0
{xα}

) = A{x1,...,xα} (2.61)where v0
{xα}

is the unique frozen wave of equation (H) with zeros at {x1, . . . , xα}.b) The global unstable manifold W u(v0
{xα}

) of v0
{xα}

is then given by
W u(v0

{xα}
) =

{
Φ0(u, t);u ∈ A{x1,...,xα}, t ∈ R

+
}
. (2.62)40
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Figure 2.8: S
hemati
 plot showing why a 
onstru
tion of u{x2,y3} fails.
) The semi�ow on Ã{x1,...,xα} de�ned in equation (2.59) 
an be des
ribed by the follow-ing equation for the sho
k parameters yj:
ẏj(t) =

f(φ(yj − xj))− f(φ(yj − xj+1)

φ(yj − xj)− φ(yj − xj+1)
. (2.63)d) The dimension of the sub-attra
tors A0

n of order n is given by
dimA0

n = n.e) Let v1 be a frozen wave of equation (H) with
z(v1) = 1.Then there exist unique hetero
lini
 
onne
tions ũ(x, t) and û(x, t) with

lim
t→−∞

ũ(·, t) = lim
t→−∞

û(·, t) = v1

lim
t→∞

û(·, t) = u−

lim
t→∞

ũ(·, t) = u+.f) Let 0 ≤ x1 < x2 < · · · , xα < 2π and let v1 and v2 be frozen waves of equation (H)with the property
Z(v1) = {x1, . . . , xα}and
Z(v2) = {xk1

, . . . , xkβ
}where ki+1− ki ∈ {0, 1} for all 1 ≤ i ≤ β− 1. Then there exists a unique hetero
lini

onne
tion u(x, t) with the property

lim
t→−∞

u(·, t) = v1(·)

lim
t→∞

u(·, t) = v2(·).41



Before we prove the theorem, we prove a important lemma:Lemma 2.6.2 Let {xα} := {x1, . . . , xα} with 0 ≤ x1 < · · · < xα < 2π be given.(i) The set Ã{x1,...,xα} is over�owing invariant under the semi�ow of equation (H). Over-�owing means that if a solution u{xα,yα} ∈ Ã{x1,...,xα} leaves Ã{x1,...,xα} at time t̃ = 0then either y1 = x1 or yα = x1 + 2π in u{xα,yα}.(ii) The set A{x1,...,xα} is over�owing invariant under the semi�ow of equation (H).Proof. Let u(x, 0) ∈ Ã{x1,...,xα} su
h that u(x, 0) = u{xα,yα} with y1 > 0 and yα < 2π.Again we assume x1 = 0.Lo
al forward invarian
e of Ã{x1,··· ,xn} follows from the fa
t that the pro�les φ that de�ne
u{xα,yα} are stationary. Hen
e u is stationary ex
ept near the points yj, and so we onlyhave to prove invarian
e lo
ally at the sho
k points. Without loss of generality we onlyinvestigate the sho
k lo
ated at y1.Therefore let u(x, 0) be given by

u(x, 0) =

{
φ(x) for x < y1

φ(x− x2) for x > y1
(2.64)At y1 there is a unique forward 
hara
teristi
 χ(t) on whi
h the sho
k evolves. It 
an beobtained by integrating the Rankine-Hugoniot 
ondition 2.45. The other 
hara
teristi
sne
essarily point towards χ(t) for t > 0. So to the left and right of χ the solution u(x, t)must be stationary and is given by φ(x) for x ≤ χ(t) and by φ(x − x2) for x > χ(t). Seethe Figure 2.6 for illustration. χ(t) is uniquely determined by the di�erential equation:

χ̇(t) =
f(φ(χ(t)−))− f(φ((χ(t)− x2)+))

φ(χ(t)−)− φ((χ(t) − x2)+)
(2.65)

χ(0) = y0.The slope of χ(t) is bounded from above and hen
e, if t is su�
iently small we haveobtained lo
al forward invarian
e of the sho
k.For the ba
kward invarian
e we observe that a minimal 
hara
teristi
 χ−(t) and a maximalba
kward 
hara
teristi
 χ+(t) for t < 0 emanate from y1. For the area between χ− and χ+there are in prin
iple many possibilities to de�ne the solution su
h that we obtain u(x, t)for t ≥ 0. For ba
kward invarian
e it is enough if we �nd one u(x, t) ∈ Ã{x1,...,xα} for t < 0with this property.Let therefore χ(t) be the unique sho
k 
hara
teristi
 emanating from y1 and hen
e
u(x, t) =

{
φ(x) for x < y1

φ(x− x2) for x > y1for t ≥ 0.Let now t0 < 0 be given. Then we de�ne
ũ(x, t0) :=

{
φ(x) for x ∈ [χ−(t0), χ̃(t0))

φ(x− x2) for x ∈ (χ̃(t0), χ
+(t0)]42
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Figure 2.9: Illustration for the proof of Lemma 2.6.2.for some χ̃(t0) ∈ [χ−(t0), χ
+(t0)]. Lo
al ba
kward invarian
e follows if we 
an prove thatthere is exa
tly one χ̃(t0) su
h that if we solve equation 2.65 with initial 
ondition χ̃(t0)we obtain

χ̃(0) = χ(0) = y0.Uniqueness of χ̃(t0) is 
lear be
ause the 
onvexity of f implies together with the monotoni
-ity of φ monotoni
ity of χ̇. Hen
e, this implies that χ̃(0) depends monotoni
ally on χ̃(t0),whi
h implies uniqueness of χ̃(t0) due to uniqueness of χ̃(0). Hen
e ba
kward invarian
efollows.As far as uniqueness is 
on
erned, the ba
kward solution is not unique in Ã{x1,...,xα} ingeneral, due to the possibility of sho
k splittings in ba
kward time dire
tion. But it is
lear that if we assume that this does not happen, we obtain uniqueness of the ba
kwardsolution in Ã{x1,...,xα}.For the over�owing property we assume u(x, 0) ∈ Ã{x1,...,xα} with y1 = 0. Then the forward
hara
teristi
 χ(t) in x = y1 = 0 is given by the equation
χ(t) =

−f(φ(yα − 2π)

−φ(yα − 2π)
< 0for t ∈ [0, δ), δ positive and small and χ(0) = 2π. Thus, after identi�
ation of 0 and 2π weobtain that the solution to be lo
ally given by

φ(x) for 0 < x < y2

φ(x− 2π) for χ(t) < x < 2π
φ(x− yα) for yα < x < χ(t).In the 
ase of y1 = y2 = 0 we have to repla
e y2 by y3 in the �rst line. If there is only onesho
k, we 
an drop the last line and repla
e y2 with yα in the �rst line.This proves the over�owing property of Ã{x1,...,xα}.43



Due to the fa
t that A{x1,...,xα} ⊂ Ã{x1,...,xα} we 
on
lude invarian
e of A{x1,...,xα} byvirtue of the same 
onstru
tion immediately. The over�owing property works just as for
Ã{x1,...,xα}, here the boundary is given by the 
ondition yj = xj or yj = xj+1 for some
j ∈ {1, . . . , α}.

�Corollary 2.6.3 For every u(x, 0) ∈ A{x1,...,xα} there is a unique ba
kward orbit in A{x1,...,xα}.Proof. From the proof of the previous lemma we dedu
e that it is su�
ient to showthat sho
ks in u 
annot split in ba
kward time. This is 
lear by 
onstru
tion be
ause anysolution in A{x1,...,xα} has exa
tly α zeros and α sho
ks.
�Proof of Theorem 2.6.1In fa
t, we have already proven part 
). Equation (2.65) yields exa
tly equation (2.63) ifwe repla
e χ(t)± by the yj. Hen
e we 
an integrate solutions along the (invariant) manifold

A{x1,...,xα} by using equation (2.63) for every yj (1 ≤ j ≤ n). Note that yj and yj+1 
anmeet. Thus yj is only lips
hitz not C1.For a) we prove that all solutions u(·, 0) ∈ A{x1,...,xα} 
onverge in ba
kward time to v{xα},this shows
A{x1,...,xα} ⊂W u

loc(v
0
{xα}

). (2.66)Then we show maximality of A{x1,...,xα} in the sense that all solutions u(·, t) 
onverging to
v0
{xα}

are 
ontained in A{x1,...,xα} for su�
iently small t < 0 whi
h proves
W u

loc(v
0
{xα}

) ⊂ A{x1,...,xα}. (2.67)The �rst part is a 
onsequen
e of Lemma 2.6.2 and the 
onvexity of f . Now we assume
u(·, 0) ∈ A{x1,...,xα}. Be
ause of the over�owing invarian
e and ba
kward uniqueness we
on
lude

u(·, t) ∈ A{x1,...,xα}for all t < 0. In addition
lim

t→−∞
u(·, t) ∈ F0 ∪ E0be
ause this is true for all solutions that are globally bounded in ba
kward time. Taking intoa

ount that v0

{xα}
is the only frozen wave in A{x1,...,xα} and hen
e A{x1,...,xα} ∩ E0 ∪F0 =

{v0
{xα}
} we have obtained equation (2.66).For the other dire
tion we argue indire
tly. Assume that there exists u(x, t) with

u(x, t) /∈ A{x1...xα} for all t < 0 and lim
t→−∞

u(x, t) = v0
{xα}

.Then for su�
iently small t̃ < 0 there must be a x̃ ∈ S1 su
h that for all 1 ≤ j ≤ α+ 1

u(x̃, t̃) 6= φ(x̃− xj). (2.68)Due to the fa
t that u 
onne
ts to v0
{xα}

we 
an always 
hoose (x̃, t̃) su
h that ũ(x̃, t̃) issmaller than the maximum and larger than the minimum of the stationary solution withone zero. 44



We now prove that ũ 
annot 
onverge to v0
{xα}

in ba
kward time whi
h will yield the result:the idea is to use a stationary solution to 
al
ulate the ba
kward 
hara
teristi
 of u thatstarts in (x̃, t̃) and thereby 
onstru
t a 
ontradi
tion.Assuming equation (2.68) holds, then there is a stationary solution us ∈ F0 with thefollowing properties:
us(x̃) = u(x̃, t̃)

Z(us) = {xs}where xs /∈ {x1, . . . , xα}.We investigate the (genuine!) ba
kward 
hara
teristi
 (χ(t), v(t)) with
χ(t̃) = x̃ and v(t̃) = us(x̃, t̃) = ũ(x̃, t̃).Be
ause us is stationary, the 
hara
teristi
 has the property that

lim
t→−∞

χ(t) = xsand
lim

t→−∞
v(t) = 0.Then

lim
t→−∞

u(xs, t) = lim
t→−∞

us(xs, t) = 0.This 
ontradi
ts limt→−∞ u(·, t) = v0
{xα}

be
ause v0
{xα}

(xs) 6= 0.This yields the maximality of A{x1,...,xα} (equation (2.67)) and hen
e a) follows.b) follows from the fa
t that due to unique forward solvability we obtain the global unstablemanifold by using the semi�ow to forward�solve the lo
al unstable manifold. Dissipativity,or the fa
t that A{x1,...,xα} ⊂ A0 ensures boundedness of the forward iteration, hen
eequation (2.62) follows.For d) we use the fa
t that
dim

