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Abstract

This work treats transient numerical simulation of growth of silicon carbide (SiC) bulk
single crystals by physical vapor transport (also called the modified Lely method). A
transient mathematical model of the growth process is presented. Subsequently, the
finite volume method for the discretization of evolution equations, which constitutes
the basis for the numerical simulations presented in this work, is studied mathemati-
cally, proving the existence of discrete solutions. All material data used for numerical
simulations in this work are collected in the appendix.

Starting with a description of the physical growth procedure, problems arising during
the growth process are discussed as well as techniques that are used for process control.
It is explained why numerical simulation is an important tool for control, and the
advantages of a transient approach are considered.

Within the presented transient model, continuous mixture theory is used to obtain bal-
ance equations for energy, mass, and momentum inside the gas phase. In particular,
reaction-diffusion equations are deduced. Heat conduction is treated inside solid materi-
als. Heat transport by radiation is modeled via the net radiation method for diffuse-gray
radiation to allow for radiative heat transfer between the surfaces of cavities. The model
includes the semi-transparency of the single crystal via a band approximation. Induc-
tion heating is modeled by an axisymmetric complex-valued magnetic scalar potential
that is determined as the solution of an elliptic problem. The resulting heat source
distribution is calculated from the magnetic potential. The heat sources are updated
continuously during the solution of the transient problem for the temperature evolution
to allow for changes in the electrical conductivity depending on temperature and for
changes due to a moving induction coil.

The finite volume method is treated in a rigorous mathematical framework. It allows
the discretization of parabolic, hyperbolic, and elliptic partial differential equations,
as they arise from the mathematical model of the growth process, including nonlo-
cal contributions due to radiative heat transfer. The general abstract setting consists
of a system of nonlinear evolution equations in arbitrary finite space dimension, each
evolution equation living on a different polytope domain. In general, each evolution
equation has diffusive and convective contributions as well as source and sink terms.
Each contribution is permitted to depend on the solution. Discontinuities of the so-
lution are allowed at domain interfaces. Interface conditions in terms of the solution
and its flux are considered. Moreover, nonlocal interface conditions are considered.
Outer boundary conditions include Dirichlet conditions, flux conditions, emission con-
ditions, and nonlocal conditions. Time discretization is performed by an implicit Euler
scheme, where an explicit discretization is allowed in certain dependencies such that
the temperature-dependent emissivities can be taken from the previous time step. As
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usual, the space discretization is performed by integrating the evolution equations over
control volumes and then using quadrature formulas. As an axisymmetric setting and
cylindrical coordinates are used in the simulations, a treatment of change of variables
is included in the abstract considerations.

For the case that the evolution equations constitute nonlinear heat equations, still
allowing nonlinear diffusion, convection, and source and sink terms, as well as nonlocal
interface and boundary conditions as they arise from modeling radiative heat transfer,
discrete L∞-L1 a priori estimates are established for the system resulting from the finite
volume discretization. A fixed point argument is then used to prove the existence and
uniqueness of discrete solutions.

The presented numerical simulations are conducted in an axisymmetric setting. They
constitute transient investigations of control parameters affecting the temperature evo-
lution during the heating of the growth apparatus. A cylindrically symmetric finite
volume scheme provides the discretization for both the transient nonlinear heat prob-
lem and the stationary magnetic potential problem.

For different heating powers and different vertical coil positions, the temperature evo-
lution is monitored at the surface of the crystal and at the surface of the source powder
as well as at the top and at the bottom of the growth apparatus. It is studied how
the temperature difference between source and seed, which is highly relevant to the
growth process, is related to the measurable temperature difference between bottom
and top. Results concerning the time lack between the heating of the surface of the
source powder and the heating of its interior are considered. Finally, the global evolu-
tion of temperature and heat sources is investigated.
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Foreword

A few words might be in order on how this work came about. In September 1997, I took
a research position at the Weierstrass Institute for Applied Analysis and Stochastics
(WIAS), Berlin, to join the recently created research team for the topic of numerical
simulation of sublimation growth of SiC bulk single crystals, at the time consisting
of Prof. Dr. Jürgen Sprekels (head person), Dr. Nikolaus Bubner, Dr. Olaf Klein, and
Prof. Dr. Krzysztof Wilmański. The Bundesministerium für Bildung, Wissenschaft,
Forschung und Technologie 1 (BMBF) had granted funding for my position due to a
successful application of the research team.

The goal was to create a physical model and to use numerical mathematics to develop
software that can be employed to control and optimize the SiC sublimation growth
process. The project was to be done in cooperation with the Institute of Crystal Growth
(IKZ), Berlin, where SiC bulk single crystals are produced using the sublimation growth
method.

As, especially in the early stages of the project, my main task lay less with the modeling
than with the numerical discretization of the model equations and the succeeding im-
plementation, my initial inclination was to restrict this work to these aspects. However,
I now think (not the least thanks to my advisor’s and coworkers’ suggestions) that a
more comprehensive presentation of the subject is much more valuable to the reader.
So the intention of this work is to give such a presentation. Section 1.2 describes the
extend and limits of the scope of this work.
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zur Lösung von Problemstellungen in Industrie und Wirtschaft 3 # 03SP7FV1/6. The
author is responsible for the contents of this publication.
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and [KP02], respectively. Dr. Volker Weiß provided most of the references for material
data from the literature presented in App. A. However, I am solely responsible for the
compilation of the material in this work and for the implementation of the computer
code used to perform the numerical simulations presented in Ch. 4. The entire material
of Ch. 3 is my original work.

My advisor Prof. Dr. Jürgen Sprekels supervised and guided my work, which I gratefully
acknowledge. From the very beginning, the cooperative work with my coworker Dr. Olaf
Klein has been very intensive and productive. I am particularly indebted for his patient
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up the process [of this work], but you certainly made the time much more worthwhile.”
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Abbreviations and Notation

Numbered environments are capitalized and are abbreviated except at the beginning of
sentences (e.g. Fig. 1, Ch. 1). The abbreviations used for Appendix, Chapter, Claim,
Definition, Equation, Example, Figure, Notation, Remark, Section, Table, Theorem
and their respective plurals are App., Apps, Ch., Chs, Cl., Cls, Def., Defs, Eq., Eqs,
Ex., Exs, Fig., Figs, Not., Nots, Rem., Rems, Sec., Secs, Tab., Tabs, Th., Ths.

To enhance readability, a centered dash is sometimes used to mark the end of a defini-
tion, example, etc.:

—

Equations and environments are numbered within sections. References in parentheses
(e.g. (1.1.1)) always refer to equations whereas references without parentheses never
refer to equations, but to sections, theorems etc. (e.g. Th. 1.1.1).

As it is common in the mathematical literature, the word “iff” is used to express “if
and only if”.

To avoid confusion and to make formulas more readable, parentheses are only used to
group terms, whereas brackets are used to enclose function arguments: a · (b + c), but
f [x].

The quantifiers
∧

(for all) and
∨

(there exists) are used:

∧
x

φ[x],
∨
x

φ[x]. (0.1)

The left-hand expression in (0.1) means that the formula φ holds for all x, whereas
the right-hand expression in (0.1) means that there exists at least one x such that the
formula φ holds for x.

The symbol N denotes the set {1, 2, . . . }, whereas N0 := {0} ∪ N. If the set K is used
in a statement, then the statement is meant to hold for both K = R and K = C.

Variables in boldface (e.g. u, T) always denote vectorial or tensorial quantities. How-
ever, in the mathematical chapters Ch. 3 and App. C, boldface is used only for matrices
and for vectorial physical quantities.

The terms function, map, and operator are used synonymously, but operator is preferred
for cases, where the domain consists of functions or vectors.
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Chapter 1

Introduction

1.1 Application and Growth of SiC Bulk Single Crys-

tals

Due to its advantageous physical properties, silicon carbide (SiC) is used in numer-
ous industrial applications. As a semiconductor substrate material, SiC is utilized in
electronic and optoelectronic devices such as MESFETs, MOSFETs, thyristors, P-i-N
diodes, Schottky diodes, blue and green LEDs, lasers, and sensors. Its chemical and
thermal stability enable SiC to be used in high temperature applications as well as in
intensive radiation environments. Moreover, SiC is especially suitable for usage in high
power and high frequency applications. Figure 1.1 shows an SiC wafer grown at the
Institute of Crystal Growth (IKZ), Berlin.

An economically profitable use of SiC requires the availability of low-defect SiC boules

Figure 1.1: 1 inch diameter SiC boule grown at the IKZ, Berlin.

1
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with large diameter. At the same time, a high growth rate is desirable to reduce
production time and cost. Even though there has been substantial progress in SiC
manufacturing in recent years, satisfying all of the aforementioned demands remains
challenging, as only partial solutions exist (cf. e.g. [GHTC97], [CTG+99], [MGH+00]).

Several fundamentally different growth techniques for the production of SiC single crys-
tals are described in the literature. Even though SiC single crystals have been grown
from melt (cf. [HMW98]), currently this does not constitute a growth method suitable
for large scale industrial production. More practical techniques are given by chemical
vapor deposition (CVD), the sublimation sandwich method (SSM), and physical vapor
transport (PVT). An overview of SiC single crystal growth by CVD is found in [Nis95b]
which also includes a large number of further references on the subject. For descrip-
tions of SSM one can consult e.g. [VMRR79] and [VRR+97]. Both CVD and SSM are
mainly used to grow thin crystalline layers, even though variants of these methods have
been successfully applied to SiC bulk single crystal growth (cf. [EKI+98] for CVD and
[MRRV97] for SSM). Large SiC single crystals are usually grown by PVT according to
the modified Lely method. Since modeling and simulation of PVT is the major concern
of this work, this method is now considered in more detail.

The original Lely method dates back to [Lel55]. In its initial form, the procedure used
a resistance heated thermally insulated graphite crucible, containing a polycrystalline
SiC source enclosing a cavity. The system was heated to some 2800 K in an inert gas
(e.g. Ar) atmosphere at 105 Pa (normal pressure). Due to the high temperatures, SiC
from the source sublimates and crystallizes in places of lower temperature, e.g. inside
the cavity, resulting in transparent SiC single crystals of up to 1 cm diameter.

The original Lely method had many drawbacks such as uncontrolled nucleation and
dendritic growth. The introduction of seeded sublimation growth using single crystals
grown by the original Lely method as seed crystals, led to substantial improvements in
size and quality of the produced SiC crystals (cf. [TT78] and [TT81]). In this form, the
technique became known as the modified Lely method and PVT.

Usually, modern PVT growth systems consist of a graphite crucible containing poly-
crystalline SiC source powder and a single-crystalline SiC seed. The crucible is heated
e.g. by induction or resistance heating. The source powder is placed in the hot zone
of the growth apparatus, whereas the seed crystal is cooled by means of a blind hole,
establishing a temperature difference between source and seed. To this end, different
geometrical setups have been proposed, the main types being drawn schematically in
[Nis95a, Fig. 1(a), 1(b)]. In the first configuration ([Nis95a, Fig. 1(a)]), the source and
the seed are placed inside a single chamber with the source at the bottom and the seed
at the top. For numerical simulations of this type of setup presented subsequently in
Sec. 4.3, the growth apparatus displayed in [PAC+99, Fig. 2] is used. It is reproduced
in Fig. 1.2. In the second configuration ([Nis95a, Fig. 1(b)]), the source and the seed
are placed in different chambers, separated by a thin porous graphite wall, the seed
being located at the bottom of the inner chamber. The corresponding structure that
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we used for numerical simulations of the second type of setup presented in [KPSW01]
is a modified version of [Nis95a, Fig. 1(b)]. It is depicted in Fig. 1.3. On its outside,
the growth apparatus is thermally insulated, typically with graphite felt or foam.

porous graphite

gas
SiC crystal

SiC powder

insu-
lation

blind hole
(for cooling of seed)

copper
induction coil rings

Figure 1.2: Setup of growth apparatus according to [PAC+99, Fig. 2].

To eliminate contaminants such as S, B, and metallic elements from the growth system,
in a first heating stage, the apparatus is degassed at some 10−3 Pa and heated to about
1200 K. After the contaminant bakeout phase has been completed, a high-purity argon
atmosphere is established at 105 Pa, and the temperature is further increased. At
growth temperature, which can reach up to 3000 K for growth of the SiC polytype 6H,
pressure is reduced to about 2 · 103 Pa (cf. [BMH+93]).

The high temperature and the low pressure cause the source powder to sublimate,
adding molecules made up of silicon and carbon to the gas phase. The composition
of the gas mixture has been analysized both experimentally and by thermodynami-
cal theorectical considerations, showing that, apart from the inert gas, Si, Si2C and
SiC2 constitute the predominant species (cf. e.g. [DMI58], [RCB96], [GHTC97], and
[ABEP98]). As the SiC source is kept at a higher temperature than the cooled SiC
seed, sublimation is encouraged at the source and crystallization is encouraged at the
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porous graphite crucible

graphite susceptor
for induction heating

gas
SiC crystal

gas

SiC powder

insulation blind hole (for cooling of seed)

@@

@@

Figure 1.3: Setup of growth apparatus with source powder and seed crystal in separate
chambers, seed at bottom.

seed, causing the partial pressures of Si, Si2C and SiC2 to be higher in the neighbor-
hood of the source and lower in the neighborhood of the seed. As the system tries to
equalize the partial pressures, source material is transported to the seed which grows
into the reaction chamber. In the setup with two different chambers for source and seed
as depicted in Fig. 1.3, the molecules originating from the source diffuse through the
pores of the graphite wall into the growth chamber.

According to the aforementioned requirements, the growth process needs to be opti-
mized in order to lower the defect rate of the grown crystal, and simultaneously to
increase its size and growth rate.

Typical defects are the growth of unwanted polytypes, micropipes (tiny tubelike cavi-
ties), vacancies, dislocations, and impurities. A selection of published results on boule
size, defect densities, and growth rates may give an idea of the current possibilities of
SiC single crystal growth by PVT. Reference [MGH+00] reports the growth of a 2.5 cm
(diameter) micropipe-free 4H-SiC wafer, a 5 cm 4H-SiC wafer with a micropipe density
of 1.1 cm−2, and a 7.5 cm 4H-SiC wafer (no information on defects). The authors
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report impurities of less than 0.1 parts per million. Growth rates from 0.2 to 4 mm/h
are reported by [BMH+93].

It is found (cf. e.g. [SBP98], [RSD+99], and [SVK+00]) that the crystal’s defect density
and growth rate are strongly influenced by the temperature distribution (especially the
temperature at the seed and the temperature difference between source and seed), the
mass transport, and the pressure and concentrations of gas species. These internal
control parameters can only be tuned indirectly by varying external control parameters
such as the geometrical configuration of the setup, the power of the RF heater, the
position of the induction coil, and the inert gas pressure.

Due to the high temperatures, experimental verification of the correlation between the
properties of the grown crystal and both internal and external control parameters is
very intricate and costly. Hence, theoretical modeling and numerical simulation play
an essential role in the investigation and determination of the relation between control-
lable quantities and advantageous growth conditions. In consequence, the development
of numerical models and software and their application to PVT growth of SiC crys-
tals has been an active field of research in recent years. Papers on stationary models
include [HHW+95], [PBD+96], [KMR97], [EGG+98], [CAB+99], [PAC+99], [RMD+99],
[KKZ+00], [SKM+00]. In [R̊ab96], a transient model is stated, but the numerical consid-
erations are restricted to the stationary case. Results of transient numerical simulations
of the heat transfer during PVT are presented in [CZP+99], [KPSW01], and [KP01].
Results similar to the ones presented in [KP01] are included in Ch. 4.

For a number of reasons, it is not sufficient to restrict one’s attention to the quasi-
stationary state at the end of the heating process, but it is also important to monitor
and control the temperature field evolution during the heating process itself: Crystal
growth can already occur during the heating-up stage, possibly causing micropipes or
the growth of unwanted polytypes. Moreover, thermal stresses in the seed crystal due
to temperature gradients during heating can initiate crystal defects.

Results of transient simulations can help to gauge the time one has to allow for the
contaminant bakeout phase described above, and it can be an important tool to verify
the validity of using temperatures measured at the blind holes to estimate temperatures
(or temperature differences) in the growth chamber (s. Sec. 4.3.3).

1.2 Scope and Structure of this Work

1.2.1 Modeling and Simulation

It is the goal of this work to present a rather comprehensive treatment of transient
modeling and numerical simulation of SiC bulk single crystal growth by PVT. It is
comprehensive in the sense that it treats all aspects of the numerical simulation process,
from the experimental setup (as decribed above), the compilation of relevant material
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data (App. A), the formulation of a physical model (Ch. 2), a treatment of the numerical
methods including a description of the discretization and mathematical analysis (Ch.
3), and the presentation and discussion of numerical results (Ch. 4).

However, the subject is so vast that striving for completeness is impossible at the current
stage of research and far beyond the scope of this work. Actually, further research is
warranted in virtually all of the aforementioned aspects of the numerical simulation
process. The following paragraphs describe this work’s scope and indicate some fields
where further research seems desirable.

The physical properties of the materials used in the PVT growth system are very difficult
to control e.g. due to the high temperatures and the chemical reactivity and the porosity
of the involved substances such as SiC powder, graphite crucible and insulation. One
goal of research is to find materials and setups of growth systems where the physical
properties are more stable or at least where their change is more predictable. This would
also help to provide more accurate material data to be used in numerical simulations. I
tried to use material data typical for real growth systems for the numerical simulations
presented in Ch. 4, but in some cases the available data are probably merely crude
approximations of the real situation (cf. App. A).

The gas model based on continuous mixture theory described in Sec. 2.1 covers heat
transport as well as gas dynamics and chemical reactions. The deduced system (2.1.28)
consists of simplified transient balance equations for mass, momentum, and energy as
well as of reaction-diffusion equations for the gas mixture in three space dimensions.
The material laws of an ideal gas (2.1.31) are used, which are valid in a low pressure or
high temperature setting.

Transient and temperature-dependent heat conduction according to (2.2.1) is considered
in solid materials, but no mechanical or chemical reactions in solid bodies are accounted
for. In particular, neither graphitizing or sintering of the SiC source nor Si accumulation
in the insulation is included in the model, even though these processes do occur in real
growth systems. A possibility to improve the modeling of solid components in future
research is the application of the theory of porous media to the SiC source powder, the
graphite crucible, and the insulation.

Models for crystal growth, source powder sublimation, and thermal stress in the single
crystal are not treated in this work, but should certainly be included in more complete
future models. References on these subjects are e.g. [KMR97], [KKZ+00], [SVK+00].

Heat transport by radiation inside solid materials is included in the respective tempera-
ture-dependent laws of thermal conductivity. Radiative heat transfer between surfaces
of cavities is modeled in Sec. 2.4. Using a diffuse-gray model is justified, since the
involved surfaces are generally non-smooth. The semi-transparency of the SiC single
crystal is modeled via a band approximation model in Sec. 2.4.4; all other solids are
treated as opaque. Volumetric coupling of surface radiation with the interiors of either
the single crystal or the gas phase is neglected. The resulting numerical expenditure
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from including volumetric coupling is not justified by the expected gain in accuracy,
since at higher temperatures, the temperature variations in the crystal and in the gas
regions is in the order of 100 K.

Even though the radiation model of Sec. 2.4 is valid in three space dimensions, the
numerical methods described in Sec. 3.7.8 assume cylindrical symmetry, thereby reduc-
ing the problems to two space dimensions. For example, computing visibility factors
in three space dimensions without cylindrical symmetry is much more complicated (cf.
e.g. [SH93], [Kel96]).

In Sec. 2.5, induction heating is modeled assuming cylindrical symmetry of fields and
domains, sinusoidal time dependence, and independence of the magnetic permeability
of the magnetic field. The sinusoidal time dependence allows to reduce the transient
electo-magnetic problem to a stationary problem (s. Sec. 2.5.6). Since the time scale of
changes in the electo-magnetic fields is at least five orders of magnitude faster than the
time scale of changes in the temperature field, it is reasonable to solve quasi-stationary
electro-magnetic problems in each time step of the solution of the transient heat trans-
port problem (accounting for temperature-dependent material data or changing coil
positions). The assumption of cylindrical symmetry, however, is somewhat crude, re-
placing the induction coil by disjoint cylindrical rings. Still, this drawback seems almost
unavoidable, since the solution of Maxwell’s equations (2.5.2) in three space dimensions
is much more difficult.

Only transient heat transport is simulated for the numerical results discussed in Ch. 4,
i.e. in the gas phase, only the energy balance (2.1.28c) is considered. To include the
other equations describing the gas phase, i.e. the mass balance (2.1.28a), the momentum
balance (2.1.28b), and the reaction-diffusion equations (2.1.28d), one still needs to set
up appropriate boundary conditions, and additional material functions such as the
diffusion coefficients D(αι) in (2.1.28d) need to be determined.

The restriction to simulations of heat transport allows another significant simplification
without considerable loss of accuracy. Since for lower temperatures, only argon is
present in the gas phase, and for higher temperatures, heat is mainly conveyed by
radiation, argon can be considered as the only constituent of the gas phase. This allows
to use the simplified model of Sec. 2.1.4.

As cylindrical symmetry is an essential assumption for both the induction heating model
and the numerical methods used to calculate radiation terms, cylindrical symmetry is
presumed in all the presented numerical simulations, i.e. the equations (2.1.34c) and
(2.2.1) describing heat transport in gas and solid, respectively, are also considered in
an axisymmetric setting, even though the equations are equally valid in three space
dimensions.

The numerical results presented in Ch. 4 are similar to the results shown in [KP01],
studying the evolution of the temperature distribution depending on the heating power
and the coil position. In contrast to [KP01], where a constant heating voltage is pre-
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scribed, in Ch. 4 the power is prescribed and it is increased gradually from 0 to its
maximum. Some new results concerning the temperature evolution in the SiC source
powder are discussed in Sec. 4.3.3. Moreover, Sec. 4.3.3 contains some new results bear-
ing on the validity of using the temperature differences between lower and upper blind
hole as an indicator for the temperature differences between SiC source and seed. As
mentioned in Sec. 1.1, in a stationary setting there are many articles in the literature
presenting numerical simulations including phenomena other than heat transport.

1.2.2 Finite Volume Method

In Ch. 3, time and space discretization of coupled partial differential equations is treated
mathematically, using the finite volume method. The partial differential equations have
the general form of nonlinear evolution equations. The coupling is across interfaces be-
tween different space domains, not between different equations on the same domain
(approaches for the latter situation can be found in [EGH00, Ch. VII]). The setting was
chosen sufficiently general to include the situations occurring during the discretizations
for the simulations of Ch. 4, [BKP+99], and [KPSW01], in particular, allowing for non-
linear diffusive and convective contributions as well as source and sink terms. Interface
conditions in terms of the solution and its flux are considered, and nonlocal coupling is
treated, as it occurs owing to radiative heat tranfer through cavities. Outer boundary
conditions include Dirichlet conditions, flux conditions, and emission conditions as well
as nonlocal conditions.

To avoid further complications in the formulation of the finite volume discretization,
input functions as well as solutions are assumed to be continuous within each space
domain. However, discontinuities of the solution and of the input functions are allowed
across interfaces, such as to include the situation of temperature steps between solid
and gas, and to allow jumps in material parameters.

Only polytope domains are considered to avoid the introduction of further notions and
notation when treating more general manifolds. As convergence of the discrete scheme
to continuous solutions is not the subject of this work, it presents no complication to
admit an arbitrary finite space dimension.

In Secs 3.3.2 and 3.4.3, time discretization is performed by an implicit Euler scheme,
where an explicit discretization is allowed in certain dependencies such that the tem-
perature-dependent emissivities can be taken from the previous time step. The space
discretization is performed by integrating the evolution equations over control volumes
(Sec. 3.5) and then using quadrature formulas (Sec. 3.7). It is shown in Sec. 3.6, how a
change of variables (e.g. cylindrical coordinates) can be handled within this framework.

For the case that the evolution equations constitute nonlinear heat equations, still
allowing nonlinear diffusion, convection, and source and sink terms, as well as nonlocal
interface and boundary conditions as they arise from modeling radiative heat transfer,
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discrete L∞-L1 a priori estimates are established for the system resulting from the finite
volume discretization (s. Sec. 3.7.13). Using a fixed point argument, it is shown that
the discrete system then has a unique solution (Sec. 3.8).

An analytic mathematical treatment of the existence theory (let alone the regularity
theory, approximation theory, and control theory) of the complete model including
nonlocally coupled nonlinear heat equations with discontinuous coefficients and differ-
ent types of boundary conditions, coupled with Euler equations and reaction-diffusion
equations, including free boundaries at least on the surfaces of the SiC source and the
seed crystal, also coupled to an electro-magnetic induction heating problem, (in two,
let alone in three, space dimensions) seems completely hopeless at the current state of
research.

Promising starting points for further analytical research might be given by [LT00],
where an existence theory of heat equations with nonlocal coupling due to radiation
operators is treated.

In my own forthcoming work, I plan to use the discrete existence and uniqueness results
of Sec. 3.8 together with discrete L∞-L2 a priori estimates similar to [MR01], to establish
convergence results for the finite volume scheme defined in Sec. 3.7.12 (s. Def. 3.7.41).
The strategy is outlined in Sec. 3.9.



Chapter 2

Modeling

2.1 Model of the Gas Phase

The purpose of this section is to present a transient model describing the processes in
gas regions of the growth apparatus during SiC bulk single crystal growth by PVT. As
explained in Sec. 1.1, the gas regions contain a mixture made up of several constituents,
where Ar, Si, Si2C, and SiC2 are the predominant species. The model needs to account
for the interchange of mass and momentum between the different constituents, in ad-
dition to chemical reactions and thermomechanical processes such as motion and heat
transfer.

The model developed below has been published in a similar form in [BKP+99]. In
the framework of a continuous mixture theory of A constituents, the model starts out
from general partial balance equations for mass and momentum, and another balance
equation for the total energy. The system of balance equations is then algebraically
transformed into a system of field equations, followed by simplifications and the ad-
dition of material laws. It is noted that there exist mixtures (e.g. plasmas), where it
is necessary to consider a different temperature for each constituent. However, in the
following treatment it is always assumed that the constituents of the mixture exchange
energy sufficiently rapidly so that a single temperature can be assigned to the mixture
at all times.

2.1.1 General Balance and Field Equations

A gas mixture consisting of A constituents is considered, the different constituents being
denoted by (αι), ι ∈ {1, . . . , A}. As mentioned above, the application one should have
in mind is the gas mixture consisting of the predominant species occurring during SiC
growth by PVT, where A = 4 and

{
αι : ι ∈ {1, . . . , 4}} = {Ar, Si, Si2C, SiC2}. (2.1.1)

10
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The following symbols are used, where the superscript (αι), ι ∈ {1, . . . , A}, indicates
quantities inside the gas species αι (e.g. ρ(Ar), v(Si), etc., see below), and where boldface
denotes vectorial or tensorial quantities:

ρ(αι) – partial mass density,

v(αι) – partial local mean velocity of gas particles,

ρ∗(αι) – partial mass source, T(αι) =
(
t
(αι)
i,j

)
– partial stress tensor,

b(αι) – partial force density, e.g. gravimetric acceleration,

p∗ (αι) – partial momentum source, ε(αι) – partial internal energy,

q(αι) – partial heat flux, ε∗ (αι) – partial energy source,

r(αι) – partial radiaton.

Partial mass sources, partial momentum sources, and partial energy sources allow for
the exchange of mass, momentum, and energy between the different gas constituents,
which can occur e.g. due to diffusion, chemical reactions, and phase transitions.

It is noted that the stress tensors T(αι) are symmetric (cf. [Mül85, p. 66 (3.53)] and
[Wil98, p. 63 (4.71)]), i.e.

∧

ι∈{1,...,A}

∧

(i,j)∈{1,2,3}2
t
(αι)
i,j = t

(αι)
j,i . (2.1.2)

In the following, vector and tensor notation is employed. Some definitions and relations
are provided in App. B.1.

Balance Equations

Equations (2.1.3) and (2.1.7) below can be found in [Mül85, p. 69 (3.65), p. 173 (6.2) and
(6.6)]. Equations (2.1.3a) and (2.1.3b) constitute partial balance equations for mass and
momentum written for each constituent αι, ι ∈ {1, . . . , A}. Following [Mül85, (6.2)],
the total energy balance is written in (2.1.3c) (using the slightly different form [Mül85,
(3.76)]). Equations (2.1.7) form the global conservation laws of mass and momentum.
The total energy balance (2.1.3c) employs a number of quantities defined subsequently
in (2.1.4) and (2.1.6). For completeness and since it is often customary (cf. [Mül85, p.
68 (3.61)] and [Wil98, p. 191 (10.4)]), partial energy balances are formulated in (2.1.9).
However, in this work no subsequent use is made of the partial energy balances.