(
W u

loc(v
0
{xα}

)
}

= dim
(
W u(v0

{xα}
)
} (2.69)whi
h is true due to forward uniqueness of solutions.For n = 2α = 2 the sub-attra
tor of order n = 2 
onsists of all frozen waves with one zeroand hetero
lini
 
onne
tions to u±. In other words

A0
2 = W u

loc(F0
2 ) ∪ E0

nFor �xed x1 we have
dim

(
W u

loc(v
0
{x1}

)
= 1.From the uniqueness of frozen waves with given x1 ∈ S1 we dedu
e

dimA0
2 = 2For n = 2α > 2 we use

A0
n =

{
W u(u);u ∈ F0

n

}
∪ E0

n. (2.70)45
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Figure 2.10: Unique sho
k-splitting of one sho
k in ba
kward time in A{x1,x2}.First we prove
dim

{
W u(u);u ∈ F0, z(u) = α

}
= 2α = n.For ea
h �xed set of zeros {0 ≤ x1 < · · · < xα < 2π} we have by part a) of this theorem

dim
(
W u

loc(v
0
{xα}

)
)

= dim
(
A{x1,...,xα}

)
= α.Moreover, all frozen waves v with zero-number z(v) ≤ α 
an be parameterised by (x1, . . . xα) ∈(

S1
)α

= T
α, hen
e

dimF0
n = dim T

α = α.Putting everything together we obtain by using equation (2.70)
dimA0

n = dimW u
loc({F0

n} = dimW u
loc(v

0
{xα}

) + dim T
α = α+ α = nHen
e d) is proven.For e) we 
ount dimensions to obtain uniqueness. For α = 1 the unstable manifold of v1is one dimensional, thus the 
onne
tion must be unique.For f) we argue in the following way: the 
ondition ki+1− ki ∈ {0, 1} implies that at mostevery se
ond zero 
an vanish, hen
e we 
an redu
e the proof to the situation where

Z(v1) = {0, x2}and
Z(v2) = {0}.Let us denote the unique sho
k position of v2 by y and the two unique sho
k positions of

v1 by y1, y2.It is a 
onsequen
e of 
) that in the 
lass of solutions A{x1,x2} all stationary sho
ks areunstable. In order to obtain the solution v2 with only one sho
k, the two sho
ks emanating46



form y1 and y2 
onsequently have to meet at the position y in su
h a way that the resultingsho
k is stationary.We de�ne t = 0 as the time at whi
h the two sho
ks 
ollide. So the question of uniquenessof hetero
lini
 
onne
tions redu
es to the question of uniqueness of sho
k 
ollisions in
A{x1,x2}, or in negative time dire
tion the questions of uniqueness of the splitting of sho
ksat a given position; but this is 
lear.Let u(x, t) be the solution where two sho
ks meet at time t = 0 at position x = y then thelower state of the left sho
k and the upper state of the right sho
k have to have the samevalue. By 
onstru
tion of Ã{x1,x2} it must be given by φ(y − x2):

lim
xցy

lim
tր0

u(x, t) = lim
xրy

lim
tր0

u(x, t)
!
= φ(y − x2).See Figure 2.10 for illustration. Note that the two limits in x and t are not inter
hangeable.Hen
e uniqueness of the splitting follows by uniqueness of ba
kward solutions in the 
aseof u ∈ A{x1,x2} with two sho
ks. This proves e) and the Theorem is proven.

�Note that for the situation of Theorem 2.6.1 e) we 
an expli
itly parameterise the wholehetero
lini
 
onne
tion from v1 to u±. The stationary solution v1 with Z(v1) = {x1} hasone unique sho
k at position y1. Then using Theorem 2.6.1 b) and 
) we 
an parameterisethe whole 
onne
tion manifold W u(v1) as follows: for any k ∈ Z and any y1 ∈ [2kπ, 2(k +
1)π) we de�ne

u{x1,y1}(x) :=

{
φ(x− x1 + 2kπ) for 0 ≤ x ≤ y1 − 2kπ

φ(x− x1 + 2(k − 1)π) for 2π > x > y1 − 2kπ
. (2.71)Then W u(v1) is given by

W u(v1) := {u{x1,y1} ∈ BV ; y1 ∈ R}. (2.72)Corollary 2.6.4 Again let α ∈ N and n = 2α. Then the set of hetero
lini
 
onne
tionsbetween two frozen waves with zero-number z ≤ α is 
ompletely 
ontained in
Ãn :=

{
Ã{x1,...,xα}; 0 ≤ x1 < · · · < xα < 2π

}
. (2.73)Proof Let v1, v2 be two frozen waves with

Z(v1) = {x1, . . . , xβ}
Z(v2) ⊂ Z(v1)for some given 0 ≤ x1 < · · · , xβ < 2π and β ≤ α. Let u(x, t) denote a hetero
lini

onne
tion between v1 and v2. Then

u(·, t) ∈ A{x1,...,xβ} ⊂ Ã{x1,...,xβ} ⊂ Ã{x1,...,xβ ,...,xα}for some xβ+1, . . . , xα and t su�
iently small.Now assume u(·, t̃) /∈ Ã{x1,...,xβ ,...,xα} for some t̃ ∈ R. Then we 
on
lude
u(·, t) /∈ Ã{x1,...,xβ ,...,xα}47



for all t > t̃ due to the over�owing property of Ã{x1,...,xβ ,...,xα}.This 
ontradi
ts
lim
t→∞

u(·, t) = v2be
ause
v2 ∈ ˚̃A{x1,...,xβ,...,xα}where ˚̃A denotes the interior of Ã in the topology of the manifold Ã{x1,...,xβ ,...,xα}.

�Theorem 2.6.1 and Corollary 2.6.4 are quite remarkable. They do not only provide a fullparameterisation of the unstable manifolds of the F0
n, they also suggest that in analogy tothe paraboli
 equation it is possible to de�ne a Morse index ih as the number of unstableeigendire
tions of a frozen wave.In the hyperboli
 setting, too there is the relation between zeros and the index but here itwould be given by

ih(u) = z(u). (2.74)This shows that for our purpose of 
omparing solutions for ε > 0 and ε = 0 sub-attra
tors
Aε

n and A0
n are a good tools.However, it is important to note that the 
onne
tion properties of both sub-attra
tors areremarkably di�erent. An example of how Aε

8 looks like has already been given in Figure2.5. The situation for the A0
n is far more 
ompli
ated. Just from the de�nition of A0

n andTheorem 2.6.1 we 
an 
on
lude that A0
n 
onsists of a α-torus T

α of frozen waves plushetero
lini
s. Every point on this torus has hetero
lini
s to a sub-torus T
β and the numberof 
onne
tions in ea
h point on T

α is given by (
α
β

). In addition there are 
onne
tions to
u±.Surprisingly, Corollary 2.6.4 yields that all the hetero
lini
s that 
onne
t from the α-torusba
k to a sub-torus are 
ontained in the set of all Ã{x1,...,xα} for given α ∈ N, whi
h wasdenoted by Ãn.We will investigate this in Chapter 4 in greater detail for the low dimensional 
ases.In the following Chapter 3 we will address the question whether the attra
tor of theparaboli
 equation 
onverges to the attra
tor of the hyperboli
 equation or, more pre
isely,whether every solution in Aε

n has a 
ounterpart in A0
n. The dis
ussion above suggests thatthis is not the 
ase, be
ause although equation (2.74) shows similarities with equation(2.29) in the limiting pro
ess, every se
ond zero in a rotating or frozen wave uε vanishes(see Remark 3.2.6). Hen
e for α 6= 1 the number of unstable dimensions of the frozen androtating waves in the paraboli
 and hyperboli
 setting do not mat
h.
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Chapter 3Persisten
e or non-persisten
e?This 
hapter is devoted to the question of whether solutions on the global attra
tor of theparaboli
 equation (P) persist for ε → 0 or not. In other words, the guiding question ofthis Chapter is whether
lim
ε→0

uε(·, t) = u0(·, t)for uε ∈ Aε and some u0 ∈ A0. We have already determined in the introdu
tion that thisis one of the aspe
ts of the question whetherAε 
onverges to A0 for vanishing ε.The main persisten
e results root in a result by Fan and Hale [FH95℄ on the persisten
e ofhetero
lini
 orbits. We will present their theorem in the �rst se
tion although it is in fa
twrong. However, most of the proof is 
orre
t and delivers one of our key 
laims: pointwise
onvergen
e of solutions.The 
orre
ted result will be presented in the beginning of Se
tion 3.2. It is the startingpoint for the proof of the main results of this Chapter:
• The persisten
e result for rotating waves (Theorem 3.2.5).
• The Conne
tion Lemma 3.2.8 that yields that whereas some hetero
lini
 
onne
tionspersist, others do not.
• The Cas
ading Theorem 3.2.9, whi
h states that in 
ase a hetero
lini
 does notpersist, it 
onverges to a 
as
ade of hetero
lini
 solutions and frozen waves.Se
tion 3.3 then addresses the question of whi
h 
onne
tions on the paraboli
 attra
tor donot persist. We prove the surprising result that persisten
e of hetero
lini
s and 
as
adingappears for every 
hoi
e of f and g as long as (H1)-(H3) are satis�ed.3.1 The result of Fan and HaleThe latest, most important and outstanding result on the question of persisten
e of het-ero
lini
 orbits on the paraboli
 attra
tor so far is the result of Fan and Hale from 1995.In [FH95℄ Fan and Hale address the question of vis
ous regularisations of the hyperboli
equation. 49



In the �rst part of the paper they investigate the 
onne
tion problem of the global attra
torof the hyperboli
 equation. These results were already presented in Se
tion 2.5. In these
ond part of the publi
ation Fan and Hale investigate the regularised equation, whi
h ispre
isely our equation (P).In Theorem 4.7 they state a persisten
e result for hetero
lini
 
onne
tions within thisframework. Their theorem reads:Theorem 3.1.1 If B = {uε(x, t), 0 < ε ≤ ε0} is a set of 
onne
ting (hetero
lini
) orbitsof the paraboli
 equation (P), then there is a sub-sequen
e {uεn(x, t)} of B 
onverging to
u0(x, t) as ε → 0 a.e. in S1 × R where u0(x, t) is a 
onne
ting orbit of the hyperboli
equation (H).Unfortunately this theorem is wrong. The 
laim that 
onvergen
e is a.e. on S1 × R is nottrue. As a result of this the limiting solution u0 is not ne
essarily a hetero
lini
 
onne
tion.Taking a 
loser look at the proof of their theorem one realises that it is almost 
ompletely
orre
t. Only their 
on
lusion using a diagonalising sequen
e argument at the very end ofthe proof is wrong. This argument does not work here. And it is not solely the argumentthat is wrong. We will see that in fa
t the 
laim is wrong as well!We will see that the limit of a hetero
lini
 
onne
tion is a global solution, however, thisdoes not imply that this global solution is a hetero
lini
 
onne
tion as one might expe
t.An additional 
ompli
ation is the fa
t that the limiting obje
t in general depends on howthe hetero
lini
 orbits uε(·, t) are parameterised in t and how sub-sequen
es are 
hosen.This means in general ∣∣∣Φ0

(
lim
ε→0

uε(x, t), τ
)
− uε(x, t+ τ)

∣∣∣is not ne
essarily small for small ε > 0 (see page 59). The reason for this is that the limitis only pointwise on 
ompa
t intervals [−T, T ], but not uniform.In general the limit of a hetero
lini
 
onne
tion of the paraboli
 equation limits to a set ofsolutions of the hyperboli
 equation. This set in fa
t is a subset of the global attra
tor of(H).If we look at the dimensionality of the sub-attra
tors introdu
ed in the last 
hapter, wesee that dimA0
n = dimAε

n. However in A0
n half of the dimensions 
onsist of frozen waveswhereas in Aε

n the set of rotating waves is one dimensional. This already suggests thatpersisten
e of hetero
lini
s might fail just for dimensional reasons. We will see that thesituation is even worse than that.3.2 Cas
ade of hetero
lini
sLet us state the 
orre
ted result of Fan and Hale �rst:Theorem 3.2.1 (Global Solution) Let B := {uε(x, t) ∈ Hε : 0 < ε < ε0} for some ε0 <<
1. Then there exists a subset {uεn(x, t)} of B with the property that

lim
n→∞

uεn(x, t) = u0(x, t)a.e. on S1 for all t ∈ [−T, T ]. Moreover u0(x, t) is a global solution of equation (H).50



For a better readability I in
lude a full proof of the theorem. It 
losely follows the one inthe paper of Fan and Hale [FH95℄, pages 1251-1253; but I have in
luded some additionalexplanations and referen
es. The theorem is proved by using the method of 
ompensated
ompa
tness, whi
h was developed in the 70s by Murat and Tartar see for example [Mu78℄and [Tar79℄ and referen
es therein. The theorems of Fun
tional Analysis quoted in theproof 
an be found for example in the book of Werner [Wer℄.The proof uses the Div-Curl Lemma by Murat [Mu78℄:Lemma 3.2.2 (Div-Curl-Lemma) Assume that {vk}, {wk} are two bounded sequen
esin L2(U,Rn) where U ⊂ R
n, su
h that(i) {div vk} is 
ompa
t in W−1,2(U ; R),(ii) {curl wk} is 
ompa
t in W−1,2(U ; Rn×n).If vk ⇀ v and wk ⇀ w in L2(U,Rn), then vk · wk → v · w in the sense of distributions.Proof of Theorem 3.2.1 (Global Solution):Due to the maximum prin
iple and hypothesis (H3) all uε ∈ B are globally boundedin L∞. Hen
e there exists a sub-sequen
e in B denoted by {uε} again and a fun
tion

u ∈ L∞(S1 × R,R) su
h that
uε w∗
⇀ u(x, t) in L∞(S1 × R,R) (3.1)This is a dire
t 
onsequen
e of the Theorem of Alaoglu-Bana
h in its sequential form,whi
h states that the unit ball in the dual spa
e of a ve
tor spa
e X is weak* sequentially
ompa
t if X is separable.We use X = L1 whi
h is separable and thus X ′ = L∞ and obtain that there exists asub-sequen
e {uε} and a fun
tion u(x, t) as 
laimed above su
h that

∫

S1×R

[uε(x, t)− u(x, t)]ϕdxdt −→ 0 for ε→ 0for all ϕ ∈ C∞(S1 ×R,R). Note that it is su�
ient to test with smooth fun
tions be
ause
C∞ is dense in L1.Now let g ∈ C(R) be arbitrary. Due to the global boundedness of the solutions in B wehave by virtue of the same argument

g(uε(x, t))
w∗
⇀ g(u(x, t)) := ḡ(x, t) in L∞(S1 × R,R).Then there is a family of Borel probability measures
{νx,t : (x, t) ∈ S1 × R},su
h that we have the following representation:

g(uε(x, t))
w∗
⇀ g(u(x, t)) := ḡ(x, t) ≡

∫

R

g(λ)dνx,t(λ) (3.2)51



in L∞(S1×R,R). This is a 
onsequen
e of the Theorem of Radon-Nikodym. For a detailedproof see Theorem 5 in [Tar79℄.It is important to note that �probability measure� implies that the νx,t are signed.In the following we will show that νx,t is in fa
t a point measure at (x, t) with weight
u(x, t). This will yield the pointwise 
onvergen
e.Let ϕ ∈ C2(R) be a 
onvex fun
tion. Then we de�ne

ψ(u) =

∫ u

ϕ′(s)f ′(s)ds. (3.3)Therefore we 
an write
ϕ(uε(x, t))

w∗
⇀ = ϕ̄(x, t) ≡

∫

R

ϕ(λ)dνx,t(λ)

ψ(uε(x, t))
w∗
⇀ = ψ̄(x, t) ≡

∫

R

ψ(λ)dνx,t(λ)in L∞(S1 × R,R).Now we look at ∂tϕ(uε) = ϕ′(uε)∂tu
ε and obtain by using (3.1), (3.3) and the PDE (P)

ϕ(uε)t + ψ(uε)x = ε
(
φ(uε)xx − ϕ′′(uε)(uε

x)2
)

+ ϕ′(uε)g(uε). (3.4)We 
laim that
sup
ε>0

T∫

0

∫

S1

ε(uε
x)2dxdt <∞ (3.5)and therefore √ε∂xϕ(uε) ∈ L2(S1 × [0, T ]).To see (3.5) we use ϕ(u) = u2 in (3.4) and integrate over S1 × [0, T ]. We obtain

∫

S1

(uε(x, T ))2dx =

∫

S1

(uε(x, 0))2dx− 2

∫ T

0

∫

S1

ε(uε
x)2dxdt

+ 2

∫ T

0

∫

S1

uεg(uε)dxdt.The left hand side of this equation and the �rst and last term of the right hand side areglobally bounded for all ε > 0, hen
e we have obtained (3.5).We 
on
lude εϕx(uε)→ 0 in L2(S1 × [0, T ]) and thus
εϕxx(uε)→ 0 inW−1,2(S1 × [0, T ]).Furthermore εϕ′′(uε)(uε

x)2 and uεϕ(uε) are bounded in the spa
e of signed Radon measureson S1 × [0, T ] with �nite mass.Now we 
an apply Corollary 1 of Chapter 1 of Evans [Ev90℄ whi
h yields that the righthand side of (3.4) is 
ompa
t in W−1,2(S1 ×R
+). Note that this remains true if ϕ is onlypie
ewise C2 and 
ontinuous. In this 
ase we obtain a pie
ewise version of equation (3.4).The argumentation remains the same and we again obtain εϕx(uε)→ 0 in L2(S1× [0, T ]).We now want to apply the Div-Curl-Lemma 3.2.2. We de�ne two sequen
es:

vε :=(f(uε), uε) (3.6)
wε :=(ϕ(uε),−ψ(uε)). (3.7)52



Then by (3.2) we have
vε · wε

w∗
⇀

∫

R

[f(λ)ϕ(λ) − λψ(λ)]dνx,t(λ).The Div-Curl-Lemma provides
vε · wε

w∗
⇀ v̄ · w̄ = (f̄ , u) · (ϕ̄,−ψ).Hen
e we obtain

∫

R

[f(λ)ϕ(λ) − λψ(λ)]dνx,t(λ) = f̄(x, t)

∫

R

ϕ(λ)dνx,t(λ)− u(x, t)
∫

R

ψ(λ)dνx,t(λ)whi
h is equivalent to
∫

R

[
(f(λ)− f̄(x, t))ϕ(λ) + (u(x, t) − λ)ψ(λ)

] dνx,t(λ) = 0. (3.8)We now 
hoose ϕ(λ) = |λ− u(x, t)| whi
h is in fa
t only C0 (but pie
ewise C2), then
ψ(λ) =

∫ λ

f ′(s)ϕ′(s)ds = sign(λ− ū(x, t))(f(λ) − f(ū(x, t))).With this equation (3.8) redu
es to
(
f(ū(x, t)) − f̄(x, t)

) ∫

R

|λ− u(x, t)|dνx,t(λ) = 0.Thus, one of the fa
tors must be zero, this either leads to
f(ū(x, t))− f̄(x, t) = 0 (3.9)or to
supp{νx,t} = {u(x, t)}.Re
alling the de�nition of f̄ in equation (3.2) we observe that supp{νx,t} = {u(x, t)} againimplies equation (3.9).Now we 
hoose ϕ(λ) = f(λ) − f(u(x, t)) and therefore ψ(λ) =

∫ λ
(f ′(s))2ds. In this 
ase(3.8) takes the form

∫

R

[
(f(λ)− f(u(x, t))2 − (λ− ū(x, t))

∫ λ

u
(f ′(s))2ds] dνx,t(λ) = 0. (3.10)We use Hölder's inequality for the �rst term of the integrant and obtain:

(f(λ)− f(u(x, t))2 =

(∫ λ

u
f ′(s) · 1ds)2

≤ (λ− u)
∫ λ

u
(f ′(s))2ds.Hen
e the integrant of equation (3.10) is either zero or negative, therefore it must be zero.Here we have used the fa
t that νx,t is a probability measure. From the fa
t that theintegrant of (3.10) is zero we 
on
lude that either f ′ ≡ const or λ = u(x, t) and therefore

λ = u(x, t)53



be
ause f ′′ > 0 due to (H1).We now have obtained that νx,t is a point measure at (x, t) with weight u(x, t) but thisimplies that the 
onvergen
e of uε to u is pointwise a.e. on S1 for all times t ∈ [0, T ].The same argument works for negative times hen
e we have pointwise 
onvergen
e a.e. on
S1 × [−T, T ].Be
ause T was arbitrary, u(x, t) is globally bounded for t ∈ R. Otherwise there would exista time t0 and a point x0, su
h that u would have to be
ome large in a neighbourhoodof (t0, x0). That is impossible be
ause |uε| is globally bounded by max{|u−|, |u+|}. Thisyields that u(x, t) is a global solution of the hyperboli
 equation (H).Due to the global boundedness of the uε it is 
lear, that u0 is a solution of the hyperboli
equation. One just has to apply the Theorem of Dominated Convergen
e to the weakformulation of the paraboli
 equation and let ε→ 0.