As usual, t denotes time.

• Partial Mass Balance:

∧

ι∈{1,...,A}

∂ρ(αι)

∂t
+ div

(
ρ(αι)v(αι)

)
= ρ∗(αι). (2.1.3a)
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• Partial Momentum Balance:

∧

ι∈{1,...,A}




∂
(
ρ(αι)v(αι)

)

∂t
+ div

(
ρ(αι)v(αι) ⊗ v(αι) −T(αι)

)

= p∗ (αι) + ρ(αι)b(αι)


. (2.1.3b)

Using (B.1.3) and (B.1.6d) yields (2.1.3b) in components:

∧

ι∈{1,...,A},
i∈{1,2,3}




∂
(
ρ(αι)v

(αι)
i

)

∂t
+

3∑
j=1

∂

∂xj

(
ρ(αι)v

(αι)
i v

(αι)
j − t

(αι)
i,j

)

= p
∗ (αι)
i + ρ(αι)b

(αι)
i




. (2.1.3b′)

• Total Energy Balance (using quantities defined in (2.1.4) and (2.1.6)):

∂

∂t

(
ρgas

(
εgas +

1

2
(vgas)

2

))

+ div

(
ρgas

(
εgas +

1

2
(vgas)

2

)
vgas + qgas −Tgasvgas

)

= ρgasbgas • vgas + ρgasrgas.

(2.1.3c)

Now the promised definitions needed in the formulation of (2.1.3c): Let

ρgas :=
A∑

ι=1

ρ(αι), (2.1.4a)

vgas :=
1

ρgas

A∑
ι=1

ρ(αι)v(αι), (2.1.4b)

and for each ι ∈ {1, . . . , A}

c(αι) :=
ρ(αι)

ρgas

, (2.1.4c)

u(αι) := v(αι) − vgas. (2.1.4d)

The meaning of the quantities is as follows: ρgas is the total mass density of the gas
mixture, vgas is the local mean velocity of all constituents, c(αι) is the concentration
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of the species αι, and u(αι) is the diffusion velocity of the species αι. As immediate
consequences of the definitions one gets

A∑
ι=1

c(αι) = 1,
A∑

ι=1

c(αι)u(αι) = 0. (2.1.5)

It still remains to define the total stress tensor Tgas, the total force density bgas, the
total internal energy εgas, the total radiation rgas, and the total heat flux qgas, which is
now done in (2.1.6):

Tgas :=
A∑

ι=1

(
T(αι) − ρ(αι)u(αι) ⊗ u(αι)

)
, (2.1.6a)

bgas :=
1

ρgas

A∑
ι=1

ρ(αι)b(αι), (2.1.6b)

εgas :=
1

ρgas

A∑
ι=1

ρ(αι)

(
ε(αι) +

1

2

(
u(αι)

)2
)

, (2.1.6c)

rgas :=
1

ρgas

A∑
ι=1

ρ(αι)
(
r(αι) + b(αι) • u(αι)

)
, (2.1.6d)

qgas :=
A∑

ι=1

(
q(αι) +

(
ρ(αι)

(
ε(αι) +

1

2

(
u(αι)

)2
)
−T(αι)

)
u(αι)

)
. (2.1.6e)

In addition to the balance equations (2.1.3), the following global conservation laws hold:

• Global Mass Conservation:
A∑

ι=1

ρ∗(αι) = 0. (2.1.7a)

• Global Momentum Conservation:

A∑
ι=1

p∗ (αι) = 0. (2.1.7b)

For each instant in time the state of the gas mixture is determined by the 2A + 1
quantities {

ρ(α1), . . . , ρ(αA),v(α1), . . . ,v(αA), Tgas

}
, (2.1.8)

where Tgas denotes the (common) absolute temperature in the gas mixture. In the
formulations of (2.1.3) and (2.1.7), the dependence on Tgas is implicit. Equations (2.1.3)
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and (2.1.7) are further coupled by material laws which are provided subsequently in Sec.
2.1.3, where the variable Tgas occurs explicitly.

As mentioned above, one can also write partial energy balance equations for each con-
stituent:

• Partial Energy Balance:

∧

ι∈{1,...,A}




∂

∂t

(
ρ(αι)

(
ε(αι) +

1

2

(
v(αι)

)2
) )

+ div

(
ρ(αι)

(
ε(αι) +

1

2

(
v(αι)

)2
)

v(αι) + q(αι) −T(αι)v(αι)

)

= ε∗ (αι) + ρ(αι)b(αι) • v(αι) + ρ(αι)r(αι)




. (2.1.9)

Equations (2.1.9) can be viewed as defining equations for the partial energy sources
ε∗ (αι). Then summing (2.1.9) over ι, and using (B.2.8), the linearity of ∂t, (B.2.9),
Rem. B.1.7, (B.2.2), and (2.1.3c) yields

• Global Energy Conservation:

A∑
ι=1

ε∗ (αι) = 0. (2.1.10)

Conversely, (2.1.9) and (2.1.10) imply (2.1.3c).

Analogous to the total energy balance (2.1.3c), one can write total balance equations
for mass and momentum:

• Total Mass Balance:
∂ρgas

∂t
+ div (ρgasvgas) = 0. (2.1.11a)

• Total Momentum Balance:

∂ (ρgasvgas)

∂t
+ div (ρgasvgas ⊗ vgas −Tgas) = ρgasbgas. (2.1.11b)

Lemma 2.1.1. The partial balance equations (2.1.3) together with the global conserva-
tion laws (2.1.7) imply the total balance equations (2.1.11).

Proof. Summing (2.1.3a) over ι, and using (2.1.4a), (2.1.4b), (2.1.7a), the linearity of
∂t, and Rem. B.1.7 gives (2.1.11a); summing (2.1.3b) over ι, and using (2.1.4b), (2.1.6a),
(B.2.7), (2.1.7b), (2.1.6b), the linearity of ∂t, and Rem. B.1.7 gives (2.1.11b). ¥
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Field Equations

For each time instant, the state of the gas mixture is determined by the 2A+3 quantities

{
ρgas,vgas, c

(α1), . . . , c(αA),u(α1), . . . ,u(αA), Tgas

}
, (2.1.12)

which can be used alternatively to the 2A + 1 quantities (2.1.8). The combination of
the following field equations (2.1.14) together with (2.1.5)1 is equivalent to the system
consisting of (2.1.3) and (2.1.7) (s. Apps B.2.2 and B.2.3). Moreover, one also has that
(2.1.11a), (2.1.11b), and (2.1.3c) are equivalent to (2.1.14a), (2.1.14c), and (2.1.14d) (s.
App. B.2.4). Let d

dt
denote the material derivative , i.e.

d

dt
:=

∂

∂t
+ vgas • ∇ . (2.1.13)

The field equations read

ρgas
dvgas

dt
= div Tgas + ρgasbgas, (2.1.14a)

∧

ι∈{1,...,A}




c(αι)
du(αι)

dt
+

(∇u(αι) +∇vgas

) • (
c(αι) u(αι)

)

=
1

ρgas

(
div T(αι) − c(αι) div Tgas

)

+
1

ρgas

(
p∗ (αι) − ρ∗(αι)v(αι)

)
+ c(αι)

(
b(αι) − bgas

)




, (2.1.14b)

d εgas

dt
+

1

ρgas

div qgas =
1

ρgas

Tgas • (∇vgas) + rgas, (2.1.14c)

d ρgas

dt
+ ρgas div vgas = 0, (2.1.14d)

∧

ι∈{1,...,A}

d c(αι)

dt
+

1

ρgas

div
(
ρgasc

(αι)u(αι)
)

=
1

ρgas

ρ∗(αι). (2.1.14e)

2.1.2 Simplifications

Fick’s Law

One of the standard simplifications in the theory of gas mixtures is to replace (2.1.14b)
by ∧

ι∈{1,...,A}
∇ p(αι) − c(αι)∇ pgas = −D(αι)u(αι), (2.1.15)

1To ensure 0 ≤ ρ(αι) ≤ ρgas for each ι, one needs the additional assumption c(αι) ≥ 0 for each ι.
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where the D(αι) denote diffusion coefficients, the p(αι) denote the partial pressures, and
pgas is the total pressure:

pgas =
A∑

ι=1

p(αι). (2.1.16)

Equation (2.1.15) is known as Fick’s Law.

In the setting of SiC growth by the PVT method, Fick’s Law can be justified by the
following reasoning, divided into points (i) – (v).

(i) The viscosity of the gas constituents is sufficiently small to neglect its contributions
to the partial stress tensors. So the stress tensors are presumed to be given by

∧

ι∈{1,...,A}
T(αι) = −p(αι)1, (2.1.17)

where 1 denotes the unit matrix. In consequence, using (B.1.6), one has
∧

ι∈{1,...,A}
div T(αι) = −∇ p(αι). (2.1.18)

(ii) For each ι ∈ {1, . . . , A} the term ρ(αι)u(αι) ⊗ u(αι) is neglected in the total stress
tensor Tgas, since the components of ρ(αι)u(αι) ⊗ u(αι) are orders of magnitude
smaller than p(αι) (see App. A.2.2). Together with (2.1.6a), (2.1.16), and (2.1.17),
this leads to

Tgas = −pgas1, (2.1.19)

and then (B.1.6) yields
div Tgas = −∇ pgas. (2.1.20)

Remark 2.1.2. Even though (2.1.18) and (2.1.20) do follow logically from (2.1.17) and
(2.1.19), respectively, in general f ¿ g does not imply the same relation for derivatives
of f and g. Thus, (2.1.17) and (2.1.19) are only justified under the implicit assumption
that changes of the neglected quantities are small if the quantities themselves are small.

(iii) It is assumed that there are diffusion coefficients D(αι) relating the mass and
momentum exchange to the diffusion velocities via

∧

ι∈{1,...,A}
p∗ (αι) − ρ∗(αι)v(αι) = −D(αι)u(αι). (2.1.21)

(iv) The diffusion processes change slowly in the sense that

∧

ι∈{1,...,A}

du(αι)

dt
≈ 0. (2.1.22)



2.1. MODEL OF THE GAS PHASE 17

(v) Gravimetric acceleration g is the only force density acting on the gas species, i.e.

∧

ι∈{1,...,A}
b(αι) = g, (2.1.23)

which implies
bgas = g (2.1.24)

according to (2.1.6b) and (2.1.4a).

Using (2.1.22), (2.1.4c), (2.1.18), (2.1.20), (2.1.21), (2.1.23), and (2.1.24) in (2.1.14b)
yields

∧

ι∈{1,...,A}

( (∇u(αι) +∇vgas

) • (
ρ(αι) u(αι)

)

= −∇ p(αι) + c(αι)∇ pgas −D(αι)u(αι)

)
. (2.1.25)

One now obtains Fick’s Law by the usual linearization assumption of classical fluid
dynamics, neglecting the left-hand side term in (2.1.25).

Neglecting Nonlinear Velocity Terms

As justified in App. A.2.2, 1
2

(
u(αι)

)2
can be neglected in comparison with ε(αι), 1

2
(vgas)

2

can be neglected in comparison with εgas, and ρgasvgas ⊗ vgas can be neglected in com-
parison with Tgas, i.e.

∧

ι∈{1,...,A}
ε(αι) +

1

2

(
u(αι)

)2
is replaced by ε(αι), (2.1.26a)

εgas +
1

2
(vgas)

2 is replaced by εgas, (2.1.26b)

ρgasvgas ⊗ vgas −Tgas is replaced by pgas1. (2.1.26c)

As the approximations (2.1.26) are also to be used under derivatives, notes analogous
to Rem. 2.1.2 apply.

Consequences

Thanks to the above simplifications, (2.1.6) now become (2.1.27), and the field equations
(2.1.14) can now be formulated in the form (2.1.28) (s. App. B.2.5 for details):

Simplified Quantities in the Gas Mixture:

Tgas = −pgas1, (2.1.27a)

bgas = g, (2.1.27b)
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εgas =
A∑

ι=1

c(αι)ε(αι), (2.1.27c)

rgas =
A∑

ι=1

c(αι)r(αι), (2.1.27d)

qgas =
A∑

ι=1

(
q(αι) − (

ρgasc
(αι)ε(αι) + p(αι)

) · (D(αι)
)−1 (∇ p(αι) − c(αι)∇ pgas

))
.

(2.1.27e)

Simplified Field Equations:

• Simplified Total Mass Balance:

∂ρgas

∂t
+ div (ρgasvgas) = 0. (2.1.28a)

• Simplified Total Momentum Balance:

∂ (ρgasvgas)

∂t
+ div (pgas1) = ρgasg. (2.1.28b)

• Simplified Total Energy Balance:

∂

∂t
(ρgasεgas)+div (ρgasεgasvgas + qgas + pgasvgas) = ρgasg•vgas+ρgasrgas. (2.1.28c)

• Reaction-Diffusion Equations:

∧

ι∈{1,...,A}

d c(αι)

dt
− 1

ρgas

div
(
ρgasc

(αι)
(
D(αι)

)−1 (∇ p(αι) − c(αι)∇ pgas

))
=

1

ρgas

ρ∗(αι).

(2.1.28d)

2.1.3 Material Laws

In the equivalent systems ((2.1.3) & (2.1.7)) and ((2.1.14) & (2.1.5)) as well as in the
simplified system (2.1.28), the equations are further coupled by material laws.

The partial mass sources have the form (cf. [Mül85, p. 70 (3.66)])

∧

ι∈{1,...,A}
ρ∗(αι) =

n∑
a=1

γ(αι)
a M (αι)M (H)Λa, (2.1.29)
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where γ
(αι)
a are stoichiometric coefficients, M (αι) denotes the molecular mass (in partic-

ular, M (H) is the molecular mass of hydrogen), and Λa are rates of chemical reactions
or phase transitions, respectively.

The heat flux is presumed to satisfy Fourier’s Law:

A∑
ι=1

q(αι) = −κgas∇Tgas, (2.1.30)

κgas denoting the thermal conductivity of the gas mixture.

If the gas mixture behaves according to the laws of an ideal gas, then the material laws
read for each ι ∈ {1, . . . , A}:

p(αι) = ρgasc
(αι)

R

M (αι)
Tgas, (2.1.31a)

ε(αι) = z(αι)
R

M (αι)
Tgas, (2.1.31b)

where R is the universal gas constant, z(αι) = 3
2

for single-, z(αι) = 5
2

for double-, and
z(αι) = 3 for multi-atomic gas molecules.

Using the material laws, and (2.1.16) together with (2.1.27), one gets

pgas = R ρgas Tgas

A∑
ι=1

c(αι)

M (αι)
, (2.1.32a)

εgas = R Tgas

A∑
ι=1

z(αι)
c(αι)

M (αι)
, (2.1.32b)

qgas = −κgas∇Tgas

−R2 ρgas Tgas

A∑
ι=1

c(αι)
(
z(αι) + 1

)

(M (αι))
2 · (D(αι)

)−1∇ (
ρgasc

(αι) Tgas

)

+ R2 ρgas Tgas

A∑

ι,ι′=1

(
c(αι)

)2 (
z(αι) + 1

)

M (αι)M (αι′ )
· (D(αι)

)−1∇ (
ρgas Tgasc

(αι′ )
)
. (2.1.32c)

2.1.4 Simplifications Assuming the Gas Consists of One Con-
stituent Only

Equations (2.1.28) and (2.1.32) simplify considerably if the gas mixture is reduced to a
gas made up of merely a single constituent. The simplified forms are formulated in the
present section.

As mentioned in Sec. 1.1, Ar, Si, Si2C, and SiC2 are the predominant gas species in
the PVT growth system. For temperatures above 2500 K, species other than Ar make
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up a significant portion of the gas mixture. However, for lower temperatures only Ar
is present, and for higher temperatures heat is mainly transported via radiation (cf.
Sec. 2.4). So e.g. if one is mainly interested in the temperature distribution and its
evolution, assuming a pure Ar gas phase can be a reasonable approximation.

If Ar = α1 is the only gas constituent present, then A = 1, leading to

ρgas = ρ(Ar) (from (2.1.4a)), (2.1.33a)

vgas = v(Ar) (from (2.1.4b)), (2.1.33b)

c(Ar) = 1 (from (2.1.4c)), (2.1.33c)

p(Ar) = ρ(Ar) R

M (Ar)
Tgas (from (2.1.31a)), (2.1.33d)

pgas = p(Ar) (from (2.1.32a)), (2.1.33e)

ε(Ar) = z(Ar) R

M (Ar)
Tgas (from (2.1.31b)), (2.1.33f)

εgas = ε(Ar) (from (2.1.32b)), (2.1.33g)

qgas = −κgas∇Tgas = −κ(Ar)∇Tgas (from (2.1.32c)), (2.1.33h)

rgas = r(Ar) (from (2.1.27d)). (2.1.33i)

Now (2.1.33) is substituted into (2.1.28) (in spite of (2.1.33a) and (2.1.33b) the nota-
tion ρgas and vgas is kept to underscore ρgas and vgas being unknown functions to be
determined as solutions to the system (2.1.34)), resulting in

∂ρgas

∂t
+ div (ρgasvgas) = 0, (2.1.34a)

∂ (ρgasvgas)

∂t
+

R

M (Ar)
∇ (ρgasTgas) = ρgasg, (2.1.34b)

z(Ar)R

M (Ar)

∂

∂t
(ρgasTgas) + div

((
z(Ar) + 1

)
R

M (Ar)
ρgasTgasvgas − κ(Ar)∇Tgas

)

= ρgasg • vgas + ρgasr
(Ar). (2.1.34c)

The reaction-diffusion equations (2.1.28d) no longer occur in (2.1.34) owing to (2.1.33c)
and (2.1.33e).

2.2 Heat Conduction in Solid Materials

The PVT growth system comprises several solid material components. Quantities in the
solid material βj, j ∈ {1, . . . , N}, will carry the superscript [βj]. For the setups depicted
in Fig. 1.2 on p. 3 and Fig. 1.3 on p. 4, the solid materials are given by the SiC source
powder, the SiC seed crystal, the graphite crucible, and the graphite felt insulation.
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These materials will be referred to using the superscripts [SiC-Powder], [SiC-Crystal],
[Crucible], and [Insulation], respectively. Additional and/or different materials occur
in many real growth systems.

Heat conduction in the copper induction coil is not considered, as in real growth systems
the coil is cooled very effectively, e.g. by water flowing inside the coil rings. Thereby
the coil is kept virtually at room temperature.

The mechanisms of heat transport inside solid materials considered in this work are heat
conduction according to (2.2.1a) and radiative heat transfer through semi-transparent
materials as treated in Sec. 2.4.4. It is also noted that radiative heat transfer due to
radiation which is both emitted and absorbed inside the same material βj is included in
the current model via using an appropriate temperature-depending law for the thermal
conductivity of the material βj.

However, the current model neglects any mechanical or chemical interactions inside the
solid materials. In particular, it does not account for certain effects observed in real
growth systems such as porosity changes, sintering and graphitization of the source
powder, and accumulation of Si in the graphite felt insulation.

Heat conduction in the solid material βj, j ∈ {1, . . . , N}, obeys

ρ[βj ]c[βj ]
sp

∂T [βj ]

∂t
+ div q[βj ] = f [βj ], (2.2.1a)

q[βj ] = −κ[βj ]∇T [βj ], (2.2.1b)

where

t – time, T [βj ] – absolute temperature,

ρ[βj ] – mass density, c[βj ]
sp – specific heat,

q[βj ] – heat flux, κ[βj ] – thermal conductivity,

f [βj ] – power density (per volume).

The power density f [βj ] is caused in conducting materials βj due to induction heating.
It is determined according to the sinusoidal RF-heating model in Sec. 2.5.

2.3 Interface, Boundary, and Initial Conditions

To complete the heat transport model inside the entire growth apparatus, the heat
equation of the gas phase (2.1.34c) (assuming only one constituent) and the different
heat equations (2.2.1) for the solid materials βj, j ∈ {1, . . . , N}, need to be coupled
by appropriate interface conditions, and suitable outer boundary conditions have to be
set.
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The interface conditions are provided in terms of the heat flux by (2.3.1) and in terms of
the absolute temperature by (2.3.2), where it is presumed that the respective locations
of all solid components of the growth apparatus do not change with time.

Let {β, β′} ⊆ {β1, . . . , βN}. The normal heat flux is assumed to be continuous on an
interface γβ,β′ between two solid materials β and β′, i.e. the interface condition is given
by (2.3.1a). If the solid material β is semi-transparent, or on an interface γβ′,gas between
the solid material β′ and the gas phase, one needs to account for radiosity R and for
irradiation J , resulting in interface conditions (2.3.1b) and (2.3.1c), respectively. The
modeling of R and J is the subject of Sec. 2.4.

q[β] • n[β] = q[β′] • n[β] on γβ,β′ , (2.3.1a)

q[β] • n[β] −R + J = q[β′] • n[β] on γβ,β′ , (2.3.1b)

qgas • ngas −R + J = q[β] • ngas on γβ,gas, (2.3.1c)

where n[β] is the outer unit normal vector to the solid material β, and ngas is the outer
unit normal vector to the gas phase.

The temperature is always assumed to be continuous between solid materials, i.e. on
an interface γβ,β′ between two solid materials β and β′ one has (2.3.2a). Even though
in reality the temperature is also continuous across an interface γβ,gas between a solid
material β and the gas phase as stated in (2.3.2b), the temperature gradient can be
extremely steep inside an interface layer. If the size of the interface layer is much
less than typical lengths of the system to be modeled, then it is reasonable to assume a
temperature jump on the interface. In this case, if the heat flux in the gas phase satisfies
(2.1.33h), then the temperature discontinuity depends linearly on the normal heat flux
through the interface, with a positive factor of proportionality ξβ. Thus, (2.3.2b) is then
replaced by (2.3.2b′). It is noted that in heat transport problems where a solid surface
is sourrounded by a gas of known temperature, (2.3.2b′) often arises in the form of an
outer boundary condition of third kind, written in terms of the normal heat flux of the
solid. Here, however, it is more natural to use κgas∇Tgas, as otherwise the radiation
terms R and J occurred explicitly in (2.3.2b′) according to (2.3.1c).

T [β] = T [β′] on γβ,β′ , (2.3.2a)

T [β] = Tgas on γβ,gas, (2.3.2b)

−(κgas∇Tgas) • ngas = ξβ

(
Tgas − T [β]

)
on γβ,gas. (2.3.2b′)

The Stefan-Boltzmann law together with (2.2.1b) provides the outer boundary condition

− (
κ[β]∇T [β]

) • n[β] = σε[β]
[
T [β]

] ( (
T [β]

)4 − T 4
room

)
. (2.3.3)

Here σ = 5.6696 · 10−8 W
m2K4 denotes the Boltzmann radiation constant, and ε[β] denotes

the (temperature-dependent) emissivity of the surface. Condition (2.3.3) means that
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the growth apparatus is exposed to a black body environment (e.g. a large isothermal
room) radiating at room temperature Troom = 293 K.

On outer boundaries receiving radiation from other parts of the apparatus, the situation
is more complicated. On such boundaries, it does not suffice to use just the Stefan-
Boltzmann law according to (2.3.3), but, as in (2.3.1b) and (2.3.1c), one has to account
for radiosity R and irradiation J , leading to the boundary condition

q[β] • n[β] −R + J = 0, (2.3.4)

where, as before, the modeling of R and J is deferred to Sec. 2.4.

Condition (2.3.4) is used on outer boundaries representing surfaces adjacent to the
upper and lower blind hole in Fig. 4.1 on p. 195. To allow for radiative interactions
between such open cavities and the ambient environment, including reflections at the
cavity’s surfaces, black body phantom closures are used, emitting radiation at Troom.
In Fig. 4.1, the phantom closures are the dashed lines labeled Γtop and Γbottom.

Finally, in the case of transient simulations, one needs to prescribe a temperature
distribution at the initial time. For the simulations presented in Sec. 4, it is assumed
that the initial temperature distribution is homogeneous at Troom.

2.4 Model of Diffuse-Gray Radiation Including Semi-

Transparency

2.4.1 Model Assumptions

The model does not consider any interaction between gas and radiation. In particu-
lar, radiation is assumed to travel unperturbed between surfaces of solid components
throughout cavities inside the growth apparatus. All solids except the SiC single crystal
are treated as opaque media (Sec. 2.4.2). For the SiC single crystal, semi-transparency
is included via the band approximation model (Sec. 2.4.4).

Reflection and emittance are supposed to be diffuse-gray , i.e. independent of the angle
of incidence and independent of the wavelength. Since the solid surfaces inside the
growth apparatus (including the surface of the SiC single crystal) are generally non-
smooth, the effect of specular reflections is expected to be negligible.

The heat flux due to radiosity R and the heat flux due to irradiation J have to be
included in the interface conditions between a solid and a semi-transparent material
and between a solid material and the gas phase, resulting in the interface conditions
(2.3.1b) and (2.3.1c). Similarly, the heat fluxes due to R and J have to be taken into
account on outer boundaries being in mutual radiative interaction, resulting in the outer
boundary condition (2.3.4).
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The model employs the net radiation method as described in [Jär96, Chapter 3.3] and,
with a different notation, in [DNR+90]. More general treatments of this standard model
can be found in textbooks such as [SC78] and [Mod93].

2.4.2 Opaque Case

In the present section, it is assumed that all solid materials adjacent to the cavity under
consideration are opaque, i.e. no radiation is transmitted through a solid’s suface.

Let Γ consist of the union of all surfaces of solid materials adjacent to the considered
cavity. Let Γsin denote the singular part of Γ, consisting of the set of all points of Γ
where Γ has a corner (i.e. where Γ has no unique normal vector), united with the set of
all points of Γ belonging to interfaces between different solids. The set Γreg := Γ \ Γsin

is called the regular part of Γ.

On Γsin the emissivity or the normal vector might be discontinuous. To avoid problems
arising in such situations, the following considerations are carried out on Γreg. This is
legitimate, since in applications, the functions defined below will always occur under
integrals with respect to which Γsin constitutes a null set, thus giving no contribution.

At each point x ∈ Γreg, the radiosity R is the sum of the contribution from emitted
radiation E and of the contribution from reflected radiation Jref :∧

x∈Γreg

R[x] = E[x] + Jref [x]. (2.4.1)

It is convenient to write the material dependence of the emissivity as a dependence on
the space variable x:

∧
x∈Γreg

(
ε
[
(Tsolid[x],x)

]
:= ε[β]

[
Tsolid[x]

]

for each x in the domain of the solid β

)
, (2.4.2)

where Tsolid denotes the absolute temperature in the respective solid material adjacent
to the considered cavity. While due to the possible temperature jump between solid and
gas (cf. (2.3.2b′)), one needs to distinguish between the corresponding temperatures,
such a distinction is not necessary between the temperatures in different solids, as
continuity is assumed on solid-solid interfaces.

According to the Stefan-Boltzmann law, the emitted radiation is given by
∧

x∈Γreg

E[x] = σε
[
(Tsolid[x],x)

]
(Tsolid[x])4 . (2.4.3)

The reflective term in (2.4.1) can be expressed using the reflectivity %, i.e. the ratio of
reflected radiation and irradiation J :

∧
x∈Γreg

Jref [x] = %
[
(Tsolid[x],x)

] · J. (2.4.4)
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If α denotes the absorptivity, i.e. the ratio of absorbed radiation and irradiation, then
opaqueness implies

α + % = 1, (2.4.5)

and by Kirchhoff’s law

α = ε. (2.4.6)

Due to diffuseness, J can be calculated using the integral operator J defined by

∧
x∈Γreg

J [x] = J [R][x] :=

∫

Γ

Λ[(x,y)] ω[(x,y)] R[y] dy , (2.4.7)

where Λ is the visibility factor defined by

∧

(x,y)∈(Γreg)2

Λ[(x,y)] :=

{
1 iff x, y are mutually visible,

0 iff x, y are mutually invisible,
(2.4.8)

and where ω is the view factor defined by

∧

(x,y)∈(Γreg)2:
x6=y

ω[(x,y)] :=

(
ngas [y] • (x− y)

) (
ngas [x] • (y − x)

)

π
(
(y − x) • (y − x)

)2 , (2.4.9)

ngas denoting the unit normal vector on Γreg pointing from gas to solid.

For later use, it is noted that for a closed surface Γ:

∧
x∈Γreg

∫

Γ

Λ[(x,y)] ω[(x,y)] dy = 1. (2.4.10)

See [Tii97, Lem. 1] for a proof of (2.4.10). The physical meaning of (2.4.10) is the
conservation of radiation energy: Radiation emitted from a point x on the boundary Γ
of a cavity enclosed by Γ must be absorbed somewhere on Γ (as it is assumed that no
radiation is absorbed in the interior of the cavity).