�Certainly the question arises why �global solution� does not imply �hetero
lini
 
onne
tion�in this 
ase. The main obsta
le for this is the o

urren
e of additional equilibria. Figure 3.1illustrates why �global solution� does not ne
essarily imply hetero
lini
 
onne
tion whenadditional frozen waves o

ur in the limiting pro
ess. Both panels show the (ε− t) plane,every point represents a solution pro�le u(·) ∈ L∞. The t-variable is 
ompa
ti�ed. Bothpanels show the same set of hetero
lini
 orbits uε(·, ·) and its limit in ε. Panel a) depi
tsthe 
onvergen
e of a solution for t ∈ [−T, T ]. Be
ause uε(·, 0) 
onverges to an equilibriumthe length 
overed by uε(·, t), t ∈ [−T, T ] gets shorter with smaller ε and vanishes for
ε = 0. This is true for all �nite T .In b) we have shifted u0(·, 0) of Panel a) to the left to a solution û0 where we set t = 0.Again we investigate a sequen
e of ûε(·, 0) 
onverging to the û0(·, t) now in
luding time.What used to be a 
one be
omes trapezoidal. If we let t go to∞ then the limiting fun
tions
û0(·, t) for t ∈ [−T, T ] will 
onverge to the hetero
lini
 
onne
tion of the left and 
entreequilibrium. This idea will be used in Theorem 3.2.9. Note that the dashed 
urves in the�gure are in general just 
urves and do not ne
essarily have to be straight lines as depi
ted.Note that in both 
ases we do not have persisten
e allthough in Panel b) we have 
onver-gen
e to a hetero
lini
 
onne
tion, but the hetero
lini
 orbit does not 
onne
t the limitsof target and sour
e of the paraboli
 
onne
tion.Let us now state two 
orollaries to the Global Solution Theorem. The �rst one 
on
ernsrotating waves.Corollary 3.2.3 Let B := {uε(x, t) ∈ Fε ∪Rε; 0 < ε < ε0} for some 0 < ε0 << 1. Thenthere exists a subset {uεn(x, t)} of B with the property that

lim
n→∞

uεn(x, t) = u0(x, t)a.e. on S1 × [−T, T ]. Moreover u0(x, t) is a global solution of (H).Se
ond, we make a statement on all possible limits of solutions in the set B:Corollary 3.2.4 Let B be de�ned as in Theorem 3.2.1 and let all parameterisations in tbe �xed. Let u ∈ BV (S1 × [−T, T ],R) with
u(x, t) := lim

n→0
uεn(·, τn + t)54



a)

b)

ε = 0

ε→
0

−∞ ← t t→∞

u0
α

ûε(·, 0) ûε(·, T )

ε = 0

uε(·, 0)

ε→
0

uε(·,−T ) uε(·, T )

−∞ ← t t→∞
u0(·, 0)

u0
α

ûε(·,−T )

û0(·,−T )

û0(·, T )

û0(·, 0)

ûε(·, 10T ) uε
b

uε
b

uε
a

uε
a

u0
β

u0
β

û0(·, 10T )Figure 3.1: Convergen
e of a hetero
lini
 orbit 
onne
ting uε
a and uε

b for ε → 0. The dotssymbolise the frozen waves for ε = 0, the small 
ir
les rotating waves for ε > 0. For ε = 0an additional frozen wave appears in the middle. In Panel a) 
onvergen
e to the 
entrefrozen wave is depi
ted. In Panel b) 
onvergen
e for ûε(·, ·) is displayed . It is 
lear whythere is no uniform 
onvergen
e for all t ∈ R in this 
ase.
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a.e. on S1 × [−T, T ] for sequen
es {εn} → 0 and {τn} and all bounded T ∈ R. Then
u(·, t) ∈ A0.Proof. Certainly u must be globally bounded and due to the 
onvergen
e of the limit bea solution of the hyperboli
 equation. Therefore it must be a global solution and hen
e
u(·, t) ∈ A0.

�In the 
ase of rotating waves Corollary 3.2.3 
an be improved 
onsiderably. The limitingobje
t is not only a global solution but again a frozen wave of the hyperboli
 equation.This is the 
ontent of the following Theorem. Note that we use ODE theory here to obtaina mu
h stronger result regarding 
onvergen
e. We prove 
onvergen
e for all ε.Theorem 3.2.5 (Rotating Waves) Let a = 2α for α ∈ N and uε
a be the up to shiftunique rotating or frozen wave of (P) with the property

z(uε
a) = a

uε
a(0, 0) = 0Then the limit

lim
ε→0

uε
a(x, t) = u0

α(x, t)exists almost everywhere and u0
α(x, t) is a frozen wave of the hyperboli
 equation (H) with

z(u0
α) = α. (3.11)Proof. We perform the proof in several steps:(i) For the existen
e of the limit we assume a = 2, the other 
ases just work with thesame argument.We observe that, a

ording to Lemma 2.3.5, the rotating wave vε

a asso
iated to uε
a(·, t)and its derivative lie in a o(ε) 
hannel around φ(x) outside a ε log ε-neighbourhoodof some x2(ε).Be
ause x2(ε1)− x2(ε2) < C|ε1 − ε2| for some 
onstant C, the limit of uε for ε→ 0exists outside any open neighbourhood of x2 and is in fa
t uniform. This proves theexisten
e.(ii) It remains to prove that u0 is a rotating wave. From Corollary 3.2.3 we obtain that

u0(x, t) is a global solution and therefore lies on the attra
tor. Be
ause it 
onvergesuniformly to φ outside a neighbourhood of x2, the solution u0 neither 
an be ahomogenous solution, nor a hetero
lini
 
onne
tion. From equation 2.47 follows thatit must be a rotating wave whi
h is unique up to shifts. This proves the 
laim.(iii) The relation between the zero-numbers of the paraboli
 wave and the hyperboli
 oneis obvious. All frozen waves for ε = 0 have positive derivative in all their zeros (seeSe
tion 2.6). We have seen that these persist. For ε > 0 all rotating wave pro�lesare 
ontinuous and thus have alternating signs in the derivative. Together with thealready proved persisten
e this yields (3.11).56



Remark 3.2.6 The relation of the zero-number between solutions on the paraboli
 attra
-tor uε ∈ Aε and their limits is true for all elements u ∈ Aε. The zero-number drops by onehalf when taking the limit ε→ 0, 
ounting multipli
ity in the 
ase of double zeros.This immediately implies
lim
ε→0
Aε

n ⊂ A0
n (3.12)in the sense of solutions.The zero-number property is true be
ause all solutions u ∈ A0

n have the property that thederivative in the zero is positive. Assume u has a zero at x0 with negative slope, then usingthe ba
kward 
hara
teristi
 emanating from x0 we 
on
lude that the limit in ba
kwardtime u−∞ has also a zero at x0. The sign of the derivative 
annot 
hange, hen
e it isnegative. This 
ontradi
ts the fa
t that u−∞ must be a frozen wave. Be
ause the sign ofthe derivative in the zeros of all uε alternates, the zero-number drops by one half. Moreoverit must be �nite for ε 6= 0.Coming ba
k to rotating waves, we summarise that all rotating waves persist for ε → 0.Moreover there is the relation between the zero-number of the rotating wave for ε > 0 andthe number of zeros of the limiting frozen wave.De�nition 3.2.7 Let a := 2α for some α ∈ N be given and let ε0 be su�
iently small.Then uε
a(·, ·) denotes the up to rotation unique rotating wave with zero-numbers z = a forall 0 < ε < ε0.The set of rotating and frozen waves uε

a with a given zero-number z(uε
a) = a shall be denotedby

Ba := {uε
a ∈ Fε ∪Rε : 0 < ε < ε0} .Moreover we �x the notation of Theorem 3.2.5 by de�ning

u0
α(·, t) := lim

ε→0
uε

a(·, t).As mentioned above, the persisten
e result that is valid for rotating waves, is not true forhetero
lini
 orbits although Theorem 3.2.1 yields 
onvergen
e to a global solution. Thenext Lemma will provide a 
riterion when hetero
lini
 orbits 
annot persist. In order toprove this 
riterion we de�ne the set of hetero
lini
 orbits 
onne
ting two rotating waves
uε

a and uε
b with zero-number a and b by

Bab :=

{
uε ∈ Hε : lim

t→−∞
uε(·, t) = uε

a, lim
t→∞

uε(·, t) = uε
b, 0 < ε < ε0

}
. (3.13)The rotating wave uε

a is 
alled the sour
e and uε
b the target.Lemma 3.2.8 (Conne
tion Lemma) Let Ba, Bb and Bab be de�ned as above with a =

2α and b = 2β for α, β ∈ N and let uε ∈ Bab with
u0(x, t) := lim

n→∞
uεn(x, t) (3.14)a.e., where εn is a sequen
e for whi
h the uεn 
onverge due to Theorem 3.2.1.If

lim
t→−∞

u0(·, t) = u0
α(·) and lim

t→∞
u0(·, t) = u0

β(·)57



for all �xed time parameterisations of u(·, t). Then there exists a k ∈ N su
h that
a = kb. (3.15)In other words, if a 6= kb for all k ∈ N then the limit of the hetero
lini
 orbits 
onne
tingthe rotating waves uε

a and uε
b does not 
onne
t the limits of the rotating waves given by u0

αand u0
β, thus the hetero
lini
 
onne
tion 
annot persist.Proof. For all 0 < ε < ε0 the rotating waves uε

a and uε
b are periodi
 solutions of therotating wave equation. Their period is given by Ta = 2π

α and Tb = 2π
β .If the hetero
lini
 
onne
tion uε(·, t) persits, u0

α and u0
β have to be 
onne
ted by a hetero-
lini
 orbit. A

ording to Theorem 2.5.12 this implies

Z(u0
β) ⊂ Z(u0

α). (3.16)Taking the limit ε→ 0 for the rotating waves, we obtain that the zeros of u0
α and u0

β mustbe periodi
 in x and the distan
e of neighbouring zeros is given by Ta and Tb respe
tively.Then equation 3.16 implies
Tb = kTafor some k ∈ N.Hen
e
α = kβwhi
h implies
a = kbjust as desired.

�The fa
t that on the global attra
tor of the paraboli
 equation all rotating waves are
onne
ted to all waves with stri
tly lower Morse index, implies that the 
ondition in the
onne
tion Lemma 3.2.8 is non-empty.In 
ase of non-persisten
e there is mu
h more to say. In fa
t in the next theorem we willprove that the limit of the hetero
lini
 
onne
tions 
onsists of a �nite 
as
ade of hetero
lini

onne
tions.In order to prove this statement we have to 
ir
umvent the problem that the parameteri-sation in t gets �stu
k� in an emerging stationary state. We have heuristi
ally argued thatthis 
an happen (see Figure 3.1). We will make this argument rigorously here.For this purpose we again use the set Bab and assume that
lim
ε→0

uε(x, t) = u0(x, t) a.e. on S1 × [−T, T ]but
lim
t→∞

u0(·, t) 6= u0
β(·).Without loss of generality we 
an assume u0(·, t) ∈ F0 otherwise we 
ould use limt→∞ u0(·, t)for the argument. Additionally u0(x, t) shall not 
orrespond to the target frozen wave u0

β .58



Then the following is true: there is a δ > 0 su
h that for every su�
iently small ε > 0there exists a T̃ > 0 su
h that
||uε(·, T̃ )− u0(·, T̃ )|| > δ. (3.17)It is obvious that on the one hand

u0(·, T̃ ) = u0(·, 0).On the other
uε(·, T̃ )→ uε

β(·)for T̃ →∞.Hen
e
||uε(·, T̃ )− u0(·, T̃ )|| = ||uε(·, T̃ )− u0(·, 0)|| → ||uε

b(·)− u0(·)||for T̃ →∞.But ||uε
b(·) − u0(·)|| > δ. If this was false then u0(·, T ) would 
onverge to the targetequilibrium whi
h was ex
luded. In fa
t we 
an 
hoose any 0 < δ < ||u0

β(·)− u0(·)||.We have not spe
i�ed any norms here. This was not ne
essary as the argument holds forthe L1, the L2 or the L∞ norm.This means nothing else than that, no matter how large T is 
hosen, for all ε > 0 there isalways a part of the hetero
lini
 orbit u(·, t) for t > T that lies outside the 
one of 
onver-gen
e (see Figure 3.1). We therefore introdu
e a di�erent parameterisation to 
ir
umventthis problem.In order to do this we have to use the 
on
ept that all hetero
lini
 
onne
tions are embeddedmanifolds in the extended phase spa
e. In other words, the graph of the map
uε : R→ L2

t 7→ uε(·, t)given by (uε(·, t), t) de�nes an embedded manifold in L2×R. Due to the global boundednessof all uε , this graph is also a manifold in L∞ × R.We now introdu
e a di�erent parameterisation by the transformation
τ :=

t

||uε
t (·, t)||L2and de�ne:

U ε(τ) := uε(·, t).In 
ase there are τ± with U ε(τ±) = uε
a,b then we de�ne

U ε(τ) := U ε(τ−) for τ < τ−

U ε(τ) := U ε(τ+) for τ > τ+.This 
ompensates for the fa
t that in the 
ase uε
a and uε

b are frozen waves U(·) 
an have�nite length.We now have U ε : R → L2 and graph(U ε(·)) = graph(uε(·)) but graph(U(·)) is parame-terised by ar
 length. 59



The map U ε(·) : R→ L2 is di�erentiable and we have
||∂τU(τ)|| =

∣∣∣∣

∣∣∣∣
uε

t

||uε
t ||

∣∣∣∣

∣∣∣∣ = 1,hen
e the U ε are a bounded sequen
e of equi
ontinuous fun
tions and therefore have, afterpossibly taking a sub-sequen
e, a 
ontinuous limit U0 for all τ ∈ [−τ−, τ+] for arbitrarybut �nite τ±. Hen
e U0(·) is again a manifold that 
an be parameterised by τ and is lo
ally
onne
ted.The new parameterisation has the important property that it 
annot get �stu
k� as theparameterisation over the t 
ould.Before stating the Theorem, we add the following notion: we say that U ε̃(τ2) lies to theright of U ε̃(τ1) on U if and only if τ2 > τ1 for �xed ε̃.Theorem 3.2.9 (Cas
ading) Let again
Bab :=

{
uε ∈ Hε : lim

t→−∞
uε = uε

a, lim
t→∞

uε = uε
b 0 < ε < ε0

}
,where a = 2α and b = 2β.Then there exists a sub-sequen
e {εn} → 0 of {ε} su
h that the limit in n of the uεn ∈ Bab
onsists entirely of frozen waves or of a 
as
ade of hetero
lini
 
onne
tions interrupted byse
tions of frozen waves.There are at most α−β di�erent hetero
lini
 orbits and α−β+1 se
tions of frozen waves.Proof. We begin the proof by de�ning the set of all possible limits of Bab denoted by U1.Let therefore Γ1 be the set of all sub-sequen
es {εn} and {τn} for whi
h

lim
n→∞

U εn(τn + τ)
onverges to a BV-fun
tion U0
{εn},{τn}

(τ) su
h that, if we de�ne
uεn(·, 0) = U εn(τn)then uεn(·, t) → u0(·, t) a.e. on S1 × [−T, T ] for all �nite T ∈ R. The set of all thesefun
tions shall be denoted by

U1 :=
{
u{εn},{τn} ∈ BV ; ({εn}, {τn}) ∈ Γ1

} (3.18)then Corollary 3.2.4 yields U1 ⊂ A0.The following proof is a �nite indu
tion with respe
t to the number of hetero
lini
 orbitsin U1.If U1 ∩ H0 = ∅ then the limit of the hetero
lini
 
onne
tions in Bab does not 
ontain ahetero
lini
 
onne
tion of equation (H). Hen
e the Theorem is true.Therefore assume ∃({εn}, {τn}) ∈ Γ1 su
h that
u0

1(x, 0) := lim
n→∞

U εn(τn)60
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Figure 3.2: S
hemati
 plot to illustrate the 
onstru
tion in the proof.is not a frozen wave or equilibrium of equation (H) and thus lies on a hetero
lini
 
onne
-tion. Without loss of generality we assume that
lim

t→−∞
u0

1(·, t) 6= u0
α(·) or lim

t→∞
u0

1(·, t) 6= u0
β(·)otherwise the hetero
lini
 orbit persists and we are �nished.Let us assume

lim
t→∞

u0
1(·, t) = u0

γ1
(·) 6= u0

βDue to the Sturm property the number of zeros 
an only drop along hetero
lini
s for ε > 0,the same is true for ε = 0 (see as well equation (2.49)). We 
on
lude that
z(u0

γ1
) ≤ α− 1be
ause the sour
e of the hetero
lini
 
an have at most α zeros. Here we have used thefa
t that the number of zeros in any u0(·, t) has at most α many zeros, by Remark 3.2.6.We go ba
k to ar
 length parameterisation. Be
ause u0

γ1
6= u0

β there must be a sequen
e τ̃nsu
h that
lim

n→∞
U εn(τ̃n) = u0

γ1
.We now de�ne

Γ2 ⊂ Γ1to be the subset of sub-sequen
es ({εm}, {τm}) ∈ Γ1 with the property that they lie rightof τ̃n:
• ({εm}, {τm}) ∈ Γ1

({εm}, {τm}) ∈ Γ1 ⇔ • {εm} sub-sequen
e of {εn} and
• τm > τ̃mIn analogy to U1 we de�ne

U2 :=
{
u{em},{τm} ∈ BV ; ({em}, {τm}) ∈ Γ2

}
.61



Due to the fa
t that z(u0
γ) ≤ α− 1, we have the property that

z(u0(·, t)) ≤ α− 1holds for all u0(·, t) ∈ U2. Again we use the fa
t that the zero-number de
reases in bothequations (P) and (H).There are two 
ases:
• Either U2 ∩ H0 = ∅. Then all parts of the hetero
lini
 
onne
tions that lie to theright of the U εm(0) 
onverge to frozen waves.
• Or there are other hetero
lini
 
onne
tions in U2. Let u0

2(x, t) ∈ U2 have the propertythat z(limt→−∞ u0
2(·, t)) is maximal among all hetero
lini
 
onne
tions. Then we have

z( lim
t→∞

u0
2(·, t)) ≤ α− 2.We now repeat the above 
onstru
tion until the set Uk ∩H0 = ∅. Be
ause α is �nite,

k must be �nite as well.The same 
onstru
tion works in negative time dire
tion with �nitely many steps. Hen
ewe have found a sub-sequen
e again denoted by {εn} for whi
h the set of hetero
lini

onne
tions U εn(·) 
onverges to a sequen
e of hetero
lini
 orbits inter
epted by se
tionsof frozen waves. There 
an be at most α − β hetero
lini
s, and 
onsequently α − β + 1se
tions of stationary solutions in the limit, be
ause the number of zeros has to drop atleast by one in every hetero
lini
 
onne
tion.Thus the theorem is proven.
�Remark 3.2.10 F0

α 
an be parameterised 
ompletely by its zeros and therefore is a αdimensional torus T
α embedded in BV (S1,R); see Se
tion 2.6. All se
tions of frozen wavesof a 
as
ade of hetero
lini
s in the above Theorem 3.2.9 are 
ontained in this manifold.As a Corollary to Theorem 3.2.9 we obtain two ne
essary 
onditions on the persisten
e ofa hetero
lini
 orbits.Corollary 3.2.11 (Persisten
e) Let uε(x, t) be a hetero
lini
 orbit 
onne
ting uε

a with
uε

b. Then the following statements are true:(i) Let the set U1 de�ned in (3.18) 
ontain at least one solution u0(x, t) that is notstationary. If
lim

t→−∞
u0(·, t) = u0

α(·)and
lim
t→∞

u0(·, t) = u0
β(·)then the hetero
lini
 
onne
tion uε(x, t) persists.(ii) Let U1 ∩ F0 = {u0

α, u
0
β} then the hetero
lini
 orbit persists.62



Now we have settled the question of persisten
e. The Conne
tion Lemma 3.2.8 provides ane
essary 
ondition for the persisten
e of hetero
lini
 
onne
tions between given rotatingor frozen waves. Corollary 3.2.11 yields two independent su�
ient 
onditions for the per-sisten
e of a hetero
lini
 orbit.In addition Theorem 3.2.9 gives a result on the stru
ture of the limit of hetero
lini
 
on-ne
tions in 
ase of non-persisten
e: a 
as
ade of hetero
lini
 
onne
tions in A0.In the following and last se
tion of this 
hapter we will 
ombine the results on persisten
ewith the result from Se
tion 2.4 on the 
onne
tion problem of the global attra
tor ofequation (P). A more detailed analysis of the geometri
al properties of the global attra
torswill follow in Chapter 4.3.3 Persisten
e and non-persisten
e!In this se
tion we will show that for all 
hoi
es of f and g satisfying the assumptions(H1)-(H3) there exist hetero
lini
 
onne
tions in Hε that do not persist for ε → 0. Thenext 
hapter will yield that there are always 
onne
tions that do persist, however theseresults of persisten
e are so far limited to low dimensional 
ases.We have seen in Se
tion 2.4 that on the global attra
tor of the paraboli
 equation a solution
u1 ∈ Eε ∪ Fε ∪Rε is 
onne
ted to another solution u2 ∈ Eε ∪ Fε ∪Rε if and only if

i(u1) > i(u2). (3.19)Figure 3.3 shows the sub-attra
tors Aε
4, Aε

6,and Aε
8 in the upper part and Aε

10 and Aε
14 inthe lower part. In the �rst three illustrations the 
onne
tions to the 
onstant states u ≡ u±are also in
luded, whereas we have omitted these 
onne
tions in the two lower pi
tures.Equation (3.19) yields that the attra
tor possesses a gradient-like stru
ture, hen
e the �owon all 
onne
tions points downwards (see Figure 2.5).Our main 
on
ern regards the question whi
h of the 
onne
tions do not persist. Lemma3.2.8 yields a purely algebrai
 relation on the zeros to de
ide this. The only hetero
lini

onne
tions that possibly persist are the ones where the zero-number of the target wave isa natural fra
tion of the zero-number of the sour
e. Hen
e the hetero
lini
s in the set Babde�ned in 3.13 possibly persist if there exists a k ∈ N su
h that

a = kb. (3.20)In Figure 3.3 the 
onne
tions that satisfy equation (3.20) are drawn as solid lines, the
onne
tions that violate equation (3.20) are drawn with dashed lines. These 
onne
tionsare the ones where we know a priori that they do not persist. So all sub-attra
tors largerthan Aε
4 
ontain 
onne
tions that do not persist. All �gures are independent of the 
hoi
eof f and g.The next Chapter will yield persisten
e of some 
onne
tions, but only for limited lowdimensional examples. The general question or whether 
onne
tions that ful�l equation(3.20) persist or not, 
annot be answered yet, but will be dis
ussed in some detail in theCon
lusion in Chapter 5. 63



z = 4

z = 6

z = 2

z = 0

z = 8Aε
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Aε
4

Aε
6

Aε
10

Aε
14

Figure 3.3: Depi
ted are the sub-attra
tors of order n = 4, 6, 8, 10 and 14. Hetero
lini
sthat do not persist are drawn with dashed lines.
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Chapter 4The geometry of sub-attra
torsIn this 
hapter we will investigate the impli
ations of our main results of the last 
hapterson the geometry of sub-attra
tors and the relation of solutions in A0
n and Aε

n. We willinvestigate topologi
al aspe
ts of the manifold Ãn and use this knowledge to des
ribethe geometry of the hetero
lini
 
onne
tions of the paraboli
 equation. Here, �geometri
des
ription� does not mean to draw further images on 
onne
tion properties but to des
ribethese 
onne
tions as manifolds in L2×R and, by doing so, shed some light on the topologyof the Aε
n. Not all of the results presented are rigorous.The main obsta
le in making all results on the geometry and topology of the Aε

n rigorousis that we have not addressed the spe
tral problem of the paraboli
 or hyperboli
 equation.The problem is that the pointwise 
onvergen
e of solutions (Theorem 3.2.1), the result onthe dimensions of sub-attra
tors dimA0
n = dimAε

n (Theorem 2.6.1) and the zero propertiesof solutions (Remark 3.2.6) only imply
lim
ε→0
Aε

n ⊂ A0
nin the sense of sequen
es and solutions, but not

lim
ε→0
Aε

n = A0
n.In other words we do not know whether the limiting pro
edure is surje
tive. In orderto prove surje
tivity we would need results on the 
onvergen
e and persisten
e of thetangent ve
tors of the manifolds. If we restri
t ourselves to neighbourhoods of the rotatingand frozen waves (whi
h would be su�
ient in our 
ase) we would need a result on the
onvergen
e of eigenve
tors asso
iated to the eigenvalue problem

εϕxx − f ′′(uε)(uε
x)2ϕ− f ′(uε)ϕx + g′(uε)ϕ = λϕ (4.1)for waves uε ∈ Fε ∪ Rε to the eigenve
tors of the hyperboli
 problem and 
ertain εindependent bounds on the asso
iated spe
tral proje
tions. The di�
ulties are manifoldhere:

• There is no generi
 way to expli
itly 
ompute the eigenve
tors of (4.1)
• Equation (4.1) is only self-adjoint with respe
t to a s
alar produ
t that expli
itlydepends on ε, hen
e the spe
tral proje
tions asso
iated with these eigenve
tors alsodepend expli
itly on ε. 65



• The target manifold W u(u0
α) for u0

α ∈ F0 given by A{x1,...,xα} is not C1 on BV × Ror L∞ × R but only Lips
hitz.
• The dimensions of the unstable manifolds for ε = 0 and ε > 0 do not mat
h:

lim
ε→0

(dimW u(uε)) 6= dimW u(u0)for uε → u0.We have seen already that in the 
ase z(uε) > 2, uε a frozen wave
dim (W u(uε)) = i(uε) = z(uε)− 1 6= dimW u(u0)) = z(uε)/2We do not attempt to over
ome all these di�
ulties here, but we will sometimes make thefollowing assumption:Assumption (D) Let uε

a ∈ Fε ∪Rε with z(uε
a) = a and limε→0 u

ε
a = u0

α. Then there existfor all ε0 > ε > 0 neighbourhoods N ε of uε
a in Aε

n and a neighbourhood N0 of u0
α in A0

nsu
h that
lim
ε→0

N ε = N0i.e. for all u0 ∈ N0 there exists a sequen
e uε ∈ N ε su
h that limε→0 u
ε = u0 and all

u0 ∈ N0 are limits of a sequen
e of uε ∈ N ε.Geometri
ally Assumption (D) states in parti
ular, that the dimension of a neighbourhood
N ε of a rotating or frozen wave in Aε

n does not 
hange in the limiting pro
ess.Now let us investigate the sub-attra
tors of the lower dimensions. We will do this forgeneral f and g, but if expli
it representations of solutions are plotted we use the spe
ial
ase where the sour
e term g is odd and the transport term f is even and given by
f(u) :=

1

2
u2 g(u) := u(1− u2). (4.2)In prin
iple expli
it representations of solutions 
an be given for all f and g on
e thestationary problem of the hyperboli
 equation given in equation (2.53) is solved.Let me in
lude a te
hni
al note: In the following we will 
ompare the solutions of thehyperboli
 and paraboli
 equations. Although the solution of the paraboli
 equation doesnot possess sho
ks in the sense of dis
ontinuities, we will refer to the zeros that develop inthe limit ε → 0 dis
ontinuities as well as sho
ks. In addition when we refer to a drift ofzeros in the hyperboli
 setting, we mean a drift with respe
t to the parameterisation onthe respe
tive manifold.4.1 The sub-attra
tors A0
2 and Aε2A

ording to the de�nition of A0

2 given in equation (2.50) in Chapter 2, the sub-attra
tor
A0

2 
onsists of all frozen waves with zero-number z = 1, the two stable homogeneousequilibria u ≡ u± and all hetero
lini
 
onne
tions between these obje
ts.The frozen waves form a sub-manifold of A0
2 that 
an be represented as an S1.66



u(x, t) ≡ u+

u(x, t) ≡ u−

H0
2

H0
2

A0
2

F0
2 =̂S1

Figure 4.1: Geometri
 representation of the sub attra
tor A0
2.

u−

u+

u{x1=0}

y1 = 0

ỹŷ

S(ŷ)

S(ỹ)

A{x1=0}

R

Figure 4.2: Stereographi
 proje
tion for the 
ase x1 = 0.Due to Theorem A (2.5.10) in Chapter 2 all frozen waves are 
onne
ted to u(x) ≡ u±.Theorem C (2.5.10) states that these are all hetero
lini
 
onne
tions in A0
2 and Theorem2.6.1 e) yields uniqueness of these hetero
lini
s. Equation (2.71) provides together withequation (2.72) an expli
it parameterisation of these 
onne
tions W u(F0

2 ). Hen
e we 
an67



de�ne an expli
it embedding
Σ2 : S1 ×R→BV (S1,R)

(x1, y1) 7→Σ2(x1, y1) := u{x1,y1}where u{x1,y1} is de�ned in equation (2.71). The �ow on graph(Σ2) 
an be 
omputedexpli
itly and is given by equation (2.63) in Theorem 2.6.1 
).By a stereographi
 proje
tion S we 
an map the whole obje
t onto the surfa
e of a ball,thus obtaining a representation of A0
2 as an S2, shown in Figure 4.1.The stereographi
 proje
tion S is outlined in Figure 4.2 where we have set x1 = 0. Inthe �gure the hetero
lini
 
onne
tion on the S2 is depi
ted in bla
k, the frozen wave isdepi
ted in red. The expli
it parameterisation of the hetero
lini
 by the sho
k position

y1 ∈ R is represented by the blue line. If we see Figure 4.2 as one sli
e of Figure 4.1 we 
anunderstand how solutions evolve along the hetero
lini
s on the S2. The three diagrams onthe right in Figure 4.1 show s
hemati
ally how the shape of these solutions evolves.Can we use this des
ription to des
ribe the paraboli
 sub-attra
tor Aε
2? There all rotatingwaves with Morse index i = 1 are given by

uε(x− c(ε)t) = uε
1(x+ θ)with θ ∈ S1. In a 
o-moving 
oordinate system every rotating wave 
an be frozen. Everynow frozen wave is 
onne
ted by a hetero
lini
 orbit to u+ and u−. Due to Theorem 3.2.5all rotating waves persist, hen
e we have 
onverge to the red S1 in Figure 4.1 for ε→ 0.Due to Corollary 3.2.11 all hetero
lini
 
onne
tions persist as well. By uniqueness of thehetero
lini
 
onne
tions in A0

2 we obtain that
lim
ε→0
Aε

2 = A0
2,where this limit is understood as a limit of sequen
es and solutions. Furthermore there isa one-to-one 
orresponden
e between orbits on the sub-attra
tors, hen
e A0

2 and Aε
2 are

C0-orbit equivalent. Thus the above expli
it des
ription of A0
2 is a leading order des
riptionof Aε

2 in the appropriately 
o-rotating 
oordinate system.This des
ribes the geometry of these hetero
lini
 
onne
tions of the paraboli
 equation in�rst order in a 
ompletely rigorous way, be
ause we have not used Assumption (D) here.4.2 The sub-attra
tors A0
4 and Aε4We begin with the analysis of the sub-attra
tor of the hyperboli
 equation. Theorem 2.6.1yields dimA0

4 = 4 and Corollary 2.6.4 states that all 
onne
tions between rotating wavesare 
ontained in Ã4 de�ned in equation (2.73). However, this does not yet explain thetopology of the sub-attra
tor A0
4.Following the de�nition of A0

4 := E0
4 ∪ F0

4 ∪ H0
4 we will �rst 
lassify all homogeneousequilibria and frozen waves. It is 
lear that E0

4 = {u−, u+}. Due to Sinestrati the frozenwaves 
an be uniquely parameterised by the position of their zeros x1, x2, so they form atwo-torus:
F0

4 = T
2 := S1 × S168
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Figure 4.3: Hetero
lini
 
onne
tions in A0
4 with targets u ≡ u±.The torus also 
ontains the frozen waves F0

2 =̂S1 that possess only one zero.Ea
h element of this torus has a hetero
lini
 
onne
tion to the homogeneous equilibria
u ≡ u±. This 
an be depi
ted by a spindle with a quadrati
 horizontal se
tion and u±lo
ated at the top and bottom. See Panel a) in Figure 4.3. The hetero
lini
 
onne
tionsare plotted in bla
k or green and the frozen waves in red. The edges of the red quadrati
horizontal se
tion have to be identi�ed in order to obtain the torus. The sub-attra
tor
A0

2 is 
ontained in this pi
ture as well and is depi
ted in green. Figure 4.1 is obtainedafter identi�
ation of the two 
orners involved that lie on the torus F0
4 . Note that we havenot plotted all hetero
lini
s in Figure 4.3. The 
omplete spindle is �lled with hetero
lini
sstarting in F0

4 and ending at u ≡ u±.The more interesting part of A0
4 is the part of the attra
tor that 
onsists of all frozen waves

F0
4 and the hetero
lini
 
onne
tion between these waves. Theorem C (2.5.12) at the endof Se
tion 2.5 yields that every frozen wave ũ with zero-number z(ũ) = 2 is 
onne
ted totwo waves ũa, ũb with zero-numbers z(ũa,b) = 1.If we look at Panel a) in Figure 4.3, this means nothing else than that every point on thetorus of frozen waves that is 
oloured in red has two hetero
lini
 
onne
tions to two pointson the green 
urve on that torus. This is shown in Panel b) where we have parameterisedthe torus by the zeros (x1, x2) given as the horizontal and verti
al axes. Some (but notall) hetero
lini
s are shown in bla
k for illustration. The lines are verti
al if the zero x1persists, horizontal if the zero x2 persists. In prin
iple there should be two hetero
lini
semerging at every point. The one arrow 
oloured in blue represents the hetero
lini
 orbitshown in Figure 2.6 in Chapter 2 for Burgers equation.The uniqueness result in Theorem 2.6.1 f) guarantees the uniqueness of these 
onne
tionsand equations (2.56) and (2.56) provide an expli
it parameterisation of these 
onne
tions.69



To show the 
omplete 
onne
tion pi
ture it is 
onvenient to use another representation thatdivides out the S1 symmetry. This representation is shown in Figure 4.4 and will proveuseful for the 
omparison with the global attra
tor of the paraboli
 equation.To understand the Figure it is best to start with the red verti
al line. This line represents
F0