Combining Eqs (2.4.1) through (2.4.7) provides the following non-local equation for the
radiosity R:

∧
x∈Γreg

R[x]− (
1− ε

[
(Tsolid[x],x)

])J [R][x] = σε
[
(Tsolid[x],x)

]
(Tsolid[x])4 . (2.4.11)

It is often useful to have (2.4.11) written in operator form

G[Tsolid][R] = E [Tsolid], (2.4.12)
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where the operators G and E are defined by

∧
T,R

∧
x∈Γreg

(G[T ][R]
)
[x] := R[x]− (

1− ε
[
(T [x],x)

])J [R][x], (2.4.13a)

∧
T

∧
x∈Γreg

E [T ][x] := σε
[
(T [x],x)

]
(T [x])4 . (2.4.13b)

If ε[(T [x],x)] > 0 for each x ∈ Γ, then G[T ] is invertible for each T (see [LT00, Lem.
2]), such that one can let

∧
T

R[T ] :=
(G[T ]

)−1[E [T ]
]
, (2.4.13c)

and (2.4.12) can be stated as
R = R[Tsolid]. (2.4.14)

Finally, as it is needed in the interface conditions (2.3.1b) and (2.3.1c), and in the
outer boundary condition (2.3.4), the expression −R+J is computed from (2.4.11) and
(2.4.7):

∧
x∈Γreg

−R[x] + J [x] = ε
[
(Tsolid[x],x)

] · (J [R][x]− σ (Tsolid[x])4 )
. (2.4.15)

While the new formulation of (2.3.1b) and (2.3.1c) will be given in Sec. 2.4.4 (see
(2.4.38) and (2.4.39), respectively), the open cavities of the setup in Fig. 4.1 on p.
195 do not involve semi-transparent materials, allowing to rewrite the outer boundary
condition (2.3.4) as

q[β] • n[β] + ε · (J [R]− σT 4
solid

)
= 0 (2.4.16)

on each outer boundary of solid material β adjacent to an open radiation region. Using
the operator R, (2.4.16) reads

q[β] • n[β] + ε · (J [R[Tsolid]
]− σT 4

solid

)
= 0. (2.4.17)

2.4.3 Axisymmetric Model

Assuming cylindrical symmetry of the growth apparatus and of the relevant physical
quantities, the model of the previous section can be reduced from three to two dimen-
sions. The axisymmetric model is later used for the discretization in Sec. 3.7.8 and the
numerical simulations discussed in Ch. 4.

In the following, (r, ϑ, z) denote cylindrical coordinates (cf. App. B.3).

As in the previous section, let Γ denote the radiating surface of the cavity under con-
sideration, and let Γreg be its regular part. The visibility factor Λ and the view factor
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ω were defined in (2.4.8) and (2.4.9), respectively. In an axisymmetric situation, Λ and
ω are invariant with respect to rotations around the symmetry axis (s. (2.4.18)) as well
as with respect to reflections through planes with ϑ = const. (s. (2.4.19)):

∧
(
(r,ϑ,z),(r̃,ϑ̃,z̃),ϑ′

)
∈(Γreg)2×[0,2π]




Λ
[(

(r, ϑ, z), (r̃, ϑ̃, z̃)
)]

= Λ
[(

(r, (ϑ + ϑ′) mod 2π, z), (r̃, (ϑ̃ + ϑ′) mod 2π, z̃)
)]


 ,

(2.4.18a)

∧
(
(r,ϑ,z),(r̃,ϑ̃,z̃),ϑ′

)
∈(Γreg)2×[0,2π]




ω
[(

(r, ϑ, z), (r̃, ϑ̃, z̃)
)]

= ω
[(

(r, (ϑ + ϑ′) mod 2π, z), (r̃, (ϑ̃ + ϑ′) mod 2π, z̃)
)]


 ,

(2.4.18b)

∧
(
(r,ϑ,z),(r̃,ϑ′,z̃)

)
∈(Γreg)2




Λ
[(

(r, ϑ, z), (r̃, (ϑ + ϑ′) mod 2π, z̃)
)]

= Λ
[(

(r, ϑ, z), (r̃, (ϑ− ϑ′) mod 2π, z̃)
)]


 , (2.4.19a)

∧
(
(r,ϑ,z),(r̃,ϑ′,z̃)

)
∈(Γreg)2




ω
[(

(r, ϑ, z), (r̃, (ϑ + ϑ′) mod 2π, z̃)
)]

= ω
[(

(r, ϑ, z), (r̃, (ϑ− ϑ′) mod 2π, z̃)
)]


 . (2.4.19b)

The following notation is introduced: The circular projection πcirc discards the angular
coordinate ϑ. It can be viewed as a rotation into the ϑ = 0 plane. More precisely,

πcirc : R+
0 × [0, 2π]× R −→ R+

0 × R, πcirc[(r, ϑ, z)] := (r, z). (2.4.20)

Furthermore, for a function f defined on an axisymmetric set A ⊆ R+
0 × [0, 2π] × R,

f : A −→ R, let fcirc := f ¹πcircA.

Using (2.4.18) and (2.4.19), one can write (2.4.11) in axisymmetric form:

∧

(r,z)
∈πcircΓreg


 Rcirc[(r, z)]−

(
1− εcirc

[(
Tsolid,circ[(r, z)], (r, z)

)])Jcirc[Rcirc][(r, z)]

= σεcirc

[(
Tsolid,circ[(r, z)], (r, z)

)](
Tsolid,circ[(r, z)]

)4


 , (2.4.21)

where

∧

(r,z)∈πcircΓreg

Jcirc[Rcirc][(r, z)] :=

∫

πcircΓreg

Λcirc

[(
(r, z), (r̃, z̃)

)]
Rcirc[(r̃, z̃)] r̃ d(r̃, z̃) , (2.4.22)
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∧

((r,z),(r̃,z̃))∈(πcircΓreg)2




Λcirc

[(
(r, z), (r̃, z̃)

)]

:= 2

∫ π

0

Λ
[(

(r, 0, z), (r̃, ϑ, z̃)
)]

ω
[(

(r, 0, z), (r̃, ϑ, z̃)
)]

dϑ


. (2.4.23)

One can combine (2.4.10), (2.4.18), (2.4.19), and (2.4.23) to express the conservation
of radiation energy in the axisymmetric case: If Γ denotes a cylindrically symmetric
closed surface, then

∧

(r,z)∈πcircΓreg

∫

πcircΓreg

Λcirc

[(
(r, z), (r̃, z̃)

)]
r̃ d(r̃, z̃) = 1. (2.4.24)

Proceeding analogously as after (2.4.11), one can write (2.4.21) in operator form

Gcirc[Tsolid,circ][Rcirc] = Ecirc[Tsolid,circ], (2.4.25)

where
∧
T,R

∧
x∈πcircΓreg

(Gcirc[T ][R]
)
[x] := R[x]− (

1− εcirc

[
(T [x],x)

])Jcirc[R][x], (2.4.26a)

∧
T

∧
x∈πcircΓreg

Ecirc[T ][x] := σεcirc

[
(T [x],x)

]
(T [x])4. (2.4.26b)

If εcirc[(T [x],x)] > 0 for each x ∈ πcircΓ, then Gcirc[T ] is invertible for each T , such that
one can let

∧
T

Rcirc[T ] :=
(Gcirc[T ]

)−1[Ecirc[T ]
]
, (2.4.26c)

and (2.4.21) can be stated as

Rcirc = Rcirc[Tsolid,circ]. (2.4.27)

The axisymmetric version of (2.4.15) reads

∧
x∈πcircΓreg

(
−Rcirc[x] + Jcirc[x]

= εcirc

[
(Tsolid,circ[x],x)

] · (Jcirc[Rcirc][x]− σ (Tsolid,circ[x])4 )
)

. (2.4.28)

2.4.4 Semi-Transparent Case

This section contains a description of the band approximation model to account for the
semi-transparency of the SiC single crystal.

According to the band approximation model, the spectrum decomposes into a reflective
band of wavelengths Ir and a transmittive band of wavelengths It. Radiation corre-
sponding to Ir interacts with the surface of the semi-transparent material, i.e. it is
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emitted, reflected and absorbed by the surface. Radiation corresponding to It does
not interact with the material at all, i.e. it is transmitted unperturbed through the
medium. Thus, the band model neglects radiation transmitted between the interior
and the exterior of the semi-transparent material. This is an accurate approximation
if the range of wavelengths in which the spectral optical thickness (penetration depth
devided by material thickness) is close to one, is sufficiently small (cf. [DNR+90, Sec.
3.4]). As mentioned before, radiation-driven heat transport staying inside a solid com-
ponent is assumed to be accounted for by the corresponding temperature-dependent
law of thermal conductivity.

The contributions from the two bands of wavelengths are computed separately. While
the radiation region for the reflective band consists of the actual cavity, the radiation re-
gion for the transmittive band is made up of the cavity united with the semi-transparent
body. Consequently, the boundary Γt of the transmittive radiation region is different
from the boundary Γ from the opaque case, Γt containing the interfaces between semi-
transparent material and opaque solids instead of interfaces between semi-transparent
body and gas. Analogous to the definition of Γreg in Sec. 2.4.2, let Γt,reg denote the
regular part of Γt.

On Γ, let Rr, Er, Jref,r, and Jr denote the respective contributions to the radiosity,
emitted radiation, reflected radiation, and irradiation, stemming from wavelengths in
the reflective band Ir. The corresponding contributions from the transmittive band are
defined on Γt and are written as Rt, Et, Jref,t, and Jt. Analogous to the opaque case
(cf. (2.4.1)), one now has

∧
x∈Γreg

Rr[x] = Er[x] + Jref,r[x], (2.4.29a)

∧
x∈Γt,reg

Rt[x] = Et[x] + Jref,t[x]. (2.4.29b)

According to Planck’s law of black body radiation, to get the analogue of (2.4.3) for
the reflective and for the transmittive band, one needs to replace the total emissivity
by the respective band contribution:

∧
x∈Γreg

Er[x] = σεr [(Tsolid[x],x)] (Tsolid[x])4 , (2.4.30a)

∧
x∈Γt,reg

Et[x] = σεt [(Tsolid[x],x)] (Tsolid[x])4 , (2.4.30b)

where
∧

x∈Γreg

εr [(Tsolid[x],x)] =

∫

Ir

ε [(Tsolid[x],x, λ)] Ib,λ[Tsolid[x]] dλ , (2.4.31a)

∧
x∈Γt,reg

εt [(Tsolid[x],x)] =

∫

It

ε [(Tsolid[x],x, λ)] Ib,λ[Tsolid[x]] dλ , (2.4.31b)
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Ib,λ[T ] :=
15C4

π4λ5T 4
(
e

C
λT − 1

) , (2.4.32)

λ denoting the wavelength, ε [(Tsolid[x],xλ)] denoting the emissivity for monochromatic
radiation of wavelength λ, and C := 1.4388 · 10−2 mK.

Planck’s law and Kirchhoff’s law yield the bandwise analogues of (2.4.4):

∧
x∈Γreg

Jref,r[x] = %r [(Tsolid[x],x)] · Jr, (2.4.33a)

∧
x∈Γt,reg

Jref,t[x] = %t [(Tsolid[x],x)] · Jt, (2.4.33b)

where

∧
x∈Γreg

%r [(Tsolid[x],x)] = 1− εr [(Tsolid[x],x)]∫
Ir

Ib,λ[Tsolid[x]] dλ
, (2.4.34a)

∧
x∈Γt,reg

%t [(Tsolid[x],x)] = 1− εt [(Tsolid[x],x)]∫
It

Ib,λ[Tsolid[x]] dλ
. (2.4.34b)

Again, one writes the irradiation via an integral operator acting on the radiosity (cf.
(2.4.7)):

∧
x∈Γreg

Jr[x] = Jr[Rr][x] :=

∫

Γ

Λ[(x,y)] ω[(x,y)] Rr[y] dy , (2.4.35a)

∧
x∈Γt,reg

Jt[x] = Jt[Rt][x] :=

∫

Γt

Λ[(x,y)] ω[(x,y)] Rt[y] dy . (2.4.35b)

As in the opaque case, combining (2.4.29) through (2.4.35) one can derive non-local
equations for Rr and Rt, similar to (2.4.11):

∧
x∈Γreg

Rr[x]− (
1− εr

[
(Tsolid[x],x)

])Jr[Rr][x] = σεr

[
(Tsolid[x],x)

]
(Tsolid[x])4, (2.4.36a)

∧
x∈Γt,reg

Rt[x]− (
1− εt

[
(Tsolid[x],x)

])Jt[Rt][x] = σεt

[
(Tsolid[x],x)

]
(Tsolid[x])4 .

(2.4.36b)

Moreover, one has the following analogues of (2.4.15):

∧
x∈Γreg

−Rr[x] + Jr[x] = εr

[
(Tsolid[x],x)

] · (Jr[Rr][x]− σ (Tsolid[x])4 )
, (2.4.37a)
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∧
x∈Γt,reg

−Rt[x] + Jt[x] = εt

[
(Tsolid[x],x)

] · (Jt[Rt][x]− σ (Tsolid[x])4 )
. (2.4.37b)

One is now in the position to rewrite (2.3.1b) and (2.3.1c) depending on which of the
following three cases occurs at the respective interface:

Case (i): The interface is part of Γt \Γ, i.e. it is an interface between a semi-transparent
material (here: the SiC single crystal) and an opaque solid β. Let the interface be de-
noted by γSiC-Crystal,β. Since only transmittive contributions are present on γSiC-Crystal,β,
the interface condition reads

q[SiC-Crystal] • n[SiC-Crystal] + εt ·
(Jt[Rt]− σT 4

solid

)
= q[β] • n[SiC-Crystal]

on γSiC-Crystal,β.
(2.4.38a)

Case (ii): The interface is part of Γt ∩ Γ, i.e. it lies between an opaque solid β and the
gas phase. Let the interface be called γβ,gas. On γβ,gas, one obtains contributions from
both bands Ir and It, which then are incorporated additively into the corresponding
interface condition, yielding

qgas•ngas+εr ·
(Jr[Rr]−σT 4

solid

)
+εt ·

(Jt[Rt]−σT 4
solid

)
= q[β]•ngas on γβ,gas. (2.4.38b)

Case (iii): The interface is part of Γ \ Γt, i.e. the interface is between the SiC crystal
and the gas phase. Hence, it will be denoted by γSiC-Crystal,gas. On γSiC-Crystal,gas, only
contributions from the reflective band are present, resulting in

qgas • ngas + εr ·
(Jr[Rr]− σT 4

solid

)
= q[SiC-Crystal] • ngas on γSiC-Crystal,gas. (2.4.38c)

Finally, this section is concluded by the reformulation of interface conditions (2.4.38)
using operators for the radiation terms. Analogously to the procedure carried out after
(2.4.11), where J and ε are used to define R, one can use Jr and εr to define Rr, and
one can use Jt and εt to define Rt. Then (2.4.38) become

q[SiC-Crystal] • n[SiC-Crystal] + εt ·
(Jt

[Rt[Tsolid]
]− σT 4

solid

)
= q[β] • n[SiC-Crystal]

on γSiC-Crystal,β,
(2.4.39a)

qgas • ngas + εr ·
(Jr

[Rr[Tsolid]
]− σT 4

solid

)

+ εt ·
(Jt

[Rt[Tsolid]
]− σT 4

solid

)
= q[β] • ngas on γβ,gas,

(2.4.39b)

qgas • ngas + εr ·
(Jr

[Rr[Tsolid]
]− σT 4

solid

)
= q[SiC-Crystal] • ngas

on γSiC-Crystal,gas.
(2.4.39c)

In (2.4.39) as well as throughout Sec. 2.4, Tsolid was written independently of the par-
ticular solid material. It is reiterated that this is justified, since no temperature step is
considered between different solid materials.

Proceeding in the same manner as in Sec. 2.4.3, it is straightforward to write the
equations of the semi-transparent case in axisymmetric form.
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2.5 Modeling Induction Heating

2.5.1 Model Assumptions

In this section, a model for the radio frequency (RF) induction heating of the PVT
growth system is presented. The basic ideas are taken from [CRS94] and [RS96].

The crucible is placed inside a copper induction coil as depicted in Fig. 1.2 on p. 3.
An alternating current is imposed in the coil, generating a rapidly oscillating magnetic
field, inducing eddy currents in the conducting materials of the growth apparatus. The
values for the frequencies used vary in the literature, e.g. 10 kHz in [BSG+91] and 125
kHz in [PAC+99]. The eddy currents cause heat sources due to the Joule effect, giving
rise to the term f [β] := f [βj ] on the right-hand side of (2.2.1a). For each time instant t
and for each point x inside the conducting material β, one can calculate f [β] from the
current density j according to

f [β][(t,x)] =
j2[(t,x)]

σ
[β]
c

, (2.5.1)

where σ
[β]
c is the electrical conductivity of the material β.

The difficulty now lies in computing the current density j from known input data, such
as the heating power, the heating voltage, or the heating current. The following model
allows one to choose either the power, the voltage, or the current as known (s. Sec.
2.5.7).

The strategy is to use Maxwell’s equations together with the following simplifying
assumptions (indHeat) to get a formula for j. Let {er, eϑ, ez} denote the space-
dependent standard basis for the cylindrical coordinates (r, ϑ, z). Some background
material on cylindrical coordinates can be found in App. B.3.

(indHeat-i) The growth system is cylindrically symmetric; in particular, the induc-
tion coil is approximated by a number of disjoint rings.

(indHeat-ii) The electric field E, the magnetic induction B, the magnetic field H,
and the current density vector j are cylindrically symmetric. Finally, j
is perpendicular with respect to the r-z-plane, i.e. j = j[(t, r, z)]eϑ.

(indHeat-iii) The magnetic permeability µ is independent of the magnetic field H.

(indHeat-iv) No rapid movements of conducting materials occur in the growth sys-
tem, and displacement currents are neglected.

(indHeat-v) Time dependence is sinusoidal.
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Hypothesis (indHeat-i) is somewhat subtle as it changes the topology of the coil. Re-
placing each turn of the coil by a cylindrical ring means that the start and the end
of the turn now coincide. However, one has to think about the start and the end of
the turn as still being insulated against each other, such that the voltage present in
the three-dimensional turn is also present between the start and the end of the cor-
responding ring. The sum of the voltages in the different rings must equal the actual
voltage imposed in the three-dimensional coil (cf. (2.5.42)). Moreover, even though the
coil rings are now disjoint, to model the three-dimensional situation one needs to make
sure that the total current is always the same in each ring (cf. 2.5.38a). To take these
aspects into account is the subject of Sec. 2.5.7.

Even though the hypothesis (indHeat-v) will play an essential role when the transient
model will be reduced to a stationary one (used in each of the numerical simulations
presented in Ch. 4), the following considerations up to Sec. 2.5.6 do not make use of
the assumption of sinusoidal time dependence.

2.5.2 Consequences of Maxwell’s Equations

If there is no displacement current, then Maxwell’s equations take the form

div B = 0, (2.5.2a)

curlE = −∂B

∂t
, (2.5.2b)

curlH = j, (2.5.2c)

νB = H, (2.5.2d)

where ν denotes the magnetic reluctivity, i.e. the reciprocal of the magnetic permeability
µ.

According to Ohm’s law,

j = σ[β]
c E in each conducting material β, (2.5.3a)

j = 0 in each insulating material. (2.5.3b)

Using (2.5.2c), (B.3.8) from App. B.3, and continuity of H at r = 0, the assumption
(indHeat-ii) on H and j implies

H[(t, r, ϑ, z)] = H[(t, r, z)] = Hr[(t, r, z)]er + Hz[(t, r, z)]ez (2.5.4)

and
∂Hr[(t, r, z)]

∂z
− ∂Hz[(t, r, z)]

∂r
= j[(t, r, z)]. (2.5.5)
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Then (2.5.4) together with (2.5.2d) and (indHeat-ii) gives

B[(t, r, ϑ, z)] = B[(t, r, z)] = Br[(t, r, z)]er + Bz[(t, r, z)]ez, (2.5.6a)

Br[(t, r, z)] = µ[(t, r, z)]Hr[(t, r, z)], (2.5.6b)

Bz[(t, r, z)] = µ[(t, r, z)]Hz[(t, r, z)]. (2.5.6c)

Next, (2.5.6a), (2.5.2a), and (B.3.7) lead to

1

r

∂(rBr)

∂r
+

∂Bz

∂z
= 0. (2.5.7)

As usual, (2.5.2a) gives rise to a magnetic vector potential A such that

B = curlA. (2.5.8)

Due to (2.5.6a) and its consequence (2.5.7), one can even find a magnetic scalar potential
φA: As shown in App. B.4, if (2.5.7) is satisfied, then one can choose φA[(t, r, z)] such
that the two equations

Br = −∂φA

∂z
, Bz =

1

r

∂(rφA)

∂r
(2.5.9)

hold. If one now lets
A := φAeϑ, (2.5.10)

then (2.5.8) holds according to (B.3.8), (2.5.9), and (2.5.6a). It is noted as an aside
that the Coulomb condition div A = 0 is also fulfilled, as is implied by (2.5.10), (B.3.7),
and φA being independent of ϑ.

Combining (2.5.5), (2.5.6b), (2.5.6c), and (2.5.9), one gets

j = − ∂

∂z

(
ν
∂φA

∂z

)
− ∂

∂r

(
ν

r

∂(rφA)

∂r

)
. (2.5.11)

For the discretization by means of a finite volume method (cf. Ch. 3), it is desirable to
rewrite the right-hand side of (2.5.11) in divergence form. This can be achieved easily
in space domains where ν is constant. Using (B.3.6) and (B.3.7), one gets

div
∇(rφA)

r2
= div

(
∂r(rφA)

r2
, 0,

∂z(rφA)

r2

)
=

1

r
∂r

(
∂r(rφA)

r

)
+

∂2
z (rφA)

r2

= −∂r(rφA)

r3
+

∂2
r (rφA)

r2
+

∂2
z (rφA)

r2
.

(2.5.12)

One verifies that if ν is constant, then carrying out the outer differentiation with respect
to r in the right-hand side of (2.5.11) and multiplying by 1/r yields the negative of the
ν-fold of the right-hand side of (2.5.12). Thus, (2.5.11) can be written in the divergence
form

j

r
= −ν div

∇(rφA)

r2
. (2.5.13)
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If φA is sufficiently smooth, such that time and space derivatives commute, then (2.5.8)
implies

∂B

∂t
= curl

∂A

∂t
. (2.5.14)

Finally, (2.5.14) and (2.5.2b) imply

curl

(
E +

∂A

∂t

)
= 0. (2.5.15)

2.5.3 Magnetic Scalar Potential Equation in Insulators

The current density vanishes in insulating materials, i.e. (2.5.3b) holds. This, together
with (2.5.13), yields

−ν div
∇(rφA)

r2
= 0 in each insulating material. (2.5.16)

2.5.4 Magnetic Scalar Potential Equation in Conductors

In the material β (2.5.3a), the form of j, and (2.5.10) can be used to get

E +
∂A

∂t
=

(
j

σ
[β]
c

+
∂φA

∂t

)
eϑ. (2.5.17)

If φA is sufficiently smooth in the domain Ω[β] of the material β, such that (2.5.15)
holds, then one can use (2.5.17) in (2.5.15) to get

curl

((
j

σ
[β]
c

+
∂φA

∂t

)
eϑ

)
= 0. (2.5.18)

Using (2.5.18), and the cylindrical symmetry of j and φA, one sees from (B.3.6) and
(B.3.8) in App. B.3.2 that

∇
(

r

(
j

σ
[β]
c

+
∂φA

∂t

))
= 0. (2.5.19)

In particular, if Ω[β] is connected, then the expression r(j/σ
[β]
c + ∂tφA) does not depend

on the space coordinates (r, ϑ, z) in Ω[β]. That means there is a time-dependent function
C [β][t] such that

r

(
j[(t, r, z)]

σ
[β]
c [(t, r, z)]

+
∂φA[(t, r, z)]

∂t

)
= C [β][t] in Ω[β]. (2.5.20)
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To identify the function C [β][t], voltages in the material β are computed. Two phenom-
ena contribute to the existence of a voltage along a path Γ, namely the presence of the
field E, and the field B changing in time owing to induction. Let V [β][Γ] be the voltage
resulting from integrating E+∂tA over the closed circular path Γ of radius r, contained
in Ω[β]. Using (2.5.17), (2.5.20), and that the tangent unit vector tΓ of Γ is identical to
eϑ on Γ, one calculates

V [β][Γ] =

∫

Γ

(
E +

∂A

∂t

)
• tΓ =

∫

Γ

(
j

σ
[β]
c

+
∂φA

∂t

)
eϑ • eϑ

=

∫ 2π

0

(
j

σ
[β]
c

+
∂φA

∂t

)
r dϑ = 2πC [β],

(2.5.21)

showing that V [β][Γ] =: V [β] is actually independent of Γ. Now there are two different
situations to consider, depending on whether the path Γ is contained in one of the coil
rings or in the growth apparatus.

Let the induction coil consist of N rings, and let Ω
[ring]
k , k ∈ {1, . . . , N}, denote their

respective domains. As described in Sec. 2.5.1, each coil ring needs to be considered as
the two-dimensional model of a three-dimensional coil turn. In particular, the voltage
between the start and the end of the k-th coil turn is represented by the voltage V

[ring]
k [t]

in the k-th coil ring. If Γ lies in Ω
[ring]
k , then (2.5.21) implies

C [β][t] =
V

[ring]
k [t]

2π
in Ω

[ring]
k . (2.5.22a)

If the path Γ lies in the domain Ω
[β]
appCon of some conducting material β in the growth

apparatus, then

C [β][t] = 0 in Ω
[β]
appCon, (2.5.22b)

since there is no voltage imposed in the growth apparatus.

Assuming that ν is constant in Ω[β], one can plug (2.5.13) and (2.5.22) into (2.5.20) to
conclude

−ν div
∇(rφA)

r2
+

σ
[ring]
c

r

∂φA

∂t
=

σ
[ring]
c V

[ring]
k [t]

2πr2
in Ω

[ring]
k , (2.5.23a)

−ν div
∇(rφA)

r2
+

σ
[β]
c

r

∂φA

∂t
= 0 in Ω

[β]
appCon. (2.5.23b)

The voltages V
[ring]
k [t] have to be determined from the input voltage, the input current,

or the input power. How this can be done in the case of sinusoidal time dependence is
described in Secs 2.5.6 and 2.5.7.
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2.5.5 Interface and Boundary Conditions

The magnetic scalar potential φA is determined from (2.5.16) and (2.5.23), completed
by the following interface and boundary conditions.

It is assumed that φA is continuous throughout the considered domain. If there are no
surface currents, then on interfaces γγ1,γ2 between a material γ1 and a material γ2 (the
materials can be either solid or gas), one has the flux interface condition

νγ1

r
∇(rφA) • nγ1 =

νγ2

r
∇(rφA) • nγ1 . (2.5.24)

As for the boundary condition on φA, it follows from the continuity of A and (2.5.10),
that φA = 0 on the symmetry axis r = 0. It is also assumed that φA vanishes on outer
boundaries sufficiently far from the growth apparatus (cf. [KP01, Sec. 3.2] and Sec. 4.1
for more information on what distance may be considered “sufficiently far”).

2.5.6 Sinusoidal Time Dependence

It is now assumed that (indHeat-v) holds, i.e. that the time dependence of the functions

V
[ring]
k , k ∈ {1, . . . , N}, j, and φA is sinusoidal. In addition to (indHeat-iii), this includes

the implicit assumption that µ and σc do not depend on time, since otherwise sinusoidal
time dependence can generally not be expected.

Sinusoidal time dependence means there are an angular frequency ω, voltages V
[ring]
k,0 ,

a current density j0[(r, z)], a magnetic scalar potential φA,0[(r, z)], and times tV,k,0,
k ∈ {1, . . . , N}, tj,0[(r, z)], tφA,0[(r, z)] such that

V
[ring]
k [t] = V

[ring]
k,0 sin

[
ω(t + tV,k,0)

]
, k ∈ {1, . . . , N}, (2.5.25a)

j[(t, r, z)] = j0[(r, z)] sin
[
ω(t + tj,0[(r, z)])

]
, (2.5.25b)

φA[(t, r, z)] = φA,0[(r, z)] sin
[
ω(t + tφA,0[(r, z)])

]
. (2.5.25c)

As is customary, the functions V
[ring]
k , j, and φA are extended into the complex plane

by letting

V
[ring],complex
k [t] := iV

[ring]
k [t] + V

[ring]
k

[
t +

π

2ω

]
, k ∈ {1, . . . , N}, (2.5.26a)

jcomplex[(t, r, z)] := ij[(t, r, z)] + j
[(

t +
π

2ω
, r, z

)]
, (2.5.26b)

φcomplex
A [(t, r, z)] := iφA[(t, r, z)] + φA

[(
t +

π

2ω
, r, z

)]
. (2.5.26c)

Then

V
[ring]
k [t] = Im

[
V

[ring],complex
k [t]

]
, k ∈ {1, . . . , N}, (2.5.27a)

j[(t, r, z)] = Im
[
jcomplex[(t, r, z)]

]
, (2.5.27b)

φA[(t, r, z)] = Im
[
φcomplex

A [(t, r, z)]
]
. (2.5.27c)
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Define

V
[ring],complex
k,0 := V

[ring]
k,0 eiωtV,k,0 , k ∈ {1, . . . , N}, (2.5.28a)

jcomplex
0 [(r, z)] := j0[(r, z)]eiωtj,0[(r,z)], (2.5.28b)

φcomplex
A,0 [(r, z)] := φA,0[(r, z)]eiωtφA,0[(r,z)]. (2.5.28c)

From (2.5.25), (2.5.26), (2.5.28), and the relation eiϕ = cos[ϕ] + i sin[ϕ], it follows that

V
[ring],complex
k [t] = V

[ring]
k,0 eiω(t+tV,k,0) = V

[ring],complex
k,0 eiωt, k ∈ {1, . . . , N}, (2.5.29a)

jcomplex[(t, r, z)] = j0[(r, z)]eiω(t+tj,0[(r,z)]) = jcomplex
0 [(r, z)]eiωt, (2.5.29b)

φcomplex
A [(t, r, z)] = φA,0[(r, z)]eiω(t+tφA,0[(r,z)]) = φcomplex

A,0 [(r, z)]eiωt. (2.5.29c)

One then gets the formula

jcomplex
0 [(r, z)]

r
= −ν div

∇
(
rφcomplex

A,0 [(r, z)]
)

r2
, (2.5.30)

which follows from (2.5.26) and (2.5.29) by writing (2.5.13) once for t+ π
2ω

and once for
t multiplied by i, adding, and multiplying by e−iωt.

One of the main simplifications achieved by the assumption of sinusoidal time depen-
dence is the possible reduction of the transient problem for φA to a stationary problem
for φcomplex

A,0 in the presence of time-independent material parameters ν and σc (see
(2.5.32)). Since the quantities of the electromagnetic problem change orders of magni-
tude faster than the quantities of the heat problem, the heat sources f [β] in (2.5.1) can
be computed by taking the average of j2 over one period:

f [β][(r, z)] =

∫
period

j2[(t, r, z)] dt

σ
[β]
c · |period|

=
j2
0 [(r, z)]

σ
[β]
c

·
∫ π

ω

0
sin2

[
ω(t + tj,0[(r, z)])

]
dt

ω
π

=
jcomplex
0 [(r, z)] jcomplex

0 [(r, z)]

2σ
[β]
c

. (2.5.31)

The function jcomplex
0 in (2.5.31) can be computed from (2.5.33) below.

It is noted that in order to account for the temperature dependence of the electrical
conductivity and for changing coil positions when solving the transient heat problem,
the quasi-stationary problem for φcomplex

A,0 has to be solved after each time step (or at
least after each significant change of the electrical conductivity or the coil positions) of
the time-discretized heat problem.

Now the stationary problem for φcomplex
A,0 is going to be formulated. For easy reference,

the system of partial differential equations for φA, consisting of (2.5.16) and (2.5.23)
with the interface and boundary conditions written in Sec. 2.5.5, is given the name
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(PDE: φA). Analogously, let (PDE: φcomplex
A,0 ) be the system consisting of the following

Equations and Conditions (2.5.32):

−ν div
∇

(
rφcomplex

A,0

)

r2
= 0 in each insulating material, (2.5.32a)

−ν div
∇

(
rφcomplex

A,0

)

r2
+

iωσ
[ring]
c φcomplex

A,0

r
=

σ
[ring]
c V

[ring],complex
k,0

2πr2
in Ω

[ring]
k , (2.5.32b)

−ν div
∇

(
rφcomplex

A,0

)

r2
+

iωσ
[β]
c φcomplex

A,0

r
= 0 in Ω

[β]
appCon, (2.5.32c)

νγ1

r
∇

(
rφcomplex

A,0

)
• nγ1 =

νγ2

r
∇

(
rφcomplex

A,0

)
• nγ1 on each interface γγ1,γ2 , (2.5.32d)

φcomplex
A,0 is continuous on each interface, (2.5.32e)

φcomplex
A,0 = 0 on each outer boundary. (2.5.32f)

It is easily verified that φA satisfies (PDE: φA) if φcomplex
A,0 satisfies (PDE: φcomplex

A,0 ): Using
(2.5.27) and (2.5.29), (2.5.32a) implies (2.5.16), (2.5.32b) implies (2.5.23a), (2.5.32c)
implies (2.5.23b), (2.5.32d) implies (2.5.24), and (2.5.32f) implies φA = 0 on outer
boundaries, simply by multiplying the assumed equation by eiωt and taking the imagi-
nary part. The continuity of φA on interfaces follows from (2.5.32e), since multiplication
by eiωt and taking the imaginary part are both continuous operations.

One can combine (2.5.30) with (2.5.32b) and (2.5.32c), respectively, to determine the
stationary complex current density needed for (2.5.31):

jcomplex
0 [(r, z)] = −iωσ[ring]

c φcomplex
A,0 +

σ
[ring]
c V

[ring],complex
k,0

2πr
in Ω

[ring]
k , (2.5.33a)

jcomplex
0 [(r, z)] = −iωσ[β]

c φcomplex
A,0 in Ω

[β]
appCon. (2.5.33b)

Substituting (2.5.33) in (2.5.31) yields

f [ring][(r, z)] =
ω2σ

[ring]
c

2r2





Re

[
V

[ring],complex
k,0

]

2πω
+ Im

[
rφcomplex

A,0

]



2

+


Im

[
V

[ring],complex
k,0

]

2πω
− Re

[
rφcomplex

A,0

]



2

 in Ω

[ring]
k ,

(2.5.34a)

f [β][(r, z)] =
ω2σ

[β]
c

2r2

((
Re

[
rφcomplex

A,0

])2

+
(
Im

[
rφcomplex

A,0

])2
)

in Ω
[β]
appCon. (2.5.34b)
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2.5.7 Prescribing Current, Voltage, or Power

In order to solve the system of partial differential equations (PDE: φcomplex
A,0 ) for φcomplex

A,0 ,

one still has to determine the quantities V
[ring],complex
k,0 in (2.5.32b), i.e. the voltages in

the different coil rings. The goal of the present section is to compute the V
[ring],complex
k,0

from a given total current, a given total voltage, or a given total power imposed in the
induction coil. The approach presented here has been published in [KP02].

The circular projection πcirc that was defined in (2.4.20) is used again in the following.

The total current Jk in the k-th coil ring corresponding to φcomplex
A,0 and V

[ring],complex
k,0 is

computed from (2.5.27b), (2.5.29b), and (2.5.33a):

Jk

[
(φcomplex

A,0 , V
[ring],complex
k,0 , t)

]
=

∫

πcircΩ
[ring]
k

j[(t, r, z)] dr dz

= Im

[
eiωt

∫

πcircΩ
[ring]
k

jcomplex
0 [(r, z)] dr dz

]

= Im

[
eiωt

(
V

[ring],complex
k,0

2π

∫

πcircΩ
[ring]
k

σ
[ring]
c

r
dr dz − iω

∫

πcircΩ
[ring]
k

σ[ring]
c φcomplex

A,0 dr dz

)]

= Im

[
eiωt

(
V

[ring],complex
k,0 σc,k − iω

∫

πcircΩ
[ring]
k

σ[ring]
c φcomplex

A,0 dr dz

)]

= Im
[
eiωtJcomplex

k,0

[
(φcomplex

A,0 , V
[ring],complex
k,0 )

]]
, (2.5.35)

where

σc,k :=
1

2π

∫

πcircΩ
[ring]
k

σ
[ring]
c

r
dr dz , (2.5.36)

Jcomplex
k,0

[
(φcomplex

A,0 , V
[ring],complex
k,0 )

]

:= V
[ring],complex
k,0 σc,k − iω

∫

πcircΩ
[ring]
k

σ[ring]
c φcomplex

A,0 dr dz .
(2.5.37)

If the cylindrically symmetric approximation of the coil by disjoint rings is supposed to
reflect the three-dimensional situation, then the total current must be the same in each
coil ring and for each point in time, i.e.

Jtotal[t] := J1

[
(φcomplex

A,0 , V
[ring],complex
1,0 , t)

]

= · · · = JN

[
(φcomplex

A,0 , V
[ring],complex
N,0 , t)

] for each time t (2.5.38a)

or, equivalently,

Jcomplex
total,0 := Jcomplex

1,0

[
(φcomplex

A,0 , V
[ring],complex
1,0 )

]

= · · · = Jcomplex
N,0

[
(φcomplex

A,0 , V
[ring],complex
N,0 )

]
.

(2.5.38b)
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One can now formulate a joint determining system for φcomplex
A,0 and the V

[ring],complex
k,0 , k ∈

{1, . . . , N}, consisting of (2.5.40) or (2.5.45) together with (PDE: φcomplex
A,0 ), depending

on whether the total current or the total voltage is to be prescribed. Scaling of the
solution to (PDE: φcomplex

A,0 ) and (2.5.45) allows to prescribe the total power.

Prescription of Total Current: Suppose the sinusoidal total current

Jgiven[t] = Jgiven,0 sin[ωt] = Im[Jgiven,0e
iωt] (2.5.39)

is to be prescribed. Then φcomplex
A,0 and the V

[ring],complex
k,0 must satisfy the system

Jgiven,0 = Jcomplex
k,0

[
(φcomplex

A,0 , V
[ring],complex
k,0 )

]
, k ∈ {1, . . . , N}. (2.5.40)

Prescription of Total Voltage: Suppose the sinusoidal total voltage

Vtotal[t] = Vtotal,0 sin[ωt] = Im[Vtotal,0e
iωt] (2.5.41)

is to be prescribed. The sum of the voltages in the coil rings equals the total voltage,
i.e.

Vtotal[t] =
N∑

k=1

V
[ring]
k [t]. (2.5.42)

The equivalent complex equation reads

V complex
total [t] =

N∑

k=1

V
[ring],complex
k [t], (2.5.43)

where
V complex

total [t] = iVtotal[t] + Vtotal

[
t +

π

2ω

]
= Vtotal,0e

iωt. (2.5.44)

Moreover, (2.5.43) is equivalent to the stationary equation

Vtotal,0 =
N∑

k=1

V
[ring],complex
k,0 . (2.5.45a)

So in the present case, φcomplex
A,0 and the V

[ring],complex
k,0 must satisfy the system consisting

of (2.5.45a) and

Jcomplex
k,0

[
(φcomplex

A,0 , V
[ring],complex
k,0 )

]

= Jcomplex
k+1,0

[
(φcomplex

A,0 , V
[ring],complex
k+1,0 )

]
,

k ∈ {1, . . . , N − 1}, (2.5.45b)

which is (2.5.38b) rewritten. It is noted that instead of solving (PDE: φcomplex
A,0 ) and

(2.5.45) one can also solve (PDE: φcomplex
A,0 ) and (2.5.40) for a reference current, and

then scale the solution to the prescribed voltage.
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Prescription of Total Power: The electrical power Pk in the k-th coil ring is

Pk[t] = V
[ring]
k [t]Jk[t], (2.5.46)

and the average over one period is

Pk =
ω

2π

∫ 2π
ω

0

Pk[t] dt . (2.5.47)

Summing over all coil rings, one gets the total electrical power

Ptotal[t] =
N∑

k=1

Pk[t] =
N∑

k=1

V
[ring]
k [t]Jk[t] (2.5.48)

and the corresponding average power

Ptotal =
ω

2π

∫ 2π
ω

0

Ptotal[t] dt =
N∑

k=1

Pk. (2.5.49)

Assuming (2.5.38a) and using (2.5.42), (2.5.48) implies

Ptotal[t] = Vtotal[t]Jtotal[t]. (2.5.50)

If (φcomplex
A,0 , V

[ring],complex
1,0 , . . . , V

[ring],complex
N,0 ) is the solution to (PDE: φcomplex

A,0 ) and (2.5.45),
then for each λ ∈ R, it is

(
λφcomplex

A,0 , λV
[ring],complex
1,0 , . . . , λV

[ring],complex
N,0

)
(2.5.51)

the solution to (PDE: φcomplex
A,0 ) and (2.5.45) with Vtotal,0 replaced by λVtotal,0.

Using (2.5.50), (2.5.41), (2.5.35), and (2.5.45b), the total power of the scaled solution
(2.5.51) can be computed as

Ptotal,λ[t] = λ2Vtotal,0 sin[ωt] · Im
[
eiωtJcomplex

1,0

[
(φcomplex

A,0 , V
[ring],complex
1,0 )

]]

= λ2Vtotal,0 Re
[
Jcomplex

1,0

[
(φcomplex

A,0 , V
[ring],complex
1,0 )

]]
(sin[ωt])2

+ λ2Vtotal,0 Im
[
Jcomplex

1,0

[
(φcomplex

A,0 , V
[ring],complex
1,0 )

]]
sin[ωt] cos[ωt].

(2.5.52)

Combining (2.5.49) and (2.5.52) provides the average power of the scaled solution:

Ptotal,λ =
λ2Vtotal,0 Re

[
Jcomplex

1,0

[
(φcomplex

A,0 , V
[ring],complex
1,0 )

]]

2
. (2.5.53)

Thus, to prescribe the average total power P , one solves (PDE: φcomplex
A,0 ) and (2.5.45)

with arbitrary Vtotal,0 6= 0 and then scales the solution with

λP :=

√√√√ 2P

Vtotal,0 Re
[
Jcomplex

1,0

[
(φcomplex

A,0 , V
[ring],complex
1,0 )

]] . (2.5.54)
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Decomposition for Numerical Solution

As the system (PDE: φcomplex
A,0 ) is linear, (PDE: φcomplex

A,0 ) plus either (2.5.40) or (2.5.45)
can be decomposed into N +1 (numerically) simpler problems: N reference problems of
the form (PDE: φcomplex

A,0 ) and one problem of the form (2.5.40) or (2.5.45), respectively.

To that end, choose an arbitrary reference voltage Vref 6= 0 (Vref = 1V is used during
the simulations presented in Ch. 4). Then for each l ∈ {1, . . . , N}, one can solve the
problem (PDEl: φcomplex

A,0 ) which consists of (PDE: φcomplex
A,0 ) with

V
[ring],complex
k,0 = V

[ring],complex
l,k,0 :=

{
Vref for k = l,

0 for k ∈ {1, . . . , N} \ {l}. (2.5.55)

It is noted that for each (PDEl: φcomplex
A,0 ), the matrix M of the linear discrete problem

arising from a fixed spatial discretization is the same. Hence the numerically costly
procedure of inverting M (rank(M)¿10 000 not being unusual in applications) has to
be performed only once.

Let φcomplex
A,l,0 denote the solution to the problem (PDEl: φcomplex

A,0 ). Then according to
(2.5.35) and (2.5.37) the corresponding total current Jl,k,ref in the k-th coil ring is given
by

Jl,k,ref [t] := Jk

[
(φcomplex

A,l,0 , V
[ring],complex
l,k,0 , t)

]
= Im

[
eiωtJcomplex

l,k,ref,0

]
, (2.5.56)

where

Jcomplex
l,k,ref,0 := Jcomplex

k,0

[
(φcomplex

A,l,0 , V
[ring],complex
l,k,0 )

]

=

{
Vrefσc,k − iω

∫
πcircΩ

[ring]
k

σ
[ring]
c φcomplex

A,l,0 dr dz for k = l,

− iω
∫

πcircΩ
[ring]
k

σ
[ring]
c φcomplex

A,l,0 dr dz for k 6= l.

(2.5.57)

Now for arbitrary complex numbers ccomplex
l , l ∈ {1, . . . , N}, the function φcomplex

A,0 defined
by

φcomplex
A,0 :=

N∑

l=1

ccomplex
l φcomplex

A,l,0 (2.5.58)

is the solution to the problem (PDE: φcomplex
A,0 ) with V

[ring],complex
k,0 = ccomplex

k Vref , k ∈
{1, . . . , N}. According to (2.5.35), (2.5.37), (2.5.56), (2.5.57), and (2.5.58), the corre-
sponding total current in the k-th coil ring is given by

Jk

[
(φcomplex

A,0 , ccomplex
k Vref , t)

]
= Im

[
eiωt

N∑

l=1

ccomplex
l Jcomplex

l,k,ref,0

]
. (2.5.59)

It remains to determine the numbers ccomplex
l , l ∈ {1, . . . , N}, such that

(φcomplex
A,0 , ccomplex

1 Vref , . . . , c
complex
N Vref)
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is a solution to (2.5.40) or (2.5.45), respectively.

Prescription of Total Current: The numbers ccomplex
l must satisfy the linear system

Jgiven,0 =
N∑

l=1

ccomplex
l Jcomplex

l,k,ref,0 , k ∈ {1, . . . , N}. (2.5.60)

Prescription of Total Voltage: The numbers ccomplex
l must satisfy the linear system

Vtotal,0 =
N∑

l=1

ccomplex
l Vref , (2.5.61a)

N∑

l=1

ccomplex
l Jcomplex

l,k,ref,0 =
N∑

l=1

ccomplex
l Jcomplex

l,k+1,ref,0, k ∈ {1, . . . , N − 1}. (2.5.61b)

Prescription of Total Power: Assume that (ccomplex
1,ref , . . . , ccomplex

N,ref ) denotes the solu-

tion to (2.5.61) with Vtotal,0 = Vref , i.e. to (2.5.61b) combined with
∑N

l=1 ccomplex
l = 1.

Then for each λ ∈ R, it is
(λccomplex

1,ref , . . . , λccomplex
N,ref ) (2.5.62)

the solution to (2.5.61) with Vtotal,0 = λVref , and

φλ,complex
A,0 := λ

N∑

l=1

ccomplex
l φcomplex

A,l,0 (2.5.63)

is the solution to (PDE: φcomplex
A,0 ) with V

[ring],complex
k,0 = λccomplex

k Vref , k ∈ {1, . . . , N}. A
computation analogous to the one preceding (2.5.53) yields the corresponding average
total power:

Ptotal,ref,λ =
λ2Vref Re

[∑N
l=1 ccomplex

l Jcomplex
l,1,ref,0

]

2
. (2.5.64)

Thus, to prescribe the average total power P , one has to set

λ =

√√√√ 2P

Vref Re
[∑N

l=1 ccomplex
l Jcomplex

l,1,ref,0

] . (2.5.65)



Chapter 3

Finite Volume Method

In Ch. 2, boldface is used to denote vector- and matrix-valued quantities. Accordingly,
in the present chapter, boldface denotes matrices and vectorial physical quantities occur-
ring in examples. However, to avoid an overuse of boldfaced symbols, vectors occurring
in abstract mathematical settings are not set in boldface.

3.1 The Considered Problem Class and Scope of the

Treatment

Chapter 3 contains a mathematical treatment of the finite volume method, which is
used for the discretization of partial differential equations such as occurring in (2.1.34),
(2.2.1), and (2.5.32). The first main objective is the rigorous formulation of a finite
volume scheme in a setting suitable to be used for the transient numerical simulations
of temperature field evolutions presented in Ch. 4. The second main objective is to
prove discrete a priori estimates for the resulting finite volume scheme, leading to the
existence and uniqueness of a discrete solution. In future work, the goal is to proceed
to establish the convergence of the finite volume scheme; however, this is outside the
scope of the material presented here.

Even though the contents of this chapter is dedicated to transient problems of the form
(3.1.1), the formulation of the finite volume discretization for stationary prolems lacking
the term ∂tbj[(uj, t, x)] in (3.1.1) (such as (2.5.32)) can be done analogously. Omitting
the time discretization step, one ends up with the finite volume discretization (3.7.122)
without the first summand (3.7.122a) which involves the time step tν − tν−1. However,
the proof of the existence and uniqueness of a discrete solution makes essential use
of the presence of the time derivative or, more precisely, of the presence of the term
involving the time step in the discrete scheme.

Similar remarks apply to other features of (3.1.1): The formulation of the finite volume

45
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discretization is done in a more general setting than the proof of discrete existence and
uniqueness, e.g. since different mathematical techniques are needed depending on the
type of (3.1.1). For example, during the formulation of the discretization, the range of
the unknown u is allowed to be some arbitrary subset of C, but for the mathematical re-
sults in Secs 3.7.13 and 3.8, the range is assumed to be of the form [m,∞[. Furthermore,
boundedness and regularity conditions are added in Ths 3.7.50 and 3.8.35.

The setting of (3.1.1) is rather general in the sense that each term is allowed to depend
nonlinearly on the solution uj as well as on the space variable x and the time variable
t. In its full generality, (3.1.1) comprehends a vast abundance of interesting examples,
including those enumerated in Ex. 3.1.1. However, since the mathematical results of
Secs 3.7.13 and 3.8 are restricted to the transient case and to a solution range of the
form [m,∞[, in Ex. 3.1.1, it only applies to (b) and the first case of (a). In Ex. 3.1.1(b),
Eq. (3.1.1) plays the role of a heat transport equation including the time derivative of
an internal energy term, diffusion, convection, and source and sink terms.

Even though different equations on different space domains coupled via spatial interfaces
are allowed in this treatment, only a single equation is considered on the same space
domain. For example, (3.1.1) can represent either one of the equations in (2.1.34),
but the discretization of the coupled system (2.1.34) is beyond the scope of this work.
Systems are treated e.g. in [EGH00, Ch. VII].

The interface and boundary conditions allow for nonlocal terms as they arise during
radiation modeling (s. Exs 3.1.2(c) and 3.1.3(e)).

Section 3.6 addresses the problem of dimension reduction by a change of variables in
the case the problem at hand displays an exploitable symmetry. This is relevant to
the simulation application in Ch. 4, where cylindrical coordinates are used to take
advantage of the cylindrical symmetry of the problem.

Now the problem class will be stated and some examples will be considered. As de-
scribed above, the objects of interest are rather general nonlinear partial differential
equations of the form

∂tbj[(uj, t, x)]− div
(
kj[(uj, t, x)]∇uj

)
+ div vj[(uj, t, x)]− fj[(uj, t, x)] = 0 (3.1.1)

for the unknown function uj defined on the time-space domain

τ × Ωj = [t0, tf ]× Ωj, (3.1.2)

where Ωj is a d-dimensional space domain, d ∈ N. For the major part of the sequel, it is
assumed that the set Ωj is polyhedral, in which case it is denoted by pj. It is assumed
that there is a finite number of domains Ωj, i.e. there is a finite index set J such that
the set of domains is {Ωj : j ∈ J}. If there is no time dependence in (3.1.1) and if bj

vanishes, then one deals with the corresponding stationary problem.

Example 3.1.1. Except in the second case of (b), the index j ∈ J plays no role in the
present example. Thus, except in the second case of (b), the index j is suppressed, i.e.
u, b, k, v, and f is written instead of uj, bj, kj, vj, and fj.
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(a) Hyperbolic Balance Equations: For example, one can get (2.1.34a) by setting u :=
ρgas, b[(u, t, x)] := u, k[(u, t, x)] := 0, v[(u, t, x)] := uvgas[(t, x)], and f [(u, t, x)] :=
0.

To get the i-th component of (2.1.34b), i ∈ {1, 2, 3}, set u := (vgas)i, b[(u, t, x)] :=
ρgas[(t, x)] u, k[(u, t, x)] := 0, v[(u, t, x)] := R

M(Ar) ρgas[(t, x)] Tgas[(t, x)] ei, where
ei denotes the unit vector in the i-th coordinate direction, and f [(u, t, x)] :=
ρgas[(t, x)] gi.

(b) Transient Heat Equations: For example, one can get (2.1.34c) by setting u :=

Tgas, b[(u, t, x)] := z(Ar)R
M(Ar) ρgas[(t, x)] u, k[(u, t, x)] := κ(Ar)[(u, t, x)], v[(u, t, x)] :=

(z(Ar)+1)R

M(Ar) ρgas[(t, x)] uvgas[(t, x)], and f [(u, t, x)] := ρgas[(t, x)]g • vgas[(t, x)]. Here,

the radiation term r(Ar) is neglected, as it typically shows a nonlocal volumetric
space dependence inside the gas region, and the detailed modeling of this term is
outside the scope of this work.

One can get (2.2.1) by setting uj := T [βj ], bj[(uj, t, x)] := ρ[βj ][(t, x)] ε[(uj, t, x)],

where ε[(uj, t, x)] =
∫ uj

0
c
[βj ]
sp [(y, t, x)] dy , kj[(uj, t, x)] := κ[βj ][(uj, t, x)], vj[(uj, t, x)]

:= 0, and fj[(uj, t, x)] := f [βj ][(uj, t, x)].

As another example consider the slightly different form of the gas energy balance
(where, as above, the volumetric radiation term ρgasrgas has been dropped)

ρgas ∂tεgas + ρgasvgas • ∇ εgas − div(κgas∇Tgas) + pgas div vgas = 0, (3.1.3)

that was used in [BKP+99, (2.18c)], also cf. (2.1.14c).

Equation (3.1.3) can be written in the form (3.1.1) by using

ρgasvgas • ∇ εgas = div(εgas ρgasvgas)− εgas div(ρgasvgas), (3.1.4)

and then letting u := Tgas, b[(u, t, x)] := ρgas[(t, x)] εgas[(u, t, x)], k[(u, t, x)] :=
κgas[(u, t, x)], v[(u, t, x)] := εgas[(u, t, x)] ρgas[(t, x)]vgas[(t, x)], and

f [(u, t, x)] := εgas[(u, t, x)] div
(
ρgas[(t, x)]vgas[(t, x)]

)− pgas[(t, x)] div vgas[(t, x)].

(c) Stationary Heat Equations: By setting b[(u, t, x)] := 0 and bj[(uj, t, x)] := 0, respec-
tively, in the examples in (b) and assuming all functions to be time-independent.

(d) Elliptic Equations: For example, one can get (2.5.32b) by setting u := rφcomplex
A,0 ,

b
[(

u, t, (r, z)
)]

:= 0, k
[(

u, t, (r, z)
)]

:= ν
r2 , v

[(
u, t, (r, z)

)]
:= 0, and

f
[(

u, t, (r, z)
)]

:=
σ

[ring]
c

[(
t, (r, z)

)]
V

[ring],complex
k,0

[(
t, (r, z)

)]

2πr2

− i ω σ
[ring]
c

[(
t, (r, z)

)]
u

r2
.
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(e) Richards Equation: It reads

∂tθ[(u, x)]− div
(
K[(u, x)] (∇u− g)

)
= 0, (3.1.5)

where θ denotes the saturation, K denotes permeability, u denotes the capil-
lary pressure, and g denotes gravity. Richards Equation describes saturated-
unsaturated fluid transport in porous media (cf. [Ric31]). To fit (3.1.5) into the
framework of (3.1.1), one lets

b[(u, t, x)] := θ[(u, x)], k[(u, t, x)] := K[(u, x)],

v[(u, t, x)] := K[(u, x)]g[x], f [(u, t, x)] := 0.

Also cf. [FL01, Sec. 6.6].

—

On (d − 1)-dimensional interfaces γ = γj1,j2 between adjacent domains Ωj1 and Ωj2 ,
interface conditions for the unknown functions uj1 and uj2 and the fluxes Fj1 :=
kj1 [(uj1 , t, x)]∇uj1 and Fj2 := kj2 [(uj2 , t, x)]∇ uj2 are considered. The unknown func-
tions either satisfy the continuity interface condition

uj1¹τ×γ= uj2¹τ×γ (3.1.6a)

or a jump interface condition of the form

Fj1 • nΩj1
+ aγ,1

jump[(uj1 , t, x)]− aγ,2
jump[(uj2 , t, x)] = 0 on τ × γ, (3.1.6b)

where n denotes the outer unit normal vector. The fluxes satisfy an interface condition
of the form

Fj1 • nΩj1
− Fj2 • nΩj1

−Aγ

[(
uj¹{t}×Ωj

)
j∈J

]
[x]

− aγ,1
flux[(uj1 , t, x)] + aγ,2

flux[(uj2 , t, x)] = 0 on τ × γ.
(3.1.7)

Conditions (3.1.6) are similar to condition [EGH00, (11.14)], which occurs in a time-

independent setting and has the form uj2 ¹γ −uj1 ¹γ= a
(γ)
jump[x]. However, in contrast to

[EGH00, (11.14)], according to (3.1.6) the solution is either continuous at γ or satisfies
a jump condition involving the flux, where a nonlinear dependence on the solution is
allowed in the functions aγ,1

jump and aγ,2
jump. For applications involving (3.1.6) see Exs

3.1.2(a),(b) below.