4/S
1: the manifold that 
ontains all frozen waves with zero-number z = 2 after havingdivided out the S1 symmetry. The 
entre point (in blue) on this line is the π-periodi
frozen wave with equidistant zeros. This is the only wave on the red line that is a limit ofwaves of the paraboli
 equation. No other waves on the red line 
an be obtained as limitsof waves for ε → 0. If they were, the rotating wave equation (2.7) would have to haveself-interse
ting solutions, whi
h is impossible (
ompare with Figure 2.3 Panel b)).The 
oordinates on the red manifold are given by the distan
e between the two zeros x1and x2. On the bottom the distan
e is zero, in the middle at the blue dot it is π andthen it goes to zero again towards the top. x1 and x2 
hange in su
h a way that the twosho
ks always remain in the same position (for Burgers equation (4.2) this means due tosymmetries that x1+x2

2 = π along the red manifold). The three solution pro�les drawn inred show how the solutions evolve along the manifold. The red manifold is also in
ludedin Panels a) and b) of Figure 4.3 as a red dashed line with a blue dot on the torus T
2 in
ase of Burgers equation.Ea
h of the frozen waves has two 
onne
tions to frozen waves with z = 1, one 
onne
tionwhere the zero x1 persists and one where x2 persists. These are represented by the bla
karrows 
onne
ting to the green 
ir
le representing F0

2 . To the left x1 persists and to theright x2 persist, this indu
es 
oordinates on the 
ir
le of frozen waves with zero-number
z = 1. The green solution pro�les in Figure 4.4 indi
ate how solutions evolve along the
ir
le. A 
lo
kwise rotation along the S1 in the �gure 
orresponds to a shift of the solutionto the right.Now we are ready to in
lude the S1 symmetry in the �gure that was divided out before.To do this we just have to rotate the whole �gure along a 
ir
le in transverse dire
tionatta
hed to the blue dot representing the wave with two equidistant zeros. We obtain a�lled torus where we have a �gure similar to the one in Figure 4.4 in every sli
e.Inside the torus the red line and the hetero
lini
 
onne
tions rotate on
e around the 
entrepoint with higher symmetry (blue point) and therefore form a spiral. Figure 4.5 shows ageometri
 representation of this. We have plotted half of the torus. The blue line 
orre-sponds to the frozen waves in A0

4 that are limits of waves of the paraboli
 equation withzero-number z = 4. The hetero
lini
s are shown only in the beginning and the end . Theyrotate with the red manifold and are always perpendi
ular to that manifold. There is a
olour gradient in
luded to illustrate the rotation of the hetero
lini
s. Note that the green
S1 does not rotate. Hetero
lini
s in the same 
olours 
orrespond to ea
h other. The green
ir
le 
orresponds to the green 
ir
le in Figure 4.4. To obtain the full pi
ture we have toidentify all points on the surfa
e of the torus with the green S1, hen
e retra
t the torussurfa
e to the S1!The result on uniqueness of the hetero
lini
 in Theorem 2.6.1 yields uniqueness of allhetero
lini
 
onne
tions des
ribed above. In parti
ular all 
onne
tions are one-dimensional.It follows that A0

4\W s(u±) is in fa
t a three-dimensional manifold that 
an be representedas des
ribed.Let us turn to the paraboli
 equation. We will fo
us on the part of rotating and frozen70



x2 − x1

F0
4/S1

u0
2

F0
2

Figure 4.4: Hetero
lini
 
onne
tions in A0
4 from frozen waves with zero-number z = 2 towaves with zero-number z = 1. The S1 symmetry is divided out.
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4\F0

2
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2

u0
2

lim
ε→0

(F ε
4\F ε

2)=̂S1

Figure 4.5: Torus representing W u(F0
4 ) ∩⊤ W s(F0

2 ) after identi�
ation of the two ends ofthe 
ylinder and identi�
ation of the surfa
e with the S1 drawn in green.waves with z = 4 to waves with z = 2. The 
onne
tion between two individual waves uε
4with z(uε

4) = 4 and uε
2 with z(uε

2) = 2 is due to the transversality result of stable andunstable manifolds in equation (2.38)
W u(uε

4) ∩⊤ W s(uε
2)two-dimensional. This has to be properly interpreted. In the time dependent frameworkthe above means that there exist two hetero
lini
 
onne
tions û and ũ with

lim
t→−∞

ûε(x, t) = uε
4(x, t)

lim
t→−∞

ũε(x, t) = uε
4(x, t)that 
onverge in forward time to appropriately shifted 
opies of vε

2(·) where we set uε
2(0, 0) =

vε
2(0), i.e. there exist θ̂, θ̃ ∈ S1 su
h that

lim
t→∞

ûε(x, t) = uε
2(x+ θ̂, t) (4.3)

lim
t→∞

ũε(x, t) = uε
2(x+ θ̃, t). (4.4)

θ̂, θ̃ ∈ S1 are 
alled the asymptoti
 phase. The transversality 
ondition does not make anypredi
tions on the phases, it only says that the 
onne
tion is two-dimensional.If we in
lude the shift symmetry we obtain that
dim (Aε

4\W s(u±)) = dim
(
W u(Rε

4) ∩⊤ W s(Rε
2)

)
= 3. (4.5)72



z(u) = 2

F ε
2W u(uε

4) ∩⊤ W s(Fε
2 )

Figure 4.6: Hetero
lini
 
onne
tions in Aε
4 from frozen waves with zero-number z = 2 towaves with zero-number z = 1. The S1 symmetry is divided out.or the equivalent result in the 
ase where the waves uε

4,2 are frozen.Here we see already that the two-dimensional manifold W u(uε
4) ∩⊤ W s(uε

2) 
annot persist
ompletely, be
ause
dim (W u(u0

2)) ∩⊤ W s(u0
1)) = 1due to uniqueness!From Remark 3.2.6 and Theorem 3.2.1 we obtain that

lim
ε→0
Aε

4\W s(u±) ⊂ A0
4\W s(u±). (4.6)In addition we know that

dimAε
4\W s(uε

±) = dimA0
4\W s(u0

±) = 3due to equation (4.5) and Theorem 2.6.1, but this does not imply equality in equation(4.6). Here we use Assumption (D) in a neighbourhood N ε(uε
4) and N0(u0

2). The lo
alsurje
tivity of the limit in N0(u0
2) translates to the existen
e of hetero
lini
s in W u(uε

4)that 
onverge in a neighbourhood of uε
4.Hen
e there is a hetero
lini
 
onne
tion in

W u(uε
4) ∩⊤ W s(uε

2)that lo
ally persists to the 
onne
tion drawn in blue in Figure 4.4. Corollary 3.2.11 thenyields persisten
e of the full hetero
lini
 to the blue 
onne
tion.73



Be
ause
dim(W u(uε

4) ∩⊤ W s(uε
2)) = 2but

dim(W u(u0
2) ∩⊤ W s(u0

1)) = 1the hetero
lini
 orbit asso
iated to the other linear independent dire
tion W u(uε
4) ∩⊤

W s(uε
2) 
annot persist.This is remarkable be
ause it shows that not only 
omplete 
onne
tion manifolds betweenrotating waves of the paraboli
 equation do not persist. Even within a 
onne
tion manifoldwhere target and sour
e obey the 
onne
tion 
ondition (3.15) there are 
onne
tions thatdo not persists. This is a result of our dimensional argument.Can we dedu
e 
onvergen
e of W u(uε

2) ∩⊤ W s(uε
1) to the manifold depi
ted in Figure 4.4?Unfortunately the transversality 
ondition of the stable and unstable manifolds in equation(2.38) does not ne
essarily imply that

W u(uε
4) ∩ Fε

2 = Fε
2 =̂ S1.As far as I am aware there is no result on the asymptoti
 phase of the hetero
lini
 
on-ne
tions already mentioned in equations (4.3) and (4.4). However if we assume this to betrue (whi
h would be a 
onsequen
e of Assumption (D)), then we 
ould dedu
e that thehetero
lini
 orbit asso
iated to the dire
tion other than the persisting one would 
onvergelo
ally to the line of frozen waves with zero-number z = 2 depi
ted in red in Figure 4.4.In order to dedu
e global 
onvergen
e to the red line we would have to 
hoose the 
orre
tparameterisation of the red manifold. In other words we would have to 
hoose the 
orre
tsli
e in the full three-dimensional manifold represented by the torus in Figure 4.5. Ourparameterisation is su
h that the sho
ks have �xed positions on the whole (red) manifoldin Figure 4.4. It thus represents the separatrix of the sho
k movement to the left and theright respe
tively.Assuming that this is 
orre
tly 
hosen, then the unstable manifold in the 
ase ε > 0 givenby

W u(uε
4) ∩⊤ W s(uε

2)would 
onverge pointwise to that depi
ted in Figure 4.4 and hen
e vis
osity would indu
ea slow drift on the red manifold of waves with two zeros. This is shown in Figure 4.6. Inthis light it is plausible that our parti
ular parameterisation of the frozen waves with twozeros is 
orre
t. The drift that is indu
ed by the ε > 0 is su
h that the sho
ks remain intheir position and remain stationary by 
onstru
tion. In all other parameterisations thesho
ks would have to adiabati
ally follow the drift of the zeros. There is no reason why thisshould be happening be
ause the sho
ks are unstable in the hyperboli
 framework and itis to be expe
ted that they are unstable in the paraboli
 framework also. Note in additionthat even if W u(uε
4) ∩⊤ W s(uε

2) would be represented by another parameterisation, hen
ewe would have to 
hoose another se
tion of the torus in Figure 4.5 to obtain the 
orre
tillustration, qualitatively Figure 4.6 would remain the same.If we summarise the results, we observe that the (two-dimensional) part of the unstablemanifold of uε
4 that 
onne
ts to Fε

2 
arries a dynami
al slow-fast stru
ture. This is a
onsequen
e of Assumption (D) together with the dimensional argument stating that notall hetero
lini
s in W u(uε
4) ∩⊤ W s(uε

2) 
an persist.74



In addition we were able to argue that Figure 4.6 represents qualitatively W u(uε
4) ∩⊤

W s(uε
2).At this moment, however, I would 
all the part on the paraboli
 setting a good edu
atedguess or a 
onje
ture that still needs a rigorous proof. Here I refer to dis
ussion in theCon
lusions in Chapter 5.4.3 Hetero
lini
 Cas
adesTo get a parameterisation of a hetero
lini
 
as
ade we have to make Assumption (D).However, I would like to mention that the existen
e of hetero
lini
 
as
ades is already a
onsequen
e of the Conne
tion Lemma, the Cas
ading Theorem and the solved 
onne
tionproblem on the paraboli
 attra
tor.To �nd a hetero
lini
 
as
ade one has to at least 
onsider Aε

6 and A0
6 respe
tively. The set offrozen waves for A0

6 is then a three torus T
3 = T

2×S1. Even if we fa
tor out the rotationalsymmetry and 
onsider only 
onne
tions between waves with z = 3 and z = 2 we have to
onsider a torus T
2 where ea
h element on the torus has three hetero
lini
 
onne
tions tothe one-dimensional sub-torus given by a S1. This obje
t is four-dimensional.We will therefore not try to iterate the pro
edure of the last two se
tions but only attemptto determine how solutions evolve along a spe
i�
 
onne
tion. Here we only 
onsider Burg-ers equation (4.2), but the same approa
h works for any equation.Let us start this time with the paraboli
 equation and 
onsider uε