Condition (3.1.7) is in generalization of [EGH00, (11.13)], where [EGH00, (11.13)] is
a time-independent condition of the same form as (3.1.7), but only admitting positive
real numbers instead of the potentially nonlinear functions kj1 and kj2 , and without a
nonlocal coupling term Aγ. The introduction of the operator Aγ into (3.1.7) allows to
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account for nonlocal radiation operators such as εr(Jr ◦Rr) and εt(Jt ◦Rt) in (2.4.39).
Thus, in practice, the operator Aγ merely depends on the functions uj defined on
domains adjacent to the radiation region under consideration (more precisely, it depends
on the restrictions of such functions uj to the respective interfaces).

Example 3.1.2 shows how the interface conditions arising in Secs 2.3, 2.4.4, and 2.5.6
fit into the framework of (3.1.6) and (3.1.7).

Example 3.1.2. (a) Continuous Temperature: It is seen immediately that (2.3.2a),
(2.3.2b), and (2.5.32e) are of the form (3.1.6a).

(b) Temperature Jump: To write (2.3.2b′) in the form (3.1.6b), let uj1 := Tgas, uj2 :=
T [β], kj1 := κ(Ar), nΩj1

:= ngas, aγ,1
jump[(uj1 , t, x)] := ξβuj1 , and aγ,2

jump[(uj2 , t, x)] :=
ξβuj2 , ξ ∈ R+.

(c) Heat Flux Including Radiation: If (2.1.33h) and (2.2.1b) hold, then each of the
Eqs (2.4.39) can be written in the form (3.1.7), as is demonstrated below. In the
considered cases, the operator Aγ acting on the family

[
(uj ¹{t}×Ωj

)j∈J

]
is defined

in terms of a radiation operator acting on Tsolid. The precise meaning of such a
definition is the following: The radiation operator acts on all temperature functions
uj := Tsolid¹Ωj

, j ∈ Jγ, where Jγ is such that the family (Ωj)j∈Jγ includes all solid
domains adjacent to the same radiation region as γ (s. Fig. 3.1).

For (2.4.39a), let uj1 := Tsolid ¹Ω[SiC−Crystal] , uj2 := Tsolid ¹Ω[β] , kj1 := κ[SiC−Crystal],
kj2 := κ[β], nΩj1

:= n[SiC−Crystal] = −n[β],

Aγ

[(
uj¹{t}×Ωj

)
j∈J

]
:= εt[(uj2 , x)]Jt

[Rt[Tsolid]
]
,

aγ,1
flux := 0, and aγ,2

flux[(uj2 , t, x)] := εt[(uj2 , x)] σ u4
j2

.

For (2.4.39b), let uj1 := Tgas, uj2 := Tsolid ¹Ω[β] , kj1 := κgas, kj2 := κ[β], nΩj1
:=

ngas = −n[β],

Aγ

[(
uj¹{t}×Ωj

)
j∈J

]
:= εr[(uj2 , x)]Jr

[Rr[Tsolid]
]
+ εt[(uj2 , x)]Jt

[Rt[Tsolid]
]
,

aγ,1
flux := 0, and aγ,2

flux[(uj2 , t, x)] := (εr + εt)[(uj2 , x)] σ u4
j2

.

For (2.4.39c), let uj1 := Tgas, uj2 := Tsolid¹Ω[SiC−Crystal] , kj1 := κgas, kj2 := κ[SiC−Crystal],
nΩj1

:= ngas = −n[SiC−Crystal],

Aγ

[(
uj¹{t}×Ωj

)
j∈J

]
:= εr[(uj2 , x)]Jr

[Rr[Tsolid]
]
,

aγ,1
flux := 0, and aγ,2

flux[(uj2 , t, x)] := εr[(uj2 , x)] σ u4
j2

.
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Ωj2 = Ω[SiC−Powder]

Ωj3 = Ω[Graphite]

Ωj1 = Ωgas

Ωj4

= Ω[SiC−Crystal]

γ = Ωj1 ∩ Ωj2

Figure 3.1: If the radiation region is given by Ωgas, then the set of indices corresponding
to the adjacent solid domains is given by Jγ = {j2, j3, j4}.
(d) Magnetic Scalar Potential Flux: To verify that (2.5.32d) is of the form (3.1.7),

let uj1 := uj2 := r φcomplex
A,0 , kj1 :=

νγ1

r
, kj2 :=

νγ2

r
, nΩj1

:= nγ1 , Aγ := 0, and

aγ,1
flux := aγ,2

flux := 0.

—

In general, the outer boundary of Ωj (i.e. the part of the boundary that is not an inter-
face) is partitioned into disjoint (d− 1)-dimensional parts Γj,Dir and Γj,ι, ι ∈ Jj, where
different types of outer boundary conditions are considered. Outer boundary condi-
tions are either of Dirichlet type or of non-Dirichlet type. Outer boundary conditions
of Dirichlet type have the form

uj[(t, x)] = uj,Dir[(t, x)] on τ × Γj,Dir. (3.1.8)

Outer boundary conditions of non-Dirichlet type have the form

Fj • nΩj
− Bj,ι

[(
uj¹{t}×Ωj

)
j∈J

]
+ aj,ι

out[(uj, t, x)] = 0 on τ × Γj,ι. (3.1.9)

Conditions (3.1.8) and (3.1.9) are in generalization of [EGH00, (11.10) – (11.12)]. Some
important special cases are considered in Ex. 3.1.3, where [EGH00, (11.10) – (11.12)]
are actually special cases of Exs 3.1.3 (a), (b), and (c).

Example 3.1.3. (a) Zero Dirichlet Condition: This is the case uj,Dir = 0 as in (2.5.32f).

(b) Neumann Condition: Condition (3.1.9), where Bj,ι = 0 and aj,ι
out does not depend

on uj. A Neumann condition is called a zero flux condition iff aj,ι
out = 0.
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(c) Condition of Third Kind: Condition (3.1.9), where Bj,ι = 0 and aj,ι
out has the form

aj,ι
out[(uj, t, x)] = ξ

(
uj − uext,j,ι[(t, x)]

)
, ξ ∈ R+.

(d) Emission Condition: This is the type of outer boundary condition written in
(2.3.3), where Bj,ι = 0 and aj,ι

out[(uj, t, x)] = σ ε[β][(uj, x)]
(
u4

j − T 4
room

)
with uj :=

T [β].

(e) Nonlocal Radiation Condition: This is the type of outer boundary condition
written in (2.4.17), where

Bj,ι

[(
uj¹{t}×Ωj

)
j∈J

]
:= ε[(uj, x)] · J [R[Tsolid]

]

and aj,ι
out[(uj, t, x)] = ε[(uj, x)] σ u4

j with uj := Tsolid. An analogous note as made at
the beginning of Ex. 3.1.2(c) applies to the present situation.

—

Finally, an initial condition
uj[(t0, x)] = u

(0)
j [x] (3.1.10)

prescribes the solution uj at time t0 in the transient case.

3.2 Literature Review

Finite volume techniques for the solution of partial differential equations have been
used in the literature at least since [Mac53], where the method is used to discretize
the elliptic equation − div

(
k[(t, x)]∇u

) − f [(u, t, x)] = 0, allowing linear dependence
of f on u. Finite volume schemes for more general linear elliptic problems are studied
in [Hei87] and [Hei88], including results on convergence of the scheme. Finite volume
discretizations for linear elliptic problems are also treated in [Bey98], focussing on
aspects of adaptive grid refinement and multi-grid methods.

An extensive survey on the finite volume method can be found in [EGH00]. In [EGH00],
elliptic problems ([EGH00, Chs II and III]) are considered as well as hyperbolic problems
(bj[(u, t, x)] = u, kj = 0, v 6≡ 0, [EGH00, Chs V – VII]), and parabolic problems
(bj[(u, t, x)] = u, kj > 0, [EGH00, Ch. IV]). Convergence results and error estimates
are presented for both linear and nonlinear cases.

Even though, in the following Secs 3.3 – 3.7, the finite volume discretization is developed
for the general form of (3.1.1), in view of the numerical applications in Ch. 4, the
main focus of this work is the fully nonlinear parabolic case of (3.1.1), allowing mixed,
nonlinear and nonlocal boundary and interface conditions. In particular, the discrete a
priori estimates of Sec. 3.7.13 and the proof of discrete existence and uniqueness in Sec.
3.8 are mainly designed for the parabolic case, even though certain hyperbolic cases



52 CHAPTER 3. FINITE VOLUME METHOD

(such as the first case of Ex. 3.1.1(a)) are included as well. Special cases are considered
in [FL01] and in [EGH00, Ch. IV], and these situations are now briefly discussed.

In [FL01], a finite volume discretization is considered for equations ∂tbj[(uj, x)] −
div

(
kj[(uj, x)]∇uj

)
+ div vj[(uj, x)] = 0, where the solution is supposed to be con-

tinuous across interfaces. In [FL01], the equations are completed by special mixed
boundary conditions of Dirichlet form (3.1.8) and non-Dirichlet form (3.1.9) (Bj,ι = 0),
and discrete existence and uniqueness results are proved as well as a maximum principle
and stability. The structure of the treatment in [FL01] is completely different from the
structure of the treatment in this work: Whereas the hypotheses in this work are usu-
ally formulated in terms of properties of the input functions bj, kj, etc., the hypotheses
in [FL01] are provided in terms of (monotonicity) properties of the finite volume dis-
cretization, which have to be verified for a given concrete class of problems. Moreover,
the existence theory in [FL01] is based on matrix theory rather than on L∞-L1 a priori
estimates and the Banach Fixed Point Theorem. Neither time dependence of the input
functions, nor source and sink terms fj, nor jump interface conditions, nor nonlocal
interface or boundary conditions are considered in [FL01].

In [EGH00, Sec. 17], error estimates are proved for a finite volume scheme for the linear
parabolic equation ∂tu − div∇ u + div(u v[(t, x)] − f [(u, t, x)] = 0, where f depends
linearly on u, with Dirichlet boundary conditions. In [EGH00, Sec. 18], a maximum
principle and a convergence result are established for a finite volume scheme for the
(degenerate) nonlinear parabolic equation ∂tu−div

(
k[(u, t, x)]∇u

)−f [(t, x)] = 0 with
a zero flux boundary condition (cf. Ex. 3.1.3(b)).

In this work, (3.1.1) is always considered in the context of an initial-boundary value
problem, i.e. the evolution equation is completed by initial conditions and boundary
conditions. However, in the literature, the finite volume method is also used as a
discretization procedure for initial value problems, where the evolution equation is
completed by initial conditions together with so-called entropy conditions. For literature
on this subject, it is referred to [Krö97], [Ohl01], and references therein.

The continuous solution theory of initial-boundary value problems for evolution equa-
tions is studied in a vast number of papers and textbooks, e.g. [GGZ74, Chs IV –
VII], [Wlo82, Ch. IV], [Zei90, Ch. 23], [RR96, Ch. 10], and [CH98], just to mention a
few. However, especially for nonlinear problems, nonsmooth domains, and for problems
with mixed, nonlinear, and/or nonlocal boundary and interface conditions, there are
still many open problems concerning existence, uniqueness, and regularity questions.
Existence, uniqueness, and regularity results for linear parabolic problems with mixed
boundary conditions of Dirichlet and Neumann type (cf. (3.1.8) and Ex. 3.1.3(b)) on
Lipschitz domains are provided in [Gri99, Ch. 2]. In [Tii97], existence and uniqueness
is proved for an elliptic diffusion-convection problem (bj = 0) with nonlinear and nonlo-
cal interface and boundary conditions arising from radiative heat transfer as described
in Exs 3.1.2(c) and 3.1.3(d),(e). In [LT00] results of [Tii97] are proved with weaker
hypotheses and existence and uniqueness are also established for the corresponding
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parabolic case (b[(u, t, x)] = u). References for the existence of a solution for the prob-
lem class studied in [EGH00, Sec. 18] (see above) are provided therein.

3.3 The Evolution Equation

The subject of the present Sec. 3.3 and also of the following Sec. 3.4 is to provide the
mathematical setting for the subsequent study of partial differential equations of the
form (3.1.1), subsequently called evolution equations, by means of the finite volume
method.

First, in the present section, the case of a single evolution equation is considered: the
continuous setting in Sec. 3.3.1 and the time discretization in Sec. 3.3.2.

Then, in Sec. 3.4, the case of several evolution equations (3.1.1) is treated, each equa-
tion living on a different spatial domain, where coupling occurs via local and nonlocal
interface conditions. Outer boundary conditions are also treated in Sec. 3.4. Analogous
to Sec. 3.3, Sec. 3.4 covers both the continuous and the time-discrete case.

In preparation of the space discretization and the formulation of a finite volume scheme
in Sec. 3.7, Sec. 3.5 provides an integral formulation of coupled systems of evolution
equations (3.1.1) including interface and boundary conditions.

3.3.1 Continuous Setting

Since only a single equation is considered in the current section, the subscript j occurring
in (3.1.1) is dropped:

∂tb[(u, t, x)]− div
(
k[(u, t, x)]∇u

)
+ div v[(u, t, x)]− f [(u, t, x)] = 0. (3.3.1)

As described in Sec. 3.1, it is the purpose of (3.3.1) to determine the unknown function
u, defined on a time-space domain τ × p, where τ is a time domain and p is a d-
dimensional polyhedral space domain, d ∈ N. It is assumed that u has its range in the
set υ ⊆ K, where K = R or K = C.

Throughout Ch. 3, τ denotes the compact time interval τ := [t0, tf ] with initial time t0
and final time tf . Moreover, d always denotes the dimension of the space domain, and
υ always denotes the range of the unknown.

In the sequel, space domains are always (closed) polytopes, i.e. bounded polyhedral
sets, cf. App. C.4.2. Most of the theory could also be developed for more general
domains having sufficiently regular boundaries. The restriction to polytopes avoids
certain difficulties, not the least being of notational and technical nature, arising in the
case that e.g. the boundaries of the domains are more general manifolds of codimension
one.
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As the constituent functions b, k, v, and f of (3.3.1) are allowed to depend on the
unknown, they are typically defined on a domain of the form υ× τ × p. To include Ex.
3.1.1(d), b, k, and f are allowed to be C-valued. However, to allow the use of an upwind
function according to Def. 3.7.14 in the formulation of the finite volume discretization
in Sec. 3.7, v is assumed to be Rd-valued. For the proof of the discrete a priori estimate
in Sec. 3.7.13 and of the existence and uniqueness of a discrete solution in Sec. 3.8, b,
k, and f are also assumed to be real-valued.

In its full generality, the question of what regularity one can expect for a solution u of
(3.3.1) is very difficult. The answer depends on the particular type of the equation, on
the regularity of input functions, on the boundary and interface conditions, and on the
regularity of the domains. Hence, the final choice of solution spaces is inexorably linked
with the continuous solution theory (for details, it is referred to the literature, see the
last paragraph of Sec. 3.2). Since the continuous solution theory is not the subject of
this work, matters concerning regularity and weak differentiability are not considered
in detail, except where needed in the formulation of the finite volume scheme, the
discrete existence theory, and the discrete a priori estimates. Naturally, regularity and
weak differentiability questions have to be investigated in more depth to consider the
convergence of the finite volume schemes.

Even though detailed regularity and differentiability questions are not the main objec-
tive of this work, some words on the meaning of (3.3.1) in a rigorous framework are in
order. In general, each of the functions b, v, k, and f can depend on the time coordinate
t, on the spatial location x, and on the value of the unknown at (t, x). The regularity of
b, v, k, f , and of the unknown u need to be such that each term in (3.3.1) has meaning,
at least in a certain weak sense (cf. Rem. 3.3.2 below). In addition, solutions to (3.3.1)
are assumed to be continuous in this work, notwithstanding the fact that, especially
for higher values of d, the existence of continuous solutions can not be guaranteed in
general, and weaker requirements for the solution can be mathematically reasonable. In
the case where different equations of the form (3.1.1) are coupled via spatial interfaces
(cf. Sec. 3.4), the solutions uj are not always assumed to fit together continuously, but
discontinuities between the uj are required at jump interfaces according to condition
(3.1.6b).

In this work, continuity of the given functions b, v, k, and f is assumed, except at
interfaces. It is known that in many cases less regularity suffices, e.g. f being square
integrable with respect to time and space variables. However, continuity of the given
functions is present for the simulation applications in Ch. 4, and its assumption allows
considerable simplifications in the formulation of time and space discretization: It is
used in (3.3.9) that b, v, k, and f can be evaluated at discrete times tν ∈ τ , and it is used
in Def. 3.7.41 that b, v, k, and f can be evaluated at points y ∈ υ and x ∈ p. Otherwise,
more complicated approximations have to be used (cf. Rems 3.3.6 and 3.7.37).

For later reference, the setting for (3.3.1) is now summarized in Def. 3.3.1. Moreover,
Def. 3.3.1 introduces an operator formulation of (3.3.1).
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Definition 3.3.1. Let τ be the closed time interval, let p be a d-dimensional polytope,
and let υ ⊆ K. Given

b ∈ C(υ × τ × p,K), (3.3.2a)

v ∈ C(υ × τ × p,Rd), (3.3.2b)

k ∈ C(υ × τ × p,K), (3.3.2c)

f ∈ C(υ × τ × p,K), (3.3.2d)

the evolution operator Hb,v,k,f is defined by

Hb,v,k,f [u][(t, x)] :=∂tb
[
(u[(t, x)], t, x)

]
+ div

(
v
[
(u[(t, x)], t, x)

])

− div
(
k
[
(u[(t, x)], t, x)

]∇ u[(t, x)]
)− f

[
(u[(t, x)], t, x)

]
.

(3.3.3)

Thus, Hb,v,k,f maps a suitable subset U of C(τ × p, υ) into the set of all K-valued
functions on τ × p: Hb,v,k,f : U −→ F(τ × p,K).

Then the corresponding evolution equation is defined by

Hb,v,k,f [u] = 0. (3.3.4)

—

In a more concise form, (3.3.3) reads

Hb,v,k,f [u] = ∂t(b ◦ ut.−sp.) + div(v ◦ ut.−sp.)− div
(
(k ◦ ut.−sp.)∇u

)− f ◦ ut.−sp., (3.3.5)

where given u : τ × p −→ K, the function ut.−sp. is defined by

ut.−sp. : τ × p −→ υ × τ × p, ut.−sp.[(t, x)] :=
(
u[(t, x)], t, x

)
. (3.3.6)

The use of ut.−sp. allows more concise and more precise formulations. However, in order
not to burden the reader with this nonstandard notation, formulations of the form
(3.3.3) are generally preferred in the sequel.

As a caveat, it is pointed out that (3.3.4) might be an equality of function classes (e.g.
of elements of L2(τ × p,K)) such that writing arguments means picking representatives
from the classes.

Even though the right-hand side of (3.3.4) is 0, it does allow for source and sink terms
by means of the function f .

Remark 3.3.2. In addition to the regularity assumptions on u, b, v, k, and f listed in
Def. 3.3.1, these functions need to be such that the terms ∂tb[(u, t, x)], div

(
v[(u, t, x)]

)
,

div
(
k[(u, t, x)]∇u

)
, and f [(u, t, x)] are meaningful, e.g. in terms of weak differentiabil-

ity, and such that these terms belong to the same space, e.g. L2(τ × p,K). To handle
boundary and interface conditions, k[(u, t, x)]∇u is required to have a trace on τ × ∂p.
As v[(u, t, x)] is continuous, it can simply be restricted to τ × ∂p.

Example 3.3.3. If the evolution equation (3.3.4) is interpreted as a transient heat
equation as in Ex. 3.1.1(b), then b plays the role of an internal energy, v constitutes a
convection, k constitutes a diffusion, and f represents heat sources or sinks.
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3.3.2 Time Discretization

This section begins the task of formulating discretized versions of evolution equations,
treating the time discretization of a single evolution equation (3.3.4). The time dis-
cretization of coupled systems of evolution equations including the time discretization
of interface and boundary conditions is carried out in Sec. 3.4.3.

The description of the subsequent space discretization is more involved and is the sub-
ject of Sec. 3.5.

Discretization in time means to discretize the time domain τ into a strictly increasing
sequence of discrete times (tν)ν∈{0,...,n} = (t0, . . . , tn = tf). The positive real number

∆ := max
{
tν − tν−1 : ν ∈ {1, . . . , n}} (3.3.7)

is called the fineness of the time discretization.

The discretization (tν)ν∈{0,...,n} of τ with fineness ∆ is kept fixed for the rest of the
chapter.

For each time step, the time derivative in the evolution equation (3.3.4) is replaced
by a difference quotient (s. (3.3.8)), and each term of the evolution equation is either
evaluated at the current time tν (so-called implicit discretization) or at the previous
time tν−1 (so-called explicit discretization). The result is a scheme of equations, one
equation for each discrete time tν > t0. Starting from the initial condition, the equation
at time tν is used to determine a solution u(ν) at tν , treating the solution u(ν−1) at tν−1

as known.

In this work, only implicit time discretization is considered (with the exception of the
nonlocal interface and boundary conditions, where a semi-implicit method is used, s.
Secs 3.4.3, 3.4.3). In the context of evolution equations, an implicit time discretization
is known to be advantageous, due to properties such as unconditional stability. In
case of an explicit time discretization, it is known that to get stability even for simple
examples, the dependence of the finess of the time discretization on the fineness of the
space discretization is such that the time step has to be chosen impracticably small (s.
e.g. [GO92, Secs 8.2, 8.3], [GKO95, Secs 2.1, 2.3, and p. 279], and [PTVF96, Sec. 19.2]).

Definition 3.3.4. The implicit time discretization of the evolution operator Hb,v,k,f is

defined as the family (H
(ν)
b,v,k,f )ν∈{1,...,n}, where

H
(ν)
b,v,k,f [(u, ũ)][x] :=(tν − tν−1)

−1
(
b(ν)

[
(u[x], x)

]− b(ν−1)
[
(ũ[x], x)

])

+ div
(
v(ν)

[
(u[x], x)

])− div
(
k(ν)

[
(u[x], x)

]∇u[x]
)

− f (ν)
[
(u[x], x)

]
(3.3.8)

for each ν ∈ {1, . . . , n}, and

b(ν) ∈ C(υ × p,K), b(ν)[(y, x)] := b[(y, tν , x)], (3.3.9a)
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v(ν) ∈ C(υ × p,Rd), v(ν)[(y, x)] := v[(y, tν , x)], (3.3.9b)

k(ν) ∈ C(υ × p,K), k(ν)[(y, x)] := k[(y, tν , x)], (3.3.9c)

f (ν) ∈ C(υ × p,K), f (ν)[(y, x)] := f [(y, tν , x)] (3.3.9d)

for each ν ∈ {0, . . . , n}.
Thus, each H

(ν)
b,v,k,f maps a suitable subset U (ν)×U (ν−1) of C(p, υ)×C(p, υ) into the set

of all K-valued functions on p:

H
(ν)
b,v,k,f : U (ν) × U (ν−1) −→ F(p,K). (3.3.10)

The implicit Euler scheme of the evolution equation Hb,v,k,f [u] = 0 is given by

∧

ν∈{1,...,n}
H

(ν)
b,v,k,f [(u

(ν), u(ν−1))] = 0. (3.3.11)

—

In a manner similar to (3.3.5), one can write (3.3.8) in the more concise form

H
(ν)
b,v,k,f [(u, ũ)] =(tν − tν−1)

−1
(
b(ν) ◦ usp. − b(ν−1) ◦ ũsp.

)
+ div

(
v(ν) ◦ usp.

)

− div
(
(k(ν) ◦ usp.)∇u

)− f (ν) ◦ usp.,
(3.3.12)

where given u : p −→ K, the function usp. is defined by

usp. : p −→ K× p, usp.[x] := (u[x], x). (3.3.13)

Once more, conforming to standard notation, the formulation (3.3.8) is mostly used
instead of (3.3.12).

Remark 3.3.5. Analogous to Rem. 3.3.2, in addition to the regularity assumptions on
u(ν), b(ν), v(ν), k(ν), and f (ν) listed in Def. 3.3.4, these functions need to be such that
the terms in (3.3.8) are meaningful in a suitable sense.

Remark 3.3.6. As mentioned in Sec. 3.3.1, for the mathematical theory it is often
not necessary to assume continuity of f . For example, if one just had square in-
tegrability of f with respect to t, then one would replace f (ν)

[
(u[x], x)

]
with (tν −

tν−1)
−1

∫ tν
tν−1

f
[
(u[x], t, x)

]
dt in (3.3.8).

3.4 Evolution Equation Complexes

As described in Sec. 3.1, the goal is to study different evolution equations (3.1.1) on
different domains, coupled by interface conditions. The contents of the present section
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provides the setting and the notation for this situation, which is then kept fixed for the
remainder of Ch. 3.

In the language of Def. 3.3.1, one considers a family of evolution equations Hbj ,vj ,kj ,fj
[uj]

= 0, j ∈ J , where J is a finite nonempty index set and each Hbj ,vj ,kj ,fj
: Uj −→

F(τ × pj,K) is an evolution operator. Thus, the evolution equations all share the same
time domain τ as well as the same solution range υ; they just differ in their space
domains pj.

The total space domain p is the union of the spatial subdomains pj, and, moreover,
(pj)j∈J is assumed to form a partition of p in the sense of Def. C.1.3. A nontrivial
example is depicted in Fig. 3.2, where further notation used in Fig. 3.2 is explained
below.

3.4.1 Interface, Boundary, and Initial Conditions

An evolution equation (cf. (3.3.1) and (3.3.4)) does not determine a unique solution
u. In many cases, a unique solution can be selected by prescribing the unknown’s
behaviour at the boundary of the domain via boundary and interface conditions. An
initial condition, prescribing the solution at the initial time, can be viewed as a special
case, but in the following, the terms boundary and interface conditions are reserved for
conditions on the boundaries of space domains.

As described in Sec. 3.1, boundary conditions in terms of the unknown itself and in
terms of its flux are considered in this work (cf. (3.1.8), (3.1.9)).

If evolution equations (3.3.4) are considered on several space domains having common
interfaces, then on such interfaces, boundary conditions are replaced by interface con-
ditions. Analogously to the case of the boundary conditions, the interface conditions of
interest here are given in terms of the unknowns and their fluxes (cf. (3.1.6a), (3.1.6b),
(3.1.7), and also (3.4.6), (3.4.7) below).

In case the boundaries of two spatial subdomains pj1 and pj2 did not intersect in an
interface, one would provide one boundary condition on ∂pj1 and one boundary condi-
tion on ∂pj2 . Accordingly, one needs two conditions at an interface between pj1 and pj2 .
Here, one condition is always given as a relationship between the two adjacent fluxes,
i.e. in the form (3.1.7). It might or might not involve the values of the unknowns uj1

and uj2 at the interface (or even at other interfaces e.g. due to radiation), but it always
involves the values of the fluxes. On the other hand, the second interface condition
involves the fluxes if and only if the unknown is allowed to have a discontinuity at the
interface (cf. (3.1.6)).

During the discretization process described in the succeeding sections, interface and
boundary operators are used to deal with flux terms on surfaces of polyhedral control
volumes. It is noted that due to the fact that derivatives might exist only in a weak
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Γ1,Dir := Γ1,0

p4

p1

p4

p2

outer Dirichlet boundaries Γ2,1

jump interfaces

N = 4, J = {1, 2, 3, 4},
Econ =

{{1, 3}, {2, 4}}, IFcon = {∂regp1 ∩ ∂regp3, ∂regp2 ∩ ∂regp4},
Ejump =

{{1, 2}, {1, 4}}, IFjump = {∂regp1 ∩ ∂regp2, ∂regp1 ∩ ∂regp4},
J1 = {0, 1}, J2 = {1, 2, 3}, J3 = {0}, J4 = ∅.

continuous interfaces

outer non-Dirichlet boundaries

p1

p2

p3

p4

p = p1 ∪ p2 ∪ p3 ∪ p4

Γ2,2

Γ2,3
∂p1 ∩ ∂p2

∂p2 ∩ ∂p4

Γ1,Dir

:= Γ1,0

p1

p3

Γ1,1

∂p1 ∩ ∂p4

Γ3,Dir := Γ3,0

∂p1 ∩ ∂p3

Figure 3.2: Space domain p of a (2, 4)-dimensional domain complex(
υ, τ, (pj)j∈J , EIF, Econ, (ie)e∈EIF

, (Jj)j∈J , (Γj,ι)(j,ι)∈J×Jj

)
(s. Def. 3.4.5).

sense, in general, the flux must be interpreted as the trace of a weakly differentiable
function:

Notation 3.4.1. Let j ∈ J , and let ω ⊆ pj be a d-dimensional polytope. Then the



60 CHAPTER 3. FINITE VOLUME METHOD

flux Fj,∂ω through the boundary of ω is defined by

Fj,∂ω[(t, x)] := trτ×∂ω

(
kj

[
(uj[(t, x)], t, x)

]∇uj[(t, x)]
)
, (3.4.1)

or, more precisely, using (3.3.6), by

Fj,∂ω := trτ×∂ω

(
(kj ◦ ut.−sp.

j )∇uj

)
. (3.4.2)

Interface Conditions

Given two distinct indices j1 ∈ J and j2 ∈ J , the spatial subdomains pj1 and pj2 are
said to have an interface iff ∂regpj1 ∩ ∂regpj2 6= ∅. The regular boundary of a polytope
is defined and illustrated in App. C.4.2, cf. Def. C.4.11 and Fig. C.3. Since interfaces
are supposed to have dimension d − 1, it does not suffice to require ∂pj1 ∩ ∂pj2 6= ∅.
For example in Fig. 3.2, p2 and p3 do not have a common interface, even though
∂p2 ∩ ∂p3 6= ∅.
Given the family (pj)j∈J , the set off all interfaces is given by

IF :=
{
∂regpj1 ∩ ∂regpj2 : ∂regpj1 ∩ ∂regpj2 6= ∅, j1 6= j2

}
. (3.4.3)

Remark 3.4.2. It is implied by Rem. C.4.13 that at most two spatial subdomains
intersect at an interface, i.e. for each γ ∈ IF, there is precisely one two-elementic index
set {j1, j2} ⊆ J such that γ = ∂regpj1 ∩ ∂regpj2 .

—

In consequence of Rem. 3.4.2, instead of by IF, the set of all interfaces is also charac-
terized by

EIF :=
{{j1, j2} ⊆ J : ∂regpj1 ∩ ∂regpj2 ∈ IF

}
. (3.4.4)

Then one has the bijective map e : IF −→ EIF, that assigns each γ ∈ IF the unique
two-elementic subset e[γ] := {j1, j2} of J such that γ = ∂regpj1 ∩ ∂regpj2 .

It was described in Sec. 3.1 that given the interface γ = ∂regpj1 ∩ ∂regpj2 ∈ IF, the
unknowns uj1 ∈ Uj1 and uj2 ∈ Uj2 are supposed to satisfy either the continuity interface
condition (3.1.6a) or the jump interface condition (3.1.6b). Therefore, the set IF is
decomposed into the disjoint union of the sets IFcon and IFjump: IF = IFcon ∪̇ IFjump,
where a continuity interface condition is prescribed for each γ ∈ IFcon and a jump
interface condition is prescribed for each γ ∈ IFjump. The corresponding decomposition
of EIF reads EIF = Econ ∪̇Ejump, where Econ := {e[γ] : γ ∈ IFcon}, Ejump := {e[γ] : γ ∈
IFjump}. Equivalently, one can also treat the set Econ as given, subsequently defining
IFcon := {γ ∈ IF : e[γ] ∈ Econ}. The latter point of view is taken in Def. 3.4.5 of
a domain complex, since two-elementic index sets are simpler objects than the actual
interfaces. In particular, Econ can be prescribed without first defining IF or EIF.
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Remark 3.4.3. The sets EIF, Econ, and Ejump can be interpreted as sets of edges of
a graph (cf. App. C.5 for some basics about graphs), namely of the graph having the
subdomains as vertices that are connected by an edge if and only if they have a common
interface. Then each e[γ] corresponds to an edge in that graph.

—

A flux interface condition (3.1.7) is assumed to hold at both continuous and jump
interfaces, i.e. at each γ ∈ IF.

Both jump interface conditions and flux interface conditions are asymmetric with re-
spect to the adjacent subdomains, i.e. they are not invariant under a switch of j1 and
j2. Ordering the two subdomains adjacent to an interface allows to write jump inter-
face conditions and flux interface conditions in a normalized manner by introducing the
following conventions:

If the jump interface condition at γ = ∂regpj1 ∩ ∂regpj2 is given as

Fj1,∂pj1
• npj1

+ aγ,1
jump[(uj1 , t, x)]− aγ,2

jump[(uj2 , t, x)] = 0 on τ × γ, (3.4.5)

i.e. in terms of the flux Fj1,∂pj1
through the boundary of pj1 , then pj1 is called the first

subdomain at γ and pj2 is called the second subdomain at γ. In the following, i1[γ] is
written for the index of the first subdomain, and i2[γ] is written for the index of the
second subdomain. For the purpose of subsequent reference, (3.4.5) is restated in terms
of i1[γ] and i2[γ]:

Fi1[γ],∂pi1[γ]
• npi1[γ]

+ aγ,1
jump[(ui1[γ], t, x)]− aγ,2

jump[(ui2[γ], t, x)] = 0 on τ × γ. (3.4.6)

Moreover, the flux interface condition at γ is always assumed to be given in the form

Fi1[γ],∂pi1[γ]
• npi1[γ]

− Fi2[γ],∂pi2[γ]
• npi1[γ]

−Aγ

[(
uj¹{t}×pj

)
j∈J

]
[x]

− aγ,1
flux[(ui1[γ], t, x)] + aγ,2

flux[(ui2[γ], t, x)] = 0 on τ × γ.
(3.4.7)

Thus, both i1 and i2 are maps from IF into J such that

∧
γ∈IF

{
i1[γ], i2[γ]

}
= e[γ]. (3.4.8)

In particular, given i1, the map i2 is uniquely determined by (3.4.8).

The following Ex. 3.4.4 treats a situation arising from the model of Ch. 2.

Example 3.4.4. In Fig. 3.1 on p. 50, γ denotes the interface between pj1 := Ωj1 =
Ωgas and pj2 := Ωj2 = Ω[SiC−Powder]. If the jump interface condition (2.3.2b′) and the
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flux interface condition (2.4.39b) both hold at γ, then the situation of Ex. 3.1.2(b) is
combined with the situation of the second case of Ex. 3.1.2(c):

uj1 := Tgas, uj2 := Tsolid¹pj2
, kj1 := κgas, kj2 := κ[SiC−Powder],

npj1
= ngas = −n[SiC−Powder] = −npj2

,

aγ,1
jump[(uj1 , t, x)] := ξSiC−Powderuj1 , aγ,2

jump[(uj2 , t, x)] := ξSiC−Powderuj2 ,

aγ,1
flux := 0, aγ,2

flux[(uj2 , t, x)] :=(εr + εt)[(uj2 , x)] σ u4
j2

,

Aγ

[(
uj¹{t}×pj

)
j∈J

]
:= εr[(uj2 , x)]Jr

[Rr[Tsolid]
]
+ εt[(uj2 , x)]Jt

[Rt[Tsolid]
]
.

According to the above convention, one has i1[γ] = j1 and i2[γ] = j2 in the present
situation.

—

As in (3.3.2), continuity of the given functions is assumed:

∧
γ∈IFjump

aγ,1
jump ∈ C(υ × τ × γ,K), aγ,2

jump ∈ C(υ × τ × γ,K), (3.4.9a)

∧
γ∈IF

aγ,1
flux ∈ C(υ × τ × γ,K), aγ,2

flux ∈ C(υ × τ × γ,K). (3.4.9b)

The precise setting for the nonlocal interface operators Aγ, γ ∈ IF, is the following:

Aγ :
∏
j∈J

C(pj, υ) −→ Cpw(γ,K), (3.4.10)

assigning a K-valued piecewise continuous function on the interface to a family of υ-
valued space-dependent continuous functions.

In the following, as in (3.4.7), Aγ is always applied to a family of unknowns restricted
to the time instant t ∈ τ : Aγ[u ¹{t}], where the symbol u always denotes the family
(uj)j∈J , and u¹{t}:=

(
uj¹{t}×pj

)
j∈J

denotes its restriction to the time instant t ∈ τ .

At a jump interface γ ∈ IFjump, the jump interface condition and the flux interface
condition can be combined to yield a different jump interface condition in terms of the
flux in the second subdomain at γ: Using (3.4.6) to replace Fi1[γ],∂pi1[γ]

•npi1[γ]
in (3.4.7)

together with npi1[γ]
= −npi2[γ]

, results in

Fi2[γ],∂pi2[γ]
• npi2[γ]

−Aγ

[(
uj¹{t}×pj

)
j∈J

]
[x]

− aγ,1
flux[(ui1[γ], t, x)] + aγ,2

flux[(ui2[γ], t, x)]

− aγ,1
jump[(ui1[γ], t, x)] + aγ,2

jump[(ui2[γ], t, x)] = 0 on τ × γ.

(3.4.11)
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Boundary Conditions

As described at the end of Sec. 3.1, several different outer boundary conditions of
Dirichlet type (3.1.8) and non-Dirichlet type (3.1.9) are considered on outer boundaries
∂p ∩ ∂pj. The notation for outer boundaries introduced in the following is illustrated
in Fig. 3.2 on p. 59.

Let Oj denote the relative topology on ∂p ∩ ∂pj with respect to the norm topology on
Rd. Subsequently, it is always assumed that for each j ∈ J , the family (Γj,ι)ι∈Jj

forms
a partition of ∂p ∩ ∂pj with respect to Oj, where Jj is a nonempty finite index set.
Moreover, each Γj,ι is required to be a (d − 1)-polytope. In particular, each Γj,ι has
nonempty interior with respect to Oj.

The index ι = 0 is reserved for Dirichlet boundaries: Γj,Dir := Γj,0. That means pj has
a Dirichlet boundary if and only if 0 ∈ Jj.

Thus, for each j ∈ J , the Dirichlet condition (3.1.8) is presumed to hold on Γj,Dir

(if it exists), and a non-Dirichlet condition (3.1.9) is presumed to hold on each Γj,ι,
ι ∈ Jj \ {0}, where once again continuity of the given functions is supposed:

∧
j∈J : 0∈Jj

uj,Dir ∈ C(τ × Γj,Dir, υ), (3.4.12a)

∧

(j,ι)∈J×
(

Jj\{0}
) aj,ι

out ∈ C(υ × τ × Γj,ι,K). (3.4.12b)

The uj,Dir are called Dirichlet functions.

In analogy with (3.4.10), the setting for the nonlocal boundary operators Bj,ι, (j, ι) ∈
J × (

Jj \ {0}
)

is

Bj,ι :
∏
j∈J

C(pj, υ) −→ Cpw(Γj,ι,K). (3.4.13)

As the solution is known a priori at Dirichlet boundaries, there is a conceptual difference
in the subsequent handling of Dirichlet and non-Dirichlet boundaries (s. Sec. 3.7).

Initial Conditions

For each j ∈ J , the initial condition is given by (3.1.10), where the initial distributions

u
(0)
j satisfy

∧
j∈J

u
(0)
j ∈ C(pj, υ). (3.4.14)
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3.4.2 Domain Complex and Evolution Equation Complex

The domain complex (Def. 3.4.5) and the evolution equation complex (Def. 3.4.6) are
structures combining all the previous ingredients of Sec. 3.4. The evolution equation
complex contains all information needed to describe a problem of coupled evolution
equations on several domains, where the domain-related data is collected in the domain
complex.

Definition 3.4.5. Let (d,N) ∈ N2, and let J be an index set with #J = N . A
(d,N)-dimensional domain complex

D =
(
υ, τ, (pj)j∈J , Econ, i1, (Jj)j∈J , (Γj,ι)(j,ι)∈J×Jj

)
(3.4.15)

is an 8-tuple consisting of the solution range υ ⊆ K, the time domain τ , a finite family of
d-polytopes (pj)j∈J , a set Econ of two-elementic subsets of J , a map i1, a finite family of
nonempty finite index sets (Jj)j∈J , and a finite family (Γj,ι)(j,ι)∈J×Jj

of (d−1)-polytopes
Γj,ι ⊆ ∂p∩∂pj, satisfying the following conditions (i) – (iii). Given the objects collected
in (3.4.15), the sets IF, EIF, IFcon, IFjump, Ejump, and the maps e and i2 can be defined
as described in Sec. 3.4.1.

(i) (pj)j∈J is a partition of p :=
⋃

j∈J pj.

(ii) It is i1 : IF −→ J such that i1[γ] ∈ e[γ] for each γ ∈ IF.

(iii) For each j ∈ J , the family (Γj,ι)ι∈Jj
is a partition of ∂p ∩ ∂pj with respect to the

relative topology on ∂p ∩ ∂pj.

—

Figure 3.2 on p. 59 illustrates the (2, 4)-dimensional domain complex that was already
used for examples in Sec. 3.4.1.

A problem of coupled evolution equations on several domains is given via a domain
complex together with the information about given functions, leading to the following
notion of an evolution equation complex:

Definition 3.4.6. Let (d,N) ∈ N2, and let J be an index set with #J = N . A
(d,N)-dimensional evolution equation complex

C =
(
D,

(
Hbj ,vj ,kj ,fj

)
j∈J

,
(
(aγ,1

jump, a
γ,2
jump)

)
γ∈IFjump

,
(
(aγ,1

flux, a
γ,2
flux,Aγ)

)
γ∈IF

,

(
uj,Dir

)
j∈J : 0∈Jj

,
(
(aj,ι

out,Bj,ι)
)
(j,ι)∈J×(Jj\{0}),

(
u

(0)
j

)
j∈J

)
,

(3.4.16)

consists of a (d,N)-dimensional domain complex D (s. Def. 3.4.5), an evolution operator
Hbj ,vj ,kj ,fj

for each spatial subdomain pj (cf. Def. 3.3.1), two continuous functions aγ,1
jump
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and aγ,2
jump for each jump interface γ (cf. (3.4.6) and (3.4.9a)), two continuous functions

aγ,1
flux and aγ,2

flux and one nonlocal operator Aγ for each interface γ (cf. (3.4.7), (3.4.9b),
and (3.4.10)), a Dirichlet function uj,Dir for each Dirichlet boundary Γj,Dir (cf. (3.1.8)
and (3.4.12a)), a continuous function aj,ι

out and a nonlocal operator Bj,ι for each non-
Dirichlet boundary Γj,ι (cf. (3.1.9), (3.4.12b), and (3.4.13)), and an initial distribution
on each spatial subdomain pj (cf. (3.1.10) and (3.4.14)), satisfying the compatibility
conditions (i) – (iii).

(i) u
(0)
i1[γ]¹γ= u

(0)
i2[γ]¹γ for each γ ∈ IFcon.

(ii) For each γ ∈ IFcon such that 0 ∈ Ji1[γ] ∩ Ji2[γ] and such that q := γ ∩ Γi1[γ],Dir ∩
Γi2[γ],Dir 6= ∅, it holds that ui1[γ],Dir¹τ×q= ui2[γ],Dir¹τ×q, where γ is the closure of γ
with respect to the relative topology on pi1[γ] ∩ pi2[γ]. Confer Fig. 3.3.

(iii) uj,Dir¹{t0}×Γj,0
= u

(0)
j ¹Γj,0

for each j ∈ J such that 0 ∈ Jj.

—

In Def. 3.4.6, condition (i) ensures that different initial distributions agree where they
are defined on common continuous interfaces, and condition (ii) does likewise for Dirich-
let functions. Condition (iii) guarantees the consistency of the Dirichlet functions with
the initial distributions. The compatibility conditions (i), (ii), and (iii) of Def. 3.4.6
are the most elementary, and it is trivial that they are necessary for the existence of
discrete solutions (cf. Th. 3.8.35 in Sec. 3.8). However, if one wants to proceed to prove
the existence of continuous solutions, then, in general, more complicated compatibility
conditions related to interface and boundary conditions are needed.

A solution to an evolution equation complex is a family of functions (uj)j∈J , satisfying
all corresponding evolution equations, interface conditions, boundary conditions, and
the initial conditions:

Definition 3.4.7. Given an evolution equation complex C as defined in Def. 3.4.6,
a family u := (uj)j∈J ∈

∏
j∈J Uj is called a solution to C iff it satisfies the following

conditions (i) – (vii).

(i) Each uj, j ∈ J , satisfies the initial condition uj¹{t0}×pj
= u

(0)
j .

(ii) Hbj ,vj ,kj ,fj
[uj] = 0 for each j ∈ J .

(iii) For each γ ∈ IFcon, the functions ui1[γ] and ui2[γ] satisfy the continuity interface
condition ui1[γ]¹τ×γ= ui2[γ]¹τ×γ.

(iv) For each γ ∈ IFjump, the functions ui1[γ] and ui2[γ] satisfy the jump interface
condition (3.4.6).
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Γ2,0 = Γ2,Dir

p3

x1

x2

p1 p2

γ := ∂regp1 ∩ ∂regp2 ∈ IFcon

Γ1,0 = Γ1,Dir

Figure 3.3: Subdomains p1 and p2 have the continuous interface γ. One has x1 6∈ γ,
but {x1} = q := γ ∩ Γ1,Dir ∩ Γ2,Dir. Moreover, x2 ∈ Γ1,Dir ∩ Γ2,Dir, but x2 6∈ q. Thus,
u1,Dir and u2,Dir must agree on x1, but not necessarily on x2.

(v) For each γ ∈ IF, the family u satisfies the flux interface condition (3.4.7).

(vi) For each j ∈ J such that 0 ∈ Jj, the function uj satisfies the Dirichlet boundary
condition (3.1.8) on Γj,Dir = Γj,0.

(vii) For each (j, ι) ∈ J×(
Jj \{0}

)
, the function uj satisfies the non-Dirichlet boundary

condition (3.1.9) on Γj,ι.

A domain complex D as defined in Def. 3.4.5 and an evolution equation complex C as
defined in Def. 3.4.6 is now kept fixed for the remainder of Ch. 3.

3.4.3 Time Discretization

The goal of this section is to discretize the evolution equation complex C in time. This
includes the time discretization of evolution equations and of the several interface and
boundary conditions considered in the previous sections.

The time discretization of an evolution equation has already been performed in Sec.
3.3.2. Now a similar procedure is used to deal with interface and boundary conditions.
It is recalled that the time domain τ = [t0, tf ] is discretized into (t0, . . . , tn = tf). As in
Sec. 3.3.2, implicit discretization is used. The only exceptions are the nonlocal operators
Aγ and Bj,ι in the flux interface conditions (3.4.7) and the boundary conditions (3.1.9),
respectively, where some of the dependencies on the solution are discretized explicitly
(cf. Nots 3.4.9, 3.4.11, and Eqs (3.4.24), (3.4.31) below). In the application to heat
equations, where theAγ and Bj,ι represent nonlocal radiation operators (cf. Exs 3.1.2(c),
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3.1.3(e) and Exs 3.4.10, 3.4.12 below), this allows to evaluate the emissivities at the
temperature of the previous time tν−1, which considerably simplifies the solution of the
nonlinear system resulting after space discretization, given by Def. 3.7.42(iii), by means
of Newton’s method.

The result of the time discretization is a scheme of systems of equations and conditions,
one system for each discrete time tν . Starting from the initial condition, the system at
time tν is supposed to be a determining system for the solution family u(ν) = (u

(ν)
j )j∈J

at tν , treating the solution family u(ν−1) at tν−1 as known.

Interface Conditions

For each continuous interface γ ∈ IFcon, the continuity interface condition in Def.
3.4.7(iii) is replaced by the time-discrete scheme

∧

ν∈{0,...,n}
u

(ν)
i1[γ]¹γ= u

(ν)
i2[γ]¹γ . (3.4.17)

To discretize the jump interface conditions (3.4.6), the time-discrete analogue of Not.
3.4.1 is provided:

Notation 3.4.8. Let j ∈ J , and let ω ⊆ pj be a d-dimensional polytope. Then the

flux F
(ν)
j,∂ω through the boundary of ω at time tν is defined by

F
(ν)
j,∂ω[x] := tr∂ω

(
k

(ν)
j

[
(u

(ν)
j [x], x)

]∇u
(ν)
j [x]

)
, (3.4.18)

i.e. in function notation using (3.3.13)

F
(ν)
j,∂ω = tr∂ω

(
(k

(ν)
j ◦ (u

(ν)
j )sp.)∇u

(ν)
j

)
, (3.4.19)

where the k
(ν)
j are given according to (3.3.9c).

—

For each jump interface γ ∈ IFjump, the jump interface condition (3.4.6) is replaced by
the time-discrete scheme

∧

ν∈{0,...,n}
F

(ν)
i1[γ],∂pi1[γ]

• npi1[γ]
+ aγ,1,ν

jump[(u
(ν)
i1[γ], x)]− aγ,2,ν

jump[(u
(ν)
i2[γ], x)] = 0 on γ, (3.4.20)

where for each (γ, α, ν) ∈ IFjump×{1, 2} × {0, . . . , n}:
aγ,α,ν

jump ∈ C(υ × γ,K), aγ,α,ν
jump [(y, x)] = aγ,α

jump[(y, tν , x)]. (3.4.21)

In order to formulate the time-discrete version of the flux interface conditions (3.4.7), the
possible dependencies of the nonlocal interface operators Aγ on the family of unknowns
u is artificially divided into dependencies that are to be discretized explicitly and into
dependencies that are to be discretized implicitly:
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Notation 3.4.9. For each interface γ ∈ IF, an operator

(Aγ)
ex.-im. :

(∏
j∈J

C(pj, υ)

)2

−→ Cpw(γ,K) (3.4.22a)

is called a dependency splitting of Aγ iff

∧

u∈Qj∈J C(pj ,υ)

(Aγ)
ex.-im.[(u, u)] = Aγ[u]. (3.4.22b)

Analogously, for each α ∈ {1, 2}, a function

(aγ,α
flux)

ex.-im. ∈ C(υ2 × τ × γ,K) (3.4.23a)

is called a dependency splitting of aγ,α
flux iff

∧

(y,t,x)∈υ×τ×γ

(aγ,α
flux)

ex.-im.[((y, y), t, x
)]

= aγ,α
flux[(y, t, x)]. (3.4.23b)

—

The first argument of a dependency splitting is to be discretized explicitly, whereas the
second argument of a dependency splitting is to be discretized implicitly.

Example 3.4.10. When applied to Ex. 3.1.2(c), the dependency splittings allow one
to separate the temperature dependence of the emissivity into the first argument. One
is then in the position to discretize the emissivity explicitly in an otherwise implicit
discretization.

The following dependency splittings are actually used for the numerical simulation
applications in Ch. 4. The precise relation between the temperature Tsolid and the
family of unknowns (uj)j∈J was explained in Ex. 3.1.2(c). Here, to simplify notation,
the family (uj)j∈J is always hidden behind the symbols Tsolid and Ssolid.

Dependency splittings in the first case of Ex. 3.1.2(c):

(Aγ)
ex.-im.[(Ssolid, Tsolid)] := εt[(Ssolid, x)]Jt

[Rt[Tsolid]
]
,

(aγ,2
flux)

ex.-im.[(
(Ssolid, Tsolid), t, x

)]
:= εt[(Ssolid, x)] σ T 4

solid.

Dependency splittings in the second case of Ex. 3.1.2(c):

(Aγ)
ex.-im.[(Ssolid, Tsolid)] := εr[(Ssolid, x)]Jr

[Rr[Tsolid]
]

+ εt[(Ssolid, x)]Jt

[Rt[Tsolid]
]
,

(aγ,2
flux)

ex.-im.[(
(Ssolid, Tsolid), t, x

)]
:= (εr + εt)[(Ssolid, x)] σ T 4

solid.
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Dependency splittings in the third case of Ex. 3.1.2(c):

(Aγ)
ex.-im.[(Ssolid, Tsolid)] := εr[(Ssolid, x)]Jr

[Rr[Tsolid]
]
,

(aγ,2
flux)

ex.-im.[(
(Ssolid, Tsolid), t, x

)]
:= εr[(Ssolid, x)] σ T 4

solid.

In each of the three cases, one recovers the original situation by setting Ssolid = Tsolid:

(Aγ)
ex.-im.[(Tsolid, Tsolid)] = Aγ[Tsolid],

(aγ,2
flux)

ex.-im.[(
(Tsolid, Tsolid), t, x

)]
= aγ,2

flux[Tsolid].

—

It is recalled that u(ν) = (u
(ν)
j )j∈J . For each interface γ ∈ IF, the (semi-implicit) time-

discrete scheme for the flux interface condition (3.4.7) is formulated:

∧

ν∈{1,...,n}




F
(ν)
i1[γ],∂pi1[γ]

• npi1[γ]
− F

(ν)
i2[γ],∂pi2[γ]

• npi1[γ]

− (Aγ)
ex.-im.[(

u(ν−1), u(ν)
)]

[x]

− (aγ,1,ν
flux )

ex.-im.[(
(u

(ν−1)
i1[γ] , u

(ν)
i1[γ]), x

)]

+ (aγ,2,ν
flux )

ex.-im.[(
(u

(ν−1)
i2[γ] , u

(ν)
i2[γ]), x

)]
= 0




on γ, (3.4.24)

where for each (γ, α, ν) ∈ IF×{1, 2} × {0, . . . , n}:
(aγ,α,ν

flux )ex.-im. ∈ C(υ2 × γ,K),

(aγ,α,ν
flux )ex.-im.[((y, y′), x

)]
= (aγ,α

flux)
ex.-im.[((y, y′), tν , x

)]
.

(3.4.25)

Finally, combining (3.4.20) and (3.4.24) yields the time-discrete analogue of (3.4.11)
for each γ ∈ IFjump:

∧

ν∈{1,...,n}




F
(ν)
i2[γ],∂pi2[γ]

• npi2[γ]
− (Aγ)

ex.-im.[(
u(ν−1), u(ν)

)]
[x]

− (aγ,1,ν
flux )

ex.-im.[(
(u

(ν−1)
i1[γ] , u

(ν)
i1[γ]), x

)]

+ (aγ,2,ν
flux )

ex.-im.[(
(u

(ν−1)
i2[γ] , u

(ν)
i2[γ]), x

)]

− aγ,1,ν
jump[(u

(ν)
i1[γ], x)] + aγ,2,ν

jump[(u
(ν)
i2[γ], x)] = 0




on γ. (3.4.26)

Boundary Conditions

For each j ∈ J such that 0 ∈ Jj, the Dirichlet boundary condition (3.1.8) is replaced
by the time-discrete scheme

∧

ν∈{0,...,n}
u

(ν)
j [x] = u

(ν)
j,Dir[x] on Γj,Dir, (3.4.27)
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where for each (j, ν) ∈ J × {0, . . . , n} such that 0 ∈ Jj:

u
(ν)
j,Dir ∈ C(Γj,Dir,K), u

(ν)
j,Dir[x] = uj,Dir[(tν , x)]. (3.4.28)

To state the time-discrete version of the non-Dirichlet boundary conditions (3.1.9), the
strategy is analogous to the case of the flux interface conditions, introducing dependency
splittings of the Bj,ι and the aj,ι

out:

Notation 3.4.11. For each (j, ι) ∈ J × (
Jj \ {0}

)
, the operator (Bj,ι)

ex.-im. and the

function (aj,ι
out)

ex.-im.
are dependency splittings of Bj,ι and aj,ι

out, respectively, iff

(Bj,ι)
ex.-im. :

(∏
j∈J

C(pj, υ)

)2

−→ Cpw(Γj,ι,K), (3.4.29a)

∧

u∈Qj∈J C(pj ,υ)

(Bj,ι)
ex.-im.[(u, u)] = Bj,ι[u], (3.4.29b)

(aj,ι
out)

ex.-im. ∈ C(υ2 × τ × Γj,ι,K), (3.4.30a)
∧

(y,t,x)∈υ×τ×Γj,ι

(aj,ι
out)

ex.-im.[(
(y, y), t, x

)]
= aj,ι

out[(y, t, x)]. (3.4.30b)

Example 3.4.12. The present example is analogous to Ex. 3.4.10, where dependency
splittings were used to separate the temperature dependence of the emissivity occurring
in the interface conditions of Ex. 3.1.2(c) into the first argument. Now the same is done
in the case of boundary conditions by applying dependency splittings to Ex. 3.1.3(e),
where, as in Ex. 3.4.10, Tsolid and Ssolid is written instead of (uj)j∈J :

(Bj,ι)
ex.-im.[(Ssolid, Tsolid)] := ε[(Ssolid, x)] · J [R[Tsolid]

]
,

(aj,ι
out)

ex.-im.[(
(Ssolid, Tsolid), t, x

)]
:= ε[(Ssolid, x)] σ T 4

solid.

As in Ex. 3.4.10, setting Ssolid = Tsolid yields the original situation.