6 ∈ Fε
6 with z(uε

6) = 6that 
onne
ts to uε
4 ∈ Fε

4 with z(uε
4) = 4.The two waves 
onverge for ε → 0 to u0

3, u
0
2 ∈ F0 with z(u0

3) = 3 and z(u0
2) = 2. Lemma3.2.8 states that u0

3 and u0
2 are not 
onne
ted. Hen
e, 
onne
tions between uε

6 and uε
4
onverge for ε → 0 either to a line of equilibria or to a hetero
lini
 
as
ade. In the latter
ase following the result of the previous se
tion it is 
lear that the 
onne
tion itself then
arries a slow-fast stru
ture for ε > 0.Panel a) in Figure 4.7 shows the possible targets of u0

3 labeled u0
2a, u0

2b and u0
2c. None ofthe targets is a limit of a frozen wave of the paraboli
 equation.We 
onstru
t a 
onne
tion between u0

3 and u0
2 
onsisting of hetero
lini
s and frozen wavesin A0

6, based on the assumption that the development of solutions along the manifold offrozen waves is su
h that either sho
ks do not move or they move in the same way asthe neighbouring zeros. This implies due to symmetry that neighbouring zeros drift at thesame speed. In the 
ase where the sign of their movements di�ers, the sho
k stays at itsposition, whereas in the other 
ase the pro�le between the zeros stays un
hanged.Following the 
onstru
tion of the last se
tion this assumption makes sense, however, I
annot prove that it must be like this.Panel b) in Figure 4.7 shows possible ways how to 
onstru
t 
onne
tions between u0
3 and

u0
2 based on the above assumptions. The smaller diagrams show the sour
e and targetof the desired 
onne
tion and two intermediate steps ũ, û whi
h are a target (û) or asour
e (ũ) of a hetero
lini
 
onne
tion of the hyperboli
 equation. Red arrows in the smalldiagrams 
orrespond to the movement of zeros along the manifold, blue arrows indi
atesho
k movements. 75



u0
2bu0

2a
u0

2c

u0
2

u0
2

a)

b)
ũ
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Figure 4.7: Hetero
lini
 
onne
tions in A0
6 from frozen waves with zero-number z = 3 towaves with zero-number z = 2.We start the explanation of Panel b) with the 
onne
tion to the right. We �rst use thehetero
lini
 
onne
ting to u0

2b. Then we let the zeros drift towards ea
h other until theyhave rea
hed the positions of the zeros in the target u0
2.The 
onne
tion to the left starts with a line of frozen waves until two of the zeros are atthe position of the target u0

2. Both 
onne
tions 
onsist of a hetero
lini
 already des
ribedin Panel a) and a line of equilibria that is 
ontained in F0
6 .I believe there exist hetero
lini
 
onne
tions from uε

6 to uε
4 that 
onverge to the above
onstru
ted hetero
lini
s and lines of equilibria, but again a rigorous proof is la
king.This approa
h 
an be adapted to waves with more and more zeros. Figure 4.8 shows the
onstru
tion for a situation where the sour
e uε

12 has twelve zeros and the target uε
2 has two.Hen
e there 
an be at most three hetero
lini
 
onne
tions in the 
as
ade. The dynami
alslow-fast stru
ture of the hetero
lini
 is shown on the right. The respe
tive limiting obje
tsfor ε = 0 are shown in the large square on the left. The blue 
rosses symbolise sho
ks, the76
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Figure 4.8: Hetero
lini
 
onne
tion between a wave with zero-number z = 12 and a wavewith zero-number z = 2.red dots zeros. As in Figure 4.7 the red arrows represent slow drifts of the zeros and bluearrows represent fast movements of sho
ks. Every se
ond pro�le is plotted for illustration.
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Chapter 5Con
lusionsThe starting point of this dissertation was the question of the relation between solutionson the global attra
tor of the vis
ous balan
e law (P) and its hyperboli
 limit (H). Bothequations possess a global attra
tor that 
an be des
ribed by the set of equilibria, rotatingwaves and hetero
lini
 
onne
tions. Despite the fa
t that all equilibria and rotating orfrozen waves of the paraboli
 equation persist to equilibria and frozen waves of the hyper-boli
 equation and the additional pointwise 
onvergen
e of all solutions on the attra
tor,hetero
lini
 
onne
tions do in general not persist.Even in the 
ase of the �nite dimensional sub-attra
tors this implies that the sub-attra
torsdo not persist in the sense of solutions, i.e. Aε
n is not C0-orbit equivalent to A0

n. The onlyex
eption seems to be the sub-attra
tor of order two where we 
ould prove rigorously
lim
ε→0
Aε

2 = A0
2 (5.1)in the sense of solutions and sequen
es whi
h implies C0-orbit equivalen
e. For the higherdimensional 
ases the result on the dimensions of subattra
tors

dimA0
n = dimAε

n = nand the 
onsequen
e of the persisten
e theorem
lim
ε→0
Aε

n ⊂ A0
nsuggests that equality holds in the last equation in the sense of sequen
es. However we donot yet have a proof for this.An important tool in the low dimensional 
ase was the result of the expli
it parameteri-sation of all sub-attra
tors A0

n by An in the hyperboli
 setting. This 
loses one of the lastgaps in the full geometri
 des
ription of the global attra
tor of equation (H). The miss-ing link here lies in the geometri
 des
ription of hetero
lini
s between frozen waves withun
ountable zero set. However I believe our approa
h to be appli
able in this 
ase as well.This would still not be su�
ient to prove the 
onvergen
e of the full paraboli
 attra
tor
Aε to the hyperboli
 attra
tor A0 so this remains an open question.Moreover it is un
lear to me how we 
an prove the limiting 
as
ade of hetero
lini
s for a
onne
tion between given target and sour
e in the paraboli
 setting for large zero-numbers.78



A rigorous proof of Assumption (D) would be a start in this dire
tion. This would yieldlo
al persisten
e of manifolds and as a 
onsequen
e prove global persisten
e of the fast
onne
tions on the paraboli
 attra
tor. It would also imply that 
ondition (3.15) in theConne
tion Lemma was not only ne
essary but su�
ient for the persisten
e of at leastone hetero
lini
 
onne
tion between the respe
tive target and sour
e. For the slow parts
onverging to frozen waves the result would remain lo
al.In this sense the Cas
ading Theorem re-opens Pandora's box of possible limits of hetero-
lini
s in equation (P), whi
h Fan and Hale had seemingly 
losed in the mid '90s by theirpersisten
e result.Although the slow manifolds on the paraboli
 attra
tor 
onverge to frozen waves of thehyperboli
 equation, these manifolds have to be 
onsidered as being far from equilibria. Alo
al persisten
e result of stable or unstable manifolds of rotating or frozen waves wouldnot be appli
able. An approa
h that 
ould yield a way out of this impasse towards thedes
ription of the slow parts of su
h 
as
ades might be the des
ription of hetero
lini
s byvirtue of invariant manifold theory.Carr and Pego already a
hieved this in a very expli
it approa
h in the '90s (see [CP89℄,[CP90℄)for the 
ase of the dynami
 Allan-Chan equation where
f(u) = 0with Neumann boundary 
onditions. Their work has never been generalised to vis
ous bal-an
e laws. The transport term f(u) here introdu
es several te
hni
al di�
ulties, some ofwhi
h have been already mentioned in the beginning of Chapter 4. Espe
ially the eigen-value problem (4.1) be
omes a lot more 
hallenging. However, our results suggest strongsimilarities to the results of Carr and Pego.Hen
e, there still remains mu
h s
ope for exploration!
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Chapter 6Appendix: NotationHere you will �nd a list of expressions and notation. Constants are only listed if they areof relevan
e throughout the do
ument.
ε vis
osity parameter in the balan
e law
a,b zero-number for rotating waves of the paraboli
 equation
α,β zero-number for frozen waves of the hyperboli
 equation
t time variable
T �xed time
x spatial variable, large s
ale
xα set of zeros {x1, . . . , xα}
ξ spatial variable on the small s
ale (ξ = x

ε )
∂x, ∂t, ∂ξ partial derivative w. respe
t to x,t,ξ
∂xx se
ond partial derivative with respe
t to x (t, ξ respe
tively)
f(u) transport term
g(u) sour
e term
uε(x, t) general notation of a solution of the PDE (P)
u0(x, t) general notation of a solution of the PDE (H)
c wave speed
uZ rotating wave with zero set Z
uε

a(·, t) time-dependent rotating wave for ε > 0 with zero-number a, b
u0

α,β(·, t) rotating wave for ε = 0 with zero-number α,β
vε(·), v0(·) solutions of the rotating wave equation
v, p rotating wave of (P) in Lienard 
oordinates
w, q rotating wave of (P) in phase plane 
oordinates
φ solution of the stationary problem of (H)
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χ(t) 
hara
teristi

χ±(t) maximal and minimal ba
kward 
hara
teristi
v value of a solution on a 
hara
teristi
 χ
u(x±, ·) right and left hand limit of u in x
ϕ test fun
tion
νx,t family of borel probability measures
X, X ′ phase spa
e and dual spa
e
L1, L2, L∞ spa
e of integrable, squareintegrable and bounded fun
tions
H2 spa
e of twi
e weakly di�erentiable L2 fun
tions
BV spa
e of fun
tions with bounded variation
L(u) linear operator representing the linearisation of (P) un u
σ(L) spe
trum of L
A{x1,...,xα} set of fun
tions 
onsisting pie
ewise of φ(x − xj) and α sho
ksseparated by the xj

Ã{x1,...,xα} set of fun
tions 
onsisting pie
ewise of φ(x− xj)

Aα set of all A{x1,...,xα} for �xed α
Ba set of rotating or frozen waves for 0 < ε < ε0 with z = a
Bab set of hetero
lini
s for 0 < ε < ε0 between rotating or frozen waveswith z = a and z = b
U ε(τ) parameterisation of hetero
lini
 orbit by ar
 length
U1,U2 set of limits of U εn(τn)
W u(v) unstable manifold of v
W s(v) stable manifold of v
Fl slow manifold in Lienard 
oordinates
Fp slow manifold in phase plane 
oordinates
Cl 
y
li
ity set in Lienard 
oordinates
Cp 
y
li
ity set in phase plane 
oordinates
c map assigning ea
h periodi
 wave in the 
y
li
ity set its wave speed
T map assigning ea
h periodi
 wave in the 
y
li
ity set its minimalperiod
Sn n-sphere
T

n n-torus
Γ1,Γ2 sets of sequen
es {εn}{τn}
P set of partitions P = {x1, . . . xn}
P(Z) powerset of Z
i(u),i0(u) Morse index and generalised Morse index of u
z(u) zero-number of u
Z(u) zeroset of u
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Eε,E0 set of homogenous equilibria of (P) and (H)
Fε,F0 set of frozen waves of (P) and (H)
Rε,R0 set of rotating waves of (P) and (H)
Hε,H0 set of hetero
lini
 orbits of (P) and (H)
Aε,A0 global attra
tor of (P) and (H)
Eε

n,E0
n subset of homogenous equilibria of order n (P) and (H)

Fε
n,F0

n set of frozen waves of of order n (P) and (H)
Rε

n,R0
n set of rotating waves of of order n (P) and (H)

Hε
n,H0

n subset of hetero
lini
 orbits of order n (P) and (H)
Aε

n,A0
n sub-attra
tor of order n for (P) and (H)
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