—

For each (j, ι) ∈ J×(
Jj \{0}

)
, the non-Dirichlet boundary condition (3.1.9) is replaced

by the time-discrete scheme

∧

ν∈{1,...,n}

(
F

(ν)
j,∂pj

• npj
− (Bj,ι)

ex.-im.[(
u(ν−1), u(ν)

)]
[x]

+ (aj,ι,ν
out )

ex.-im.[(
(u

(ν−1)
j , u

(ν)
j ), x

)]
= 0

)
on Γj,ι, (3.4.31)

where for each (j, ι, ν) ∈ J × (
Jj \ {0}

)× {0, . . . , n}:

(aj,ι,ν
out )

ex.-im. ∈ C(υ2 × Γj,ι,K),

(aj,ι,ν
out )

ex.-im.[(
(ỹ, y), x

)]
= (aj,ι

out)
ex.-im.[(

(ỹ, y), tν , x
)]

.
(3.4.32)
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Evolution Equation Complex

The time discretization of an evolution equation complex (3.4.16) includes the time
discretization of the evolution equations (Sec. 3.3.2) as well as of the interface and
boundary conditions (Sec. 3.4.3). The structure T defined in the following Def. 3.4.13
contains all the resulting data.

Definition 3.4.13. Given an evolution equation complex C, a time discretization T of
C (implicit except in some interface and boundary condition dependencies),

T =
(
(tν)ν∈{0,...,n},

(U (ν)
j

)
(j,ν)∈J×{0,...,n},

(
H

(ν)
bj ,vj ,kj ,fj

)
(j×ν)∈J×{0,...,n},(

(aγ,1,ν
jump, a

γ,2,ν
jump)

)
(γ,ν)∈IFjump×{0,...,n},(

((aγ,1
flux)

ex.-im.
, (aγ,2

flux)
ex.-im.

, (Aγ)
ex.-im.)

)
γ∈IF

,
(
((aγ,1,ν

flux )
ex.-im.

, (aγ,2,ν
flux )

ex.-im.
)
)
(γ,ν)∈IF×{0,...,n},(

u
(ν)
j,Dir

)
(j,ν)∈J×{0,...,n}: 0∈Jj

,
(
((aj,ι

out)
ex.-im.

, (Bj,ι)
ex.-im.)

)
(j,ι)∈J×(Jj\{0}),(

(aj,ι,ν
out )

ex.-im.)
(j,ι,ν)∈J×(Jj\{0})×{0,...,n}

)
,

(3.4.33)

consists of a discretization (tν)ν∈{0,...,n} of τ , sets U (ν)
j ⊆ C(pj, υ), an implicit time

discretization
(
H

(ν)
bj ,vj ,kj ,fj

)
ν∈{0,...,n} of each Hbj ,vj ,kj ,fj

, where H
(ν)
bj ,vj ,kj ,fj

is defined on

U (ν)
j × U (ν−1)

j (cf. Def. 3.3.4), functions aγ,α,ν
jump satisfying (3.4.21), dependency split-

tings (aγ,α
flux)

ex.-im. and (Aγ)
ex.-im. of aγ,α

flux and Aγ, respectively (cf. Not. 3.4.9), functions

(aγ,α,ν
flux )ex.-im. satisfying (3.4.25), functions u

(ν)
j,Dir satisfying (3.4.28), dependency splittings

(aj,ι
out)

ex.-im.
and (Bj,ι)

ex.-im. of aj,ι
out and Bj,ι, respectively (cf. Not. 3.4.11), and functions

(aj,ι,ν
out )

ex.-im.
satisfying (3.4.32).

Definition 3.4.14. A solution to a time discretization T of an evolution equation
complex C, where T is given by (3.4.33), is a sequence of families

(u(0), . . . , u(n)) =
(
u

(ν)
j

)
(j,ν)∈J×{0,...,n} ∈

∏

(j,ν)∈J×{0,...,n}
U (ν)

j , (3.4.34)

satisfying the time-discrete schemes for the evolution equations, for the interface con-
ditions, and for the boundary conditions. That means, (3.4.34) is a solution to T iff it
satisfies the following conditions (i) – (vii):

(i) For each j ∈ J , u
(0)
j is identical to the initial distribution.

(ii) H
(ν)
bj ,vj ,kj ,fj

[
(u

(ν)
j , u

(ν−1)
j )

]
= 0 for each (j, ν) ∈ J × {1, . . . , n}.
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(iii) For each γ ∈ IFcon, the functions u
(ν)
i1[γ] and u

(ν)
i2[γ], ν ∈ {0, . . . , n}, satisfy (3.4.17),

i.e. the time-discrete scheme for the continuity interface condition on γ.

(iv) For each γ ∈ IFjump, the functions u
(ν)
i1[γ] and u

(ν)
i2[γ], ν ∈ {0, . . . , n}, satisfy (3.4.20),

i.e. the time-discrete scheme for the jump interface condition on γ.

(v) For each γ ∈ IF, the families u(ν), ν ∈ {0, . . . , n}, satisfy (3.4.24), i.e. the time-
discrete scheme for the flux interface condition on γ.

(vi) For each j ∈ J such that 0 ∈ Jj, the functions u
(ν)
j , ν ∈ {0, . . . , n}, satisfy (3.4.27),

i.e. the time-discrete scheme for the Dirichlet boundary condition on Γj,Dir = Γj,0.

(vii) For each (j, ι) ∈ J × (
Jj \ {0}

)
, the functions u

(ν)
j , ν ∈ {0, . . . , n}, satisfy (3.4.31),

i.e. the time-discrete scheme for the non-Dirichlet boundary condition on Γj,ι.

3.5 Integral Formulation

The subject of the present Sec. 3.5 is to deduce an integral formulation of coupled
systems of evolution equations including interface and boundary conditions that have
previously been subject to a time discretization according to the description in Sec.
3.4.3. The strategy is a follows:

Each d-dimensional space domain pj is discretized into a finite number of control vol-
umes, where each control volume consists of a d-polytope (cf. Sec. 3.5.1).

Each time-discrete evolution equation is then integrated over control volumes contained
inside the space domain where the respective evolution equation is defined (cf. Sec.
3.5.2). The Gauss-Green Integration Th. C.8.2 is used to transform volume integrals
into boundary integrals.

In Sec. 3.5.3, the time-discrete interface conditions (3.4.17), (3.4.20), and (3.4.24) are
used to link equations on adjacent domains, and the time-discrete boundary conditions
(3.4.31) are used to deal with terms on outer boundaries.

Towards the end of Sec. 3.5.3, everything is put together to yield the final integral
formulation (3.5.24). In Sec. 3.7, (3.5.24) is discretized in space, providing the finite
volume scheme (3.7.5) using the operators (3.7.122). The discretization is achieved by
approximating the integrals occurring in (3.5.24) using quadrature formulas, assuming
the integrands to be constant inside their respective domains of integration. Since the
integration domains are either control volumes or flat pieces of control volume surfaces,
the approximation should become better as the partition into control volumes gets finer
and the control volumes become smaller, provided that the integrands are sufficiently
regular.
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3.5.1 Polytope Discretization of Space Domains

To commence with the program outlined above, let C be the usual evolution equation
complex (3.4.16), and let D be the corresponding domain complex (3.4.15).

Each d-dimensional space domain pj, j ∈ J , is to be discretized into finitely many

d-polytopes ω
(j)
k . To that end, for each j ∈ J , consider a partition Π(j) := (ω

(j)
k )k∈I(j)

of pj, where each ω
(j)
k is a d-dimensional polytope, and each I(j) is a finite set. The

polytopes ω
(j)
k are called control volumes. An example is depicted in Fig. 3.4.

ω
(1)
1

ω
(1)
3

ω
(1)
2

ω
(1)
4

ω
(1)
6 ω

(1)
7

ω
(1)
5

Figure 3.4: Partition of space domain p1 into control volumes ω
(1)
1 , . . . , ω

(1)
7 .

Notation 3.5.1. Let A ⊆ Rd. Then

diam A := sup
{‖a− b‖2 : (a, b) ∈ A2

} ∈ [0,∞] (3.5.1)

is called the diameter of the set A.

—

The number
h(j) := max

{
diam ω

(j)
k : k ∈ I(j)

}
(3.5.2)

is called the fineness of the partition Π(j).

3.5.2 Integral Formulation of Time-Discrete Evolution Equa-
tions

Fix a time discretization T of C according to (3.4.33). Moreover, fix a solution

(u(0), . . . , u(n)) =
(
u

(ν)
j

)
(j,ν)∈J×{0,...,n}

to T according to Def. 3.4.14.
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Of course, in general, a solution to T might not exist, and its existence is not claimed
here. It is just shown in the following, that each solution to T (if it exists) also satisfies
an integral formulation of the problem. This is the standard approach when passing
from strong solutions (of the original problem) to weak solutions (of the integral prob-
lem), where the term “weak solutions” is used, since the integral problem can have a
solution even if the original problem has none.

The time-discrete evolution equations from Def. 3.4.14(ii) are to be integrated over each

control volume ω
(j)
k . As H

(ν)
bj ,vj ,kj ,fj

is computed according to (3.3.8), integrating

H
(ν)
bj ,vj ,kj ,fj

[
(u

(ν)
j , u

(ν−1)
j )

]
= 0

over ω
(j)
k , k ∈ I(j), results in

0 = (tν − tν−1)
−1

(∫

ω
(j)
k

b
(ν)
j

[
(u

(ν)
j [x], x)

]
dλd[x] −

∫

ω
(j)
k

b
(ν−1)
j

[
(u

(ν−1)
j [x], x)

]
dλd[x]

)

+

∫

ω
(j)
k

div
(
v

(ν)
j

[
(u

(ν)
j [x], x)

])
dλd[x]−

∫

ω
(j)
k

div
(
k

(ν)
j

[
(u

(ν)
j [x], x)

]∇u
(ν)
j [x]

)
dλd[x]

−
∫

ω
(j)
k

f
(ν)
j

[
(u

(ν)
j [x], x)

]
dλd[x] , (3.5.3)

where λd denotes d-dimensional Lebesgue measure, and dλd[x] indicates integration
with respect to the variable x.

Now the Gauss-Green Integration Th. C.8.2 can be applied if the arguments of the
divergence terms in (3.5.3) are sufficiently regular. In that case, one gets

∫

ω
(j)
k

div
(
v

(ν)
j

[
(u

(ν)
j [x], x)

])
dλd[x]

=

∫

∂ω
(j)
k

(
v

(ν)
j

[
(u

(ν)
j [x], x)

]) • n
ω

(j)
k

[x] dλd−1[x] ,

(3.5.4a)

∫

ω
(j)
k

div
(
k

(ν)
j

[
(u

(ν)
j [x], x)

]∇u
(ν)
j [x]

)
dλd[x]

=

∫

∂ω
(j)
k

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x] .

(3.5.4b)

Decomposition of the Boundary Integrals

With respect to the relative topology on ∂ω
(j)
k ,

(
∂ω

(j)
k ∩ int[pj], ∂ω

(j)
k ∩ ∂p, ∂ω

(j)
k ∩ (∂pj \ ∂p)

)
(3.5.5)
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is a partition of ∂ω
(j)
k (s. Figs 3.5 and 3.6). Thus,
∫

∂ω
(j)
k

=

∫

∂ω
(j)
k ∩int[pj ]

+

∫

∂ω
(j)
k ∩∂p

+

∫

∂ω
(j)
k ∩(∂pj\∂p)

. (3.5.6)
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Figure 3.5: Partition of ∂ω
(1)
2 according to (3.5.5).
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Figure 3.6: Partition of ∂ω
(1)
6 according to (3.5.5).

With respect to the relative topology on ∂ω
(j)
k ∩ ∂p,

(
∂ω

(j)
k ∩ Γj,ι

)
ι∈Jj

(3.5.7)
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is a partition of ∂ω
(j)
k ∩ ∂p (s. Fig. 3.7), i.e. in consequence,

∫

∂ω
(j)
k ∩∂p

=
∑
ι∈Jj

∫

∂ω
(j)
k ∩Γj,ι

. (3.5.8)
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Figure 3.7: Partition of ∂ω
(1)
2 ∩ ∂p according to (3.5.7).
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Figure 3.8: Partition of ∂ω
(1)
6 ∩ (∂p1 \ ∂p) according to (3.5.9).
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With respect to the relative topology on ∂ω
(j)
k ∩ (∂pj \ ∂p),

(∂ω
(j)
k ∩ γ)γ∈IF (3.5.9)

is a partition of ∂ω
(j)
k ∩ (∂pj \ ∂p) (s. Fig. 3.8), resulting in

∫

∂ω
(j)
k ∩(∂pj\∂p)

=
∑
γ∈IF

∫

∂ω
(j)
k ∩γ

. (3.5.10)

Combining (3.5.6), (3.5.8), and (3.5.10) yields:

∫

∂ω
(j)
k

=

∫

∂ω
(j)
k ∩int[pj ]

+
∑
ι∈Jj

∫

∂ω
(j)
k ∩Γj,ι

+
∑
γ∈IF

∫

∂ω
(j)
k ∩γ

. (3.5.11)

Now using (3.5.4) and (3.5.11), (3.5.3) can be written as

0 = (tν − tν−1)
−1

(∫

ω
(j)
k

b
(ν)
j

[
(u

(ν)
j [x], x)

]
dλd[x]

−
∫

ω
(j)
k

b
(ν−1)
j

[
(u

(ν−1)
j [x], x)

]
dλd[x]

) (3.5.12a)

+

∫

∂ω
(j)
k ∩int[pj ]

(
v

(ν)
j

[
(u

(ν)
j [x], x)

]) • n
ω

(j)
k

[x] dλd−1[x] (3.5.12b)

+

∫

∂ω
(j)
k ∩∂p

(
v

(ν)
j

[
(u

(ν)
j [x], x)

]) • n
ω

(j)
k

[x] dλd−1[x] (3.5.12c)

+
∑
γ∈IF

∫

∂ω
(j)
k ∩γ

(
v

(ν)
j

[
(u

(ν)
j [x], x)

]) • n
ω

(j)
k

[x] dλd−1[x] (3.5.12d)

−
∫

∂ω
(j)
k ∩int[pj ]

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x] (3.5.12e)

−
∑
ι∈Jj

∫

∂ω
(j)
k ∩Γj,ι

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x] (3.5.12f)

−
∑
γ∈IF

∫

∂ω
(j)
k ∩γ

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x] (3.5.12g)

−
∫

ω
(j)
k

f
(ν)
j

[
(u

(ν)
j [x], x)

]
dλd[x] . (3.5.12h)

On non-Dirichlet boundaries, the boundary conditions (3.4.31) are used to replace
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(3.5.12f):

−
∑

ι∈Jj\{0}

∫

∂ω
(j)
k ∩Γj,ι

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x]

= −
∑

ι∈Jj\{0}

∫

∂ω
(j)
k ∩Γj,ι

(Bj,ι)
ex.-im.[(

u(ν−1), u(ν)
)]

[x] dλd−1[x]

+
∑

ι∈Jj\{0}

∫

∂ω
(j)
k ∩Γj,ι

(aj,ι,ν
out )

ex.-im.[(
(u

(ν−1)
j [x], u

(ν)
j [x]), x

)]
dλd−1[x] .

(3.5.13)

3.5.3 Using Interface Conditions to Replace Terms Involving
the Flux across Interfaces

The interface conditions (3.4.17), (3.4.20), and (3.4.24) are to be used to replace
(3.5.12g). Therefore, one needs to have a relationship between the partitions Π(j1)

and Π(j2) whenever pj1 and pj2 share a common interface, i.e. whenever {j1, j2} ∈ IF.

The idea is to start with a finite partition Π = (ωk)k∈IΠ of the total space domain p.
As before, the ωk are assumed to be d-dimensional polytopes that will be referred to as
control volumes. The partition Π is used to construct the partitions Π(j) = (ω

(j)
k )k∈I(j)

by letting

ω
(j)
k := int[ωk ∩ pj], (3.5.14)

I(j) :=
{
k ∈ IΠ : ω

(j)
k 6= ∅}. (3.5.15)

Indeed, if ω
(j)
k is not empty, then it is a d-polytope according to Rem. C.4.10. Moreover,

as Π is a partition of p and (pj)j∈J is a partition of p by Def. 3.4.5(i), (ω
(j)
k )j∈J : k∈I(j) is

a partition of ωk, and Π(j) is a partition of pj. An example is illustrated in Fig. 3.9.

In general, (3.5.14) can not be replaced by ω
(j)
k := ωk ∩ pj, since ωk ∩ pj can have

dimension less than d (cf. Fig. 3.10).

According to the considerations of Sec. 3.5.2, (3.5.12) holds for each ω
(j)
k . The term

(3.5.12g) can only yield a nonzero contribution if ∂ω
(j)
k ∩ γ has dimension d − 1. This

is precisely the case where the interface conditions are to be used on (3.5.12g). For
that reason, ωk needs to lie on both sides of its (d − 1)-dimensional intersections with
an interface γ (if any). In the language of the following Def. 3.5.2, ωk needs to be
nontangent to interfaces.

Definition 3.5.2. If ω ⊆ p is a d-dimensional polytope, and for each j ∈ J , ω(j) :=
int[ω ∩ pj], then ω is called nontangent to interfaces iff

∧
γ∈IF

∂regω
(i1[γ]) ∩ γ = ∂regω

(i2[γ]) ∩ γ, (3.5.16)
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ω7

ω3ω10ω9

ω2
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ω1

ω19

ω14ω13

ω5

ω16

p1p2

p3 p4

Figure 3.9: The domain p := p1∪p2∪p3∪p4 is partitioned into ω1, . . . , ω19. If for each j ∈
{1, . . . , 4}, one lets ω

(j)
k := ωk ∩ pj, k ∈ {1, . . . , 19}, then for each j, Π(j) := (ω

(j)
k )k∈I(j)

forms a partition of pj, where e.g. I(1) = {1, . . . , 7}, I(2) = {1, 3, 6, 8, 9, 10, 11}. The ωk

are numbered such that Π(1) recovers the partition of Fig. 3.4. For example, one also
has that (ω

(1)
1 , ω

(2)
1 ) is a partition of ω1, and that (ω

(1)
6 , ω

(2)
6 , ω

(3)
6 , ω

(4)
6 ) is a partition of

ω6.
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Figure 3.10: The intersection of the control volume ω with p2 is the 0-polytope {x}.
where i1 and i2 are the maps introduced after (3.4.5).

The polytope ω is called tangent to interfaces iff it fails to satisfy (3.5.16).

—

Examples of polytopes being nontangent (respectively tangent) to interfaces are given
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in Fig. 3.11 (respectively Fig. 3.12). All the control volumes occurring in Fig. 3.9 are
nontangent to interfaces.
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Figure 3.11: Examples of the polytope ω being nontangent to interfaces according to
Def. 3.5.2.
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Figure 3.12: Examples of the polytope ω being tangent to interfaces according to Def.
3.5.2.

Due to the different situations found at continuous interfaces as compared to jump
interfaces, another preparatory step is taken before the interface conditions are applied
to (3.5.12g).
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To ensure that in the finite volume discretization (3.7.5) the number of equations is
the same as the number of degrees of freedom of the solution due to discontinuities
at jump interfaces (cf. the paragraph after (3.5.24)), equations (3.5.12) are combined

by summation if and only if the corresponding ω
(j)
k are connected via a sequence of

continuous interfaces. To that end, an equivalence relation is defined on the set

Vωk
:=

{
j ∈ J : int [ωk ∩ pj] 6= ∅}, (3.5.17)

by defining j1 and j2 to be equivalent (denoted j1 ∼ j2) if and only if ∂regω
(j1)
k ∩∂regω

(j2)
k 6=

∅ and ∂regpj1 ∩ ∂regpj2 ∈ IFcon ({j1, j2} ∈ Econ). To obtain an equivalence relation, the
closure of the relation “∼” with respect to transitivity is taken. Then each equivalence
class can be identified with the connected component of a graph (cf. Def. C.5.3 in App.
C.5):

Definition 3.5.3. For each d-dimensional polytope ω ⊆ p, define the associated graph
Gω = (Vω, Eω), where the set of vertices V := Vω is defined analogous to the set Vωk

in
(3.5.17), and the set of edges Eω is defined by

Eω :=
{{j1, j2} ⊆ Vω : ∂regω

(j1)
k ∩ ∂regω

(j2)
k , {j1, j2} ∈ Econ 6= ∅}. (3.5.18)

Example 3.5.4. Figure 3.13 depicts three examples differing in the way the jump
interfaces and the continuous interfaces are distributed. In each case, the associated
graph of the polytope ω is drawn below the respecive space domain. In case (a), G := Gω

has the single connected component {1, 2, 3, 4}. In (b) and (c), G has two connected
components, CoCmp[G] =

{{1, 2}, {2, 3}} in (b) and CoCmp[G] =
{{1}, {2, 3, 4}} in

(c).

—

In a natural way, the connected components C ∈ CoCmp[Gω] are again graphs, and the
vertex set of C is denoted by V [C] (cf. App. C.5). These vertex sets are identical to the
equivalence classes defined above.

Lemma 3.5.5. As before, let Π = (ωk)k∈IΠ be a partition of p into control volumes,

and let the ω
(j)
k be defined by (3.5.14). Moreover, let C ∈ CoCmp[Gωk

], and let γ ∈ IF
such that

γ ∩
⋃

j∈V [C]
∂regω

(j)
k 6= ∅. (3.5.19)

If ωk is nontangent to interfaces, then precisely one of the following three situations
occurs:

(a) γ ∈ IFcon and {i1[γ], i2[γ]} ⊆ V [C].

(b) γ ∈ IFjump and i1[γ] ∈ V [C].
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ω(j) := int(ω ∩ pj)

Gω :

ω(3)

Gω :Gω :

ω(4)

ω(1)

ω(4)

ω(1)

ω(4)

ω(1)

3 4

12

3 4
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3 4
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ω

jump interfaces

continuous interfaces

p1 p2 p3 p4

(a) (b) (c)

ω(2)

ω(3)

ω(2)

ω(3)

ω(2)

Figure 3.13: Three examples showing the associated graph of a polytope ω for different
distributions of jump interfaces and continuous interfaces (s. Exs 3.5.4 and 3.5.8).

(c) γ ∈ IFjump and i2[γ] ∈ V [C].

Proof. According to (3.4.8), one has γ = ∂regpi1[γ] ∩ ∂regpi2[γ]. Combining (3.5.19) with
(3.5.16) yields ∂regω

(i1[γ])∩γ = ∂regω
(i2[γ])∩γ 6= ∅ with either i1[γ] ∈ V [C] or i2[γ] ∈ V [C],

which proves the lemma for γ ∈ IFjump. If γ ∈ IFcon, then {i1[γ], i2[γ]} ⊆ V [C] by
(3.5.18). ¥

Notation 3.5.6. If ωk is nontangent to interfaces, then, bearing in mind Lem. 3.5.5,
for each α ∈ {1, 2} define

Gjump,α : CoCmp[Gωk
] −→ P [IFjump],

Gjump,α[C] :=
{
γ ∈ IFjump : iα[γ] ∈ V [C]

}
.

(3.5.20)

Remark 3.5.7. For each C ∈ CoCmp[Gωk
], α ∈ {1, 2}, and γ ∈ IFjump, one has

iα[γ] ∈ V [C] ⇔ C = CoCmpGωk
[iα[γ]], as each connected component is the connected

component of all its vertices.

Example 3.5.8. Consider case (c) of Fig. 3.13. It is clear that ω is nontangent to
interfaces. Let the four interfaces be denoted by γ1,2 := ∂regp1 ∩ ∂regp2, γ2,3 := ∂regp2 ∩
∂regp3, γ3,4 := ∂regp3 ∩ ∂regp4, and γ1,4 := ∂regp1 ∩ ∂regp4. Then IFcon = {γ2,3, γ3,4} and
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IFjump = {γ1,2, γ1,4}. As illustrated in Fig. 3.13(c), the associated graph of ω has the two
connected components C1 = (V [C1], E[C1]) and C2 = (V [C2], E[C2]), where V [C1] = {1},
E[C1] = ∅, V [C2] := {2, 3, 4}, and E[C2] =

{{2, 3}, {3, 4}}.

A typical application resulting in the picture shown in Fig. 3.13(c) is given by the
following situation: Let p1 be the domain of a gas phase, and let p2, p3, and p4 denote
the domains of different solid materials. Between different solids, assume continuity
of both heat flux and temperature according to (2.3.1a) and (2.3.2a). Between solid
and gas assume the jump interface condition (2.3.2b′) and the flux interface condition
(2.4.39b).

As the interface conditions (2.3.1a) and (2.3.2a) are completely symmetric with respect
to the materials adjacent to the respective continuous interface, one still has a choice
when defining i1 and i2 on γ2,3 and γ3,4. For definiteness, let i1[γ2,3] := 2, i2[γ2,3] := 3,
i1[γ3,4] := 3, i2[γ3,4] := 4. However, (2.3.2b′) and (2.4.39b) are not symmetric with
respect to the materials adjacent to the respective jump interface. To conform to the
conventions introduced in (3.4.6) and (3.4.7), respecitvely, one has to define i1[γ1,2] := 1,
i2[γ1,2] := 2, i1[γ1,4] := 1, i2[γ1,4] := 4 (cf. Ex. 3.4.4).

Consider the case C := C1. Then the condition (3.5.19) is satisfied if and only if
γ ∈ IFjump. For both the choices of γ ∈ IFjump, one is in the case of Lem. 3.5.5(b). In
particular, Gjump,1[C1] = IFjump and Gjump,2[C1] = ∅.
Consider the case C := C2. Then the condition (3.5.19) is satisfied for each γ ∈ IF. For
γ ∈ IFcon, one is in case (a) of Lem. 3.5.5. For both the choices of γ ∈ IFjump, one is in
the case of Lem. 3.5.5(c). In particular, Gjump,1[C2] = ∅ and Gjump,2[C2] = IFjump.

—

For the rest of Sec. 3.5.3, assume that for each k ∈ IΠ, ωk is nontangent to interfaces,
and let Gk := Gωk

be the associated graph of ωk.

Fix k ∈ IΠ and C ∈ CoCmp[Gk]. Sum (3.5.12g) over j ∈ V [C]. If γ ∈ IFcon and

γ ∩ ⋃
j∈V [C] ∂regω

(j)
k 6= ∅, then {i1[γ], i2[γ]} ⊆ V [C] according to Lem. 3.5.5(a). Hence,

(3.4.24) can be applied to yield

−
∑

j∈V [C]

∑
γ∈IFcon

∫

∂ω
(j)
k ∩γ

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x]

= −
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂regω
(j)
k

(Aγ)
ex.-im.[(

u(ν−1), u(ν)
)]

[x] dλd−1[x]

−
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂regω
(j)
k

(aγ,1,ν
flux )

ex.-im.
[(

(u
(ν−1)
i1[γ] [x], u

(ν)
i1[γ][x]), x

)]
dλd−1[x]

+
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂regω
(j)
k

(aγ,2,ν
flux )

ex.-im.
[(

(u
(ν−1)
i2[γ] [x], u

(ν)
i2[γ][x]), x

)]
dλd−1[x] . (3.5.21)
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If γ ∈ IFjump and γ ∩⋃
j∈V [C] ∂regω

(j)
k 6= ∅, then according to Lem. 3.5.5 and Not. 3.5.6

either γ ∈ Gjump,1[C] or γ ∈ Gjump,2[C].

If γ ∈ Gjump,1[C], then i1[γ] ∈ V [C], and one can use (3.4.20) to get

−
∑

j∈V [C]

∑

γ∈Gjump,1[C]

∫

∂ω
(j)
k ∩γ

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x]

=
∑

γ∈Gjump,1[C]

∫

∂ω
(i1[γ])
k ∩γ

(
aγ,1,ν

jump

[
(u

(ν)
i1[γ][x], x)

]− aγ,2,ν
jump

[
(u

(ν)
i2[γ][x], x)

])
dλd−1[x] . (3.5.22)

If γ ∈ Gjump,2[C], then i2[γ] ∈ V [C], and one can use (3.4.26) to get

−
∑

j∈V [C]

∑

γ∈Gjump,2[C]

∫

∂ω
(j)
k ∩γ

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x]

= −
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(Aγ)
ex.-im.[(

u(ν−1), u(ν)
)]

[x] dλd−1[x]

−
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(aγ,1,ν
flux )

ex.-im.[(
(u

(ν−1)
i1[γ] [x], u

(ν)
i1[γ][x]), x

)]
dλd−1[x]

+
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(aγ,2,ν
flux )

ex.-im.[(
(u

(ν−1)
i2[γ] [x], u

(ν)
i2[γ][x]), x

)]
dλd−1[x]

+
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(
− aγ,1,ν

jump

[
(u

(ν)
i1[γ][x], x)

]
+ aγ,2,ν

jump

[
(u

(ν)
i2[γ][x], x)

])
dλd−1[x] .

(3.5.23)

Putting Everything Together

Summing (3.5.12) over j ∈ V [C], and using (3.5.13) to replace (3.5.12f), and (3.5.21),
(3.5.22), and (3.5.23) to replace (3.5.12g), results in

(tν − tν−1)
−1

∑

j∈V [C]

(∫

ω
(j)
k

b
(ν)
j

[
(u

(ν)
j [x], x)

]
dλd[x]

−
∫

ω
(j)
k

b
(ν−1)
j

[
(u

(ν−1)
j [x], x)

]
dλd[x]

) (3.5.24a)

+
∑

j∈V [C]

∫

∂ω
(j)
k ∩int[pj ]

(
v

(ν)
j

[
(u

(ν)
j [x], x)

]) • n
ω

(j)
k

[x] dλd−1[x] (3.5.24b)

+
∑

j∈V [C]

∫

∂ω
(j)
k ∩∂p

(
v

(ν)
j

[
(u

(ν)
j [x], x)

]) • n
ω

(j)
k

[x] dλd−1[x] (3.5.24c)
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+
∑

j∈V [C]

∑
γ∈IF

∫

∂ω
(j)
k ∩γ

(
v

(ν)
j

[
(u

(ν)
j [x], x)

]) • n
ω

(j)
k

[x] dλd−1[x] (3.5.24d)

−
∑

j∈V [C]

∫

∂ω
(j)
k ∩int[pj ]

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x] (3.5.24e)

−
∑

j∈V [C]: 0∈Jj

∫

∂ω
(j)
k ∩Γj,0

F
(ν)

j,∂ω
(j)
k

[x] • n
ω

(j)
k

[x] dλd−1[x]

−
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

∂ω
(j)
k ∩Γj,ι

(Bj,ι)
ex.-im.[(

u(ν−1), u(ν)
)]

[x] dλd−1[x] (3.5.24f)

+
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

∂ω
(j)
k ∩Γj,ι

(aj,ι,ν
out )

ex.-im.[(
(u

(ν−1)
j [x], u

(ν)
j [x]), x

)]
dλd−1[x] (3.5.24g)

−
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂ω
(j)
k

(Aγ)
ex.-im.[(

u(ν−1), u(ν)
)]

[x] dλd−1[x] (3.5.24h)

+
∑

γ∈IFcon


−

∫

γ∩Sj∈V [C] ∂regω
(j)
k

(aγ,1,ν
flux )

ex.-im.
[(

(u
(ν−1)
i1[γ] [x], u

(ν)
i1[γ][x]), x

)]
dλd−1[x]

+

∫

γ∩Sj∈V [C] ∂regω
(j)
k

(aγ,2,ν
flux )

ex.-im.
[(

(u
(ν−1)
i2[γ] [x], u

(ν)
i2[γ][x]), x

)]
dλd−1[x]


 (3.5.24i)

+
∑

γ∈Gjump,1[C]

∫

∂ω
(i1[γ])
k ∩γ

(
aγ,1,ν

jump

[
(u

(ν)
i1[γ][x], x)

]− aγ,2,ν
jump

[
(u

(ν)
i2[γ][x], x)

])
dλd−1[x] (3.5.24j)

−
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(Aγ)
ex.-im.[(

u(ν−1), u(ν)
)]

[x] dλd−1[x] (3.5.24k)

+
∑

γ∈Gjump,2[C]

(
−

∫

∂ω
(i2[γ])
k ∩γ

(aγ,1,ν
flux )

ex.-im.
[(

(u
(ν−1)
i1[γ] [x], u

(ν)
i1[γ][x]), x

)]
dλd−1[x]

+

∫

∂ω
(i2[γ])
k ∩γ

(aγ,2,ν
flux )

ex.-im.
[(

(u
(ν−1)
i2[γ] [x], u

(ν)
i2[γ][x]), x

)]
dλd−1[x]

)
(3.5.24l)

+
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(
− aγ,1,ν

jump

[
(u

(ν)
i1[γ][x], x)

]
+ aγ,2,ν

jump

[
(u

(ν)
i2[γ][x], x)

])
dλd−1[x] (3.5.24m)

−
∑

j∈V [C]

∫

ω
(j)
k

f
(ν)
j

[
(u

(ν)
j [x], x)

]
dλd[x] = 0. (3.5.24n)
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As mentioned above, Eqs (3.5.24) form the basis for the subsequent space discretization
of evolution equation complexes, resulting in a finite volume scheme (cf. the description
in Sec. 3.7.1 and Def. 3.7.41). The idea is to replace the integrands in (3.5.24) by their
values at certain points inside the respective domain of integration. For each connected
component C of the graph Gk, (3.5.24) provides precisely one equation. In the finite
volume discretization (3.7.5), this ensures that the number of equations is the same
as the number of degrees of freedom of the solution due to discontinuities at jump
interfaces. Dirichlet boundaries play a special role, since there the solution is known
a priori, i.e. it is not to be determined using (3.5.24). This leads to an exceptional
handling of Dirichlet boundaries in Sec. 3.7.

3.6 Change of Variables

In many applications, time and space discretization are not applied directly to the
equations of some problem, but only after the equations have been simplified by reducing
the dimension of the space domain. This kind of simplification is possible if the space
dependence of the original problem contains symmetries that can be exploited by a
suitable change of variables. Here a “suitable” change of variables is one such that the
symmetries cause the transformed problem to be independent of one or more of the
new variables, thereby allowing the dimension reduction.

A typical example is given by the situation considered during the simulations presented
in Ch. 4, where the assumption of cylindrical symmetry allows to reduce the space
dimension of the problem from three to two. More precisely, instead of considering Eqs
(4.2.1) in cartesian coordinates (x1, x2, x3), they are considered in cylindrical coordi-
nates (r, ϑ, z), in which they are independent of the angular coordinate ϑ.

The purpose of the present section is to show how a dimension reduction by change of
variables can be treated within the framework of the preceding sections; in particular,
this section describes the modifications that have to be made in the deduction of the
integral formulation in Sec. 3.5. If one starts out with equations having the form (3.3.3)
with respect to the original variables, one then performs a change of variables, carries out
considerations analogous to Sec. 3.5, and finally reduces the dimension using symmetry
conditions, then one ends up with equations (3.6.22). Comparing (3.6.22) to (3.5.24),
one finds that there is a (lower dimensional) problem in the new variables leading to the
same equations (3.6.22) by the prodedure of Sec. 3.5. The evolution operators of the
new problem still have the form (3.3.3), but in general, the functions kj are no longer
scalar-valued as was required in (3.3.2c), but matrix-valued. However, for cylindrical
coordinates the new functions kj are scalar-valued, showing that the setting of Secs 3.1
– 3.5 is sufficiently general to apply to the simulations of Ch. 4.

In the present section, the polytope domains pj are the domains of the new variables,
whereas the domains of the original variables no longer need to be polytopes (e.g. in the
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case of cylindrical symmetry, a polygon in the r-z-plane rotated around the symmetry
axis is no longer a polytope). Due to this reason, the restriction made in the preceding
sections of Ch. 3, that space domains must be polyhedral, is lifted within the remainder
of the current section. In consequence, when used in this section, some definitions of
ealier sections are implicitly extended to the situation where the space domain is no
polytope. For instance in the situation treated below, T (int[p× q]) is considered a space
domain, even though it is not polyhedral in general.

3.6.1 Coordinate Transformations

Coordinate transformations and change of variables are first defined in general terms,
followed by the application to cylindrical coordinates.

Definition 3.6.1. Let Ω be an open subset of Rd, d ∈ N. A map T : Ω −→ TΩ ⊆ Rd

is called a coordinate transformation iff T is a diffeomorphism, i.e. iff T is bijective, and
both T and T−1 are differentiable.

Definition 3.6.2. Let (d, d′) ∈ N2. Suppose p is a d-dimensional polytope, and q =∏
i∈{1,...,d′}[λi, µi] is a cartesian product of d′ intervals. Suppose O is an open subset

of Rd, and let Ω := O × int[q]. Moreover, let T : Ω −→ TΩ ⊆ Rd+d′ be a coordinate
transformation and int[p] ⊆ O (s. Fig. 3.14 for an example of how p and O can be
situated in the case of cylindrical coordinates). Define

∧
A⊆p

T̄ [A× q] := T ((A ∩O)× int[q]). (3.6.1)

The map T is then called a change of variables between the space domains p × q and
T̄ [p×q], where the new variables are elements of p×q and the old variables are elements
of T̄ [p× q].

—

It is assumed that the symmetry of the problem is such that the solution is expected
to be independent of the variable xq ∈ q.

Example 3.6.3. In the case of cylindrical symmetry, assumed for the simulations of
Ch. 4, the solution is supposedly independent of the angular coordinate ϑ. The usage
of cylindrical coordinates means choosing T = Tcyl (s. Def. B.3.1), where the polytope
p is a subset of R+

0 × R and q = [0, 2π] (d = 2, d′ = 1). For O one can choose
each open set O ⊆ Rd that is sufficiently large. More precisely, O needs to be large
enough to contain the parts of the boundary of p not lying on the axis r = 0 (e.g.
each ]0, rmax[×]zmin, zmax[ with rmax > max{r : (r, z) ∈ p}, zmin < min{z : (r, z) ∈ p},
zmax > max{z : (r, z) ∈ p}, will do for O, s. Fig. 3.14). According to Rem. B.3.2(b),(c),
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r = 0

O

p

∂p ∩O

∂p \O

r

z

Figure 3.14: The relation between the polytope p and the open set O is illustrated in
the r-z-plane of cylindrical coordinates.

Tcyl restricted to Ω = O×]0, 2π[ is a coordinate transformation in the sense of Def.
3.6.1.

—

To proceed in the general situation, using the notation of Def. 3.6.2, it is assumed that
T is a change of variables between p× q and T̄ [p× q]. The strategy now is as follows:
Starting with an evolution equation complex in the old variables (i.e. with total space
domain T̄ [p×q]), the arguments of Sec. 3.5 are used to deduce the analogue of (3.5.24),
which is then transformed into the new variables.

Let the (d,N)-dimensional evolution equation complex in the old variables be denoted
by

C =
(
D,

(
Hbj ,vj ,kj ,f

j

)
j∈J

,
(
(a

γ,1

jump, a
γ,2

jump)
)

γ∈IFjump
,
(
(a

γ,1

flux, a
γ,2

flux,Aγ)
)

γ∈IF
,

(
uj,Dir

)
j∈J : 0∈Jj

,
(
(aj,ι

out,Bj,ι)
)
(j,ι)∈J×(Jj\{0})

,
(
u

(0)
j

)
j∈J

)
,

and assume that in the new variables, there is a domain complex

D =
(
υ, τ, (pj)j∈J , Econ, i1, (Jj)j∈J , (Γj,ι)(j,ι)∈J×Jj

)
,

such that

D =
(
υ, τ,

(
T̄ [pj × q]

)
j∈J

, Econ, i1, (J j)j∈J ,
(
T̄ [Γj,ι × q]

)
(j,ι)∈J×Jj

)
,

where Jj is the disjoint union of the sets J j and Jj,0: Jj = J j ∪̇ Jj,0,

∧
j∈J

Jj,0 :=

{
∅ if (∂pj) \O = ∅,
{ιj,0} if (∂pj) \O 6= ∅, (3.6.2)

(Γj,ι)ι∈Jj
is a partition of O ∩ ∂pj with respect to the relative topology, and Γj,ιj,0

=
(∂pj) \O in the case (∂pj) \O 6= ∅.
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The introduction of Jj,0 is necessary, since the case of cylindrical coordinates shows that
the boundary of the domain p in the new variables can have some part ∂p\O that does
not correspond to a boundary in the old variables (cf. Fig. 3.14).

In analogy with Sec. 3.5, fix a time discretization T of C according to Def. 3.4.13,

T =
(
(tν)ν∈{0,...,n},

(U (ν)
j

)
(j,ν)∈J×{0,...,n},

(
H

(ν)
bj ,vj ,kj ,f

j

)
(j×ν)∈J×{0,...,n},

(
(a

γ,1,ν

jump, a
γ,2,ν

jump)
)
(γ,ν)∈IFjump×{0,...,n},

(
((a

γ,1

flux)
ex.-im.

, (a
γ,2

flux)
ex.-im.

, (Aγ)
ex.-im.)

)
γ∈IF

,

(
((a

γ,1,ν

flux )
ex.-im.

, (a
γ,2,ν

flux )
ex.-im.

)
)
(γ,ν)∈IF×{0,...,n},(

u
(ν)
j,Dir

)
(j,ν)∈J×{0,...,n}: 0∈Jj

,

(
((aj,ι

out)
ex.-im.

, (Bj,ι)
ex.-im.)

)
(j,ι)∈J×(Jj\{0})

,

(
(aj,ι,ν

out )
ex.-im.)

(j,ι,ν)∈J×(Jj\{0})×{0,...,n}

)
,

and fix a solution (u(0), . . . , u(n)) =
(
u

(ν)
j

)
(j,ν)∈J×{0,...,n} to T according to Def. 3.4.14.

3.6.2 Integral Formulation

Continuing to follow Sec. 3.5, let Π = (ωk)k∈IΠ be a finite partition of p (in the new

variables) and define partitions Π(j) of each pj: Π(j) := (ω
(j)
k )k∈I(j) , ω

(j)
k := int[ωk ∩ pj],

I(j) := {k ∈ IΠ : ω
(j)
k 6= ∅}. As in Sec. 3.5, the ωk, k ∈ IΠ, are assumed to be nontangent

to interfaces (cf. Def. 3.5.2 and Lem. 3.5.5). The time-discrete evolution equations

Hbj ,vj ,kj ,f
j

[
(u

(ν)
j , u

(ν−1)
j )

]
= 0 (3.6.3)

are integrated over T̄ [ω
(j)
k × q].

As in Sec. 3.5.3, let Gk := Gωk
be the associated graph of ωk for each k ∈ IΠ. Fix k ∈ IΠ

and C ∈ CoCmp[Gk].

Analogous to (3.5.4), the Gauss-Green Integration Th. C.8.2 is used to transform in-

tegrals over T̄ [ω
(j)
k × q] involving divergence terms into integrals over ∂

(
T̄ [ω

(j)
k × q]

)
.

Decomposing the resulting boundary integrals followed by an applications of interface
conditions analogous to Sec. 3.5.2, and finally using interface conditions analogous to
Sec. 3.5.3, leads to (3.6.6) which is analogous to (3.5.24).

In the formulation of (3.6.6) as well as in the entire rest of Sec. 3.6, the function
notation introduced in (3.3.12) and (3.3.13) is used. Consistently writing function
compositions and avoiding writing arguments makes the following integral formulas
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much more concise. It seems especially suitable in the context of the application of
the Change of Variables Th. C.8.3 in Sec. 3.6.4. For the terms involving the functions

(aj,ι,ν
out )

ex.-im.
and (a

γ,α,ν

flux )
ex.-im.

, respectively, it becomes necessary to extend (3.3.13) to
two functions: Given (u1, u2) ∈ F(A,K)×F(A,K), where A is either a subset of Rd or
a subset of Rd+d′ , define

(u1, u2)
sp. : A −→ K×K× A, (u1, u2)

sp.[x] := (u1[x], u2[x], x). (3.6.4)

For each (j, ν) ∈ J×{1, . . . , n}, let F
(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) denote the flux through the boundary

of T̄ [ω
(j)
k × q] at time tν , i.e.

F
(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) := tr
∂
(

T̄ [ω
(j)
k ×q]

) ((
k

(ν)
j ◦ (u

(ν)
j )sp.

)∇ u
(ν)
j

)
. (3.6.5)

After these preparations, the promised analogue of (3.5.24) is written:

(tν − tν−1)
−1

∑

j∈V [C]

∫

T̄ [ω
(j)
k ×q]

(
b
(ν)
j ◦

(
u

(ν)
j

)sp.

− b
(ν−1)
j ◦

(
u

(ν−1)
j

)sp.
)

(3.6.6a)

+
∑

j∈V [C]

∫

int
[
T̄ [pj×q]

]
∩∂

(
T̄ [ω

(j)
k ×q]

)
(
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

(3.6.6b)

+
∑

j∈V [C]

∫

∂
(

T̄ [p×q]
)
∩∂

(
T̄ [ω

(j)
k ×q]

)
(
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

(3.6.6c)

+
∑

j∈V [C]

∑
γ∈IF

∫

γ∩∂
(

T̄ [ω
(j)
k ×q]

)
(
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

(3.6.6d)

−
∑

j∈V [C]

∫

int
[
T̄ [pj×q]

]
∩∂

(
T̄ [ω

(j)
k ×q]

) F
(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) • n
T̄ [ω

(j)
k ×q]

(3.6.6e)

−
∑

j∈V [C]: 0∈Jj

∫

T̄ [Γj,0×q]∩∂
(

T̄ [ω
(j)
k ×q]

) F
(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) • n
T̄ [ω

(j)
k ×q]

−
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

T̄ [Γj,ι×q]∩∂
(

T̄ [ω
(j)
k ×q]

) (Bj,ι)
ex.-im.[(

u(ν−1), u(ν)
)]

(3.6.6f)

+
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

T̄ [Γj,ι×q]∩∂
(

T̄ [ω
(j)
k ×q]

) (aj,ι,ν
out )

ex.-im. ◦ (
u

(ν−1)
j , u

(ν)
j

)sp.
(3.6.6g)

−
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂
(

T̄ [ω
(j)
k ×q]

)
(Aγ)

ex.-im.[(u(ν−1), u(ν))
]

(3.6.6h)
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+
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂
(

T̄ [ω
(j)
k ×q]

)

(
−

(
a

γ,1,ν

flux

)ex.-im.

◦
(
u

(ν−1)
i1[γ] , u

(ν)
i1[γ]

)sp.

+
(
a

γ,2,ν

flux

)ex.-im.

◦
(
u

(ν−1)
i2[γ] , u

(ν)
i2[γ]

)sp.
)

(3.6.6i)

+
∑

γ∈Gjump,1[C]

∫

γ∩∂
(

T̄ [ω
(i1[γ])

k ×q]
)

(
a

γ,1,ν

jump ◦
(
u

(ν)
i1[γ]

)sp.

− a
γ,2,ν

jump ◦
(
u

(ν)
i2[γ]

)sp.
)

(3.6.6j)

−
∑

γ∈Gjump,2[C]

∫

γ∩∂
(

T̄ [ω
(i2[γ])

k ×q]
)
(Aγ)

ex.-im.[(u(ν−1), u(ν))
]

(3.6.6k)

+
∑

γ∈Gjump,2[C]

∫

γ∩∂
(

T̄ [ω
(i2[γ])

k ×q]
)

(
−

(
a

γ,1,ν

flux

)ex.-im.

◦
(
u

(ν−1)
i1[γ]] , u

(ν)
i1[γ]

)sp.

+
(
a

γ,2,ν

flux

)ex.-im.

◦
(
u

(ν−1)
i2[γ] , u

(ν)
i2[γ]

)sp.
)

(3.6.6l)

+
∑

γ∈Gjump,2[C]

∫

γ∩∂
(

T̄ [ω
(i2[γ])

k ×q]
)

(
− a

γ,1,ν

jump ◦
(
u

(ν)
i1[γ]

)sp.

+ a
γ,2,ν

jump ◦
(
u

(ν)
i2[γ]

)sp.
)

(3.6.6m)

−
∑

j∈V [C]

∫

T̄ [ω
(j)
k ×q]

f (ν)

j
◦

(
u

(ν)
j

)sp.

= 0. (3.6.6n)

3.6.3 Writing the Domains of Integration as Images of the
Coordinate Transformation

In Sec. 3.6.4, the Change of Variables Th. C.8.3 is going to be used to transform (3.6.6)
into the new variables. In preparation, the domains of integration in (3.6.6) are to be
written as images of the coordinate transformation T .

For the volume integrals, this can be done noting that

T̄ [ω
(j)
k × q] ⊇ T

(
(ω

(j)
k ∩O)× int[q]

)
,

λd+d′
[
T̄ [ω

(j)
k × q]

]
= λd+d′

[
T

(
(ω

(j)
k ∩O)× int[q]

)]
.

(3.6.7)

Analogously, one also has

int
[
T̄ [ω

(j)
k × q]

] ⊇ int
[
T

(
(O ∩ ω

(j)
k )× int[q]

)]
,

λd+d′

[
int

[
T̄ [ω

(j)
k × q]

]]
= λd+d′

[
int

[
T

(
(O ∩ ω

(j)
k )× int[q]

)]]
.

(3.6.8)

The following formulas are used below. They hold for each A ⊆ Rd and each B ⊆ Rd′ :

int[A×B] = int[A]× int[B], (3.6.9a)
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∂(A×B) = (∂A×B) ∪ (A× ∂B). (3.6.9b)

Let ω ⊆ p be an arbitrary d-polytope.

One can use the Domain Invariance Th. C.1.11(b) to get

int
[
T

(
(ω ∩O)× int[q]

)] Th. C.1.11(b)
= T

(
int

[
(ω ∩O)× int[q]

])
(3.6.9a), int[ω]⊆O

= T
(
int[ω]× int[q]

)
,

(3.6.10)

which together with (3.6.8) allows to replace int
[
T̄ [pj × q]

]
in (3.6.6b) and (3.6.6e) by

T
(
int[pj]× int[q]

)
.

As a consequence of the Domain Invariance Th. C.1.11(c), one gets

T
(
(ω ∩O)× int[q]

) ∩ ∂
(
T

(
(ω ∩O)× int[q]

))

Th. C.1.11(c)
= T

((
(ω ∩O)× int[q]

) ∩ ∂
(
(ω ∩O)× int[q]

))

(3.6.9b)
= T

((
ω ∩O ∩ (

∂(ω ∩O)
))× int[q]

)
= T

(
(O ∩ ∂ω)× int[q]

)
,

(3.6.11)

where the last equality in (3.6.11) holds since int[ω] ⊆ O, O is open, and ω is closed.

Assumption 3.6.4. It is assumed that for each d-polytope ω ⊆ p, it holds that

λd+d′−1

[
∂
(
T̄ [ω × q]

)]
= λd+d′−1

[
∂
(
T̄ [ω × q]

) ∩ T
(
(ω ∩O)× int[q]

)]
(3.6.12a)

and
∂
(
T̄ [ω × q]

) ∩ T
(
(ω ∩O)× int[q]

)

= ∂
(
T

(
(ω ∩O)× int[q]

)) ∩ T
(
(ω ∩O)× int[q]

)
.

(3.6.12b)

Example 3.6.5. Assumption 3.6.4 is satisfied in the case of cylindrical coordinates if
O is chosen sufficiently large in the sense of Ex. 3.6.3: In that case, ∂

(
T̄ [ω × q]

)
is

the disjoint union of T
(
(O ∩ ∂ω) × int[q]

)
and the one-dimensional set

{
(x1, 0, x3) :

(x1, x3) ∈ O ∩ ∂ω
}
, which yields (3.6.12a). Moreover, ∂

(
T

(
(ω ∩ O) × int[q]

))
is the

disjoint union of T
(
(O ∩ ∂ω) × int[q]

)
and

{
(x1, 0, x3) : (x1, x3) ∈ ∂ω

}
, which yields

(3.6.12b).

—

Now, (3.6.6) is rewritten as (3.6.14), where the domains of integration are written as
images of the coordinate transformation T .

Combining (3.6.10), (3.6.11), and (3.6.12) with the bijectiveness of T yields (3.6.14b)
and (3.6.14e).
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(3.6.14c) follows from (3.6.6c), (3.6.11), and the bijectiveness of T .

Since int[p] ⊆ O, one has γ ⊆ O for each γ ∈ IF. Moreover,

∧
γ∈IF

(
T̄ [γ × q] ⊇ T

(
γ × int[q]

)
,

λd+d′−1

[
T̄ [γ × q]

]
= λd+d′−1

[
T

(
γ × int[q]

)]
)

, (3.6.13a)

∧

(j,ι)∈J×Jj

(
T̄ [Γj,ι × q] ⊇ T

(
(O ∩ Γj,ι)× int[q]

)
,

λd+d′−1

[
T̄ [Γj,ι × q]

]
= λd+d′−1

[
T

(
(O ∩ Γj,ι)× int[q]

)]
)

, (3.6.13b)

which together with (3.6.11) and the bijectiveness of T allows to replace the domains of
integration in (3.6.6d) and (3.6.6f) – (3.6.6m) by the domains of integration in (3.6.14d)
and (3.6.14f) – (3.6.14m). The same holds for the Dirichlet term between (3.6.6d) and
(3.6.6f).

(tν − tν−1)
−1

∑

j∈V [C]

∫

T
(
(O∩ω

(j)
k )×int[q]

)

(
b
(ν)
j ◦

(
u

(ν)
j

)sp.

− b
(ν−1)
j ◦

(
u

(ν−1)
j

)sp.
)

(3.6.14a)

+
∑

j∈V [C]

∫

T
(
(∂ω

(j)
k ∩int[pj ])×int[q]

)
(
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

(3.6.14b)

+
∑

j∈V [C]

∫

T
(
(O∩∂ω

(j)
k ∩∂p)×int[q]

)
(
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

(3.6.14c)

+
∑

j∈V [C]

∑
γ∈IF

∫

T
(
(∂ω

(j)
k ∩γ)×int[q]

)
(
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

(3.6.14d)

−
∑

j∈V [C]

∫

T
(
(∂ω

(j)
k ∩int[pj ])×int[q]

) F
(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) • n
T̄ [ω

(j)
k ×q]

(3.6.14e)

−
∑

j∈V [C]: 0∈Jj

∫

T
(
(O∩∂ω

(j)
k ∩Γj,0)×int[q]

) F
(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) • n
T̄ [ω

(j)
k ×q]

−
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

T
(
(O∩∂ω

(j)
k ∩Γj,ι)×int[q]

) (Bj,ι)
ex.-im.[(

u(ν−1), u(ν)
)]

(3.6.14f)

+
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

T
(
(O∩∂ω

(j)
k ∩Γj,ι)×int[q]

) (aj,ι,ν
out )

ex.-im. ◦ (
u

(ν−1)
j , u

(ν)
j

)sp.
(3.6.14g)

−
∑

γ∈IFcon

∫

T
(
(γ∩Sj∈V [C] ∂ω

(j)
k )×int[q]

)
(AT̄ [γ×q])

ex.-im.[(u(ν−1), u(ν))
]

(3.6.14h)
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+
∑

γ∈IFcon

∫

T
(
(γ∩Sj∈V [C] ∂ω

(j)
k )×int[q]

)

(
−

(
a

T̄ [γ×q],1,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i1[T̄ [γ×q]]
, u

(ν)

i1[T̄ [γ×q]]

)sp.

+
(
a

T̄ [γ×q],2,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i2[T̄ [γ×q]]
, u

(ν)

i2[T̄ [γ×q]]

)sp.
)

(3.6.14i)

+
∑

γ∈Gjump,1[C]

∫

T
(
(∂ω

(i1[γ])
k ∩γ)×int[q]

)

(
a

T̄ [γ×q],1,ν
jump ◦

(
u

(ν)

i1[T̄ [γ×q]]

)sp.

− a
T̄ [γ×q],2,ν
jump ◦

(
u

(ν)

i2[T̄ [γ×q]]

)sp.
)

(3.6.14j)

−
∑

γ∈Gjump,2[C]

∫

T
(
(∂ω

(i2[γ])
k ∩γ)×int[q]

)
(AT̄ [γ×q])

ex.-im.[(u(ν−1), u(ν))
]

(3.6.14k)

+
∑

γ∈Gjump,2[C]

∫

T
(
(∂ω

(i2[γ])
k ∩γ)×int[q]

)

(
−

(
a

T̄ [γ×q],1,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i1[T̄ [γ×q]]
, u

(ν)

i1[T̄ [γ×q]]

)sp.

+
(
a

T̄ [γ×q],2,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i2[T̄ [γ×q]]
, u

(ν)

i2[T̄ [γ×q]]

)sp.
)

(3.6.14l)

+
∑

γ∈Gjump,2[C]

∫

T
(
(∂ω

(i2[γ])
k ∩γ)×int[q]

)

(
− a

T̄ [γ×q],1,ν
jump ◦

(
u

(ν)

i1[T̄ [γ×q]]

)sp.

+ a
T̄ [γ×q],2,ν
jump ◦

(
u

(ν)

i2[T̄ [γ×q]]

)sp.
)

(3.6.14m)

−
∑

j∈V [C]

∫

T
(
(O∩ω

(j)
k )×int[q]

) f (ν)

j
◦

(
u

(ν)
j

)sp.

= 0. (3.6.14n)

3.6.4 Change of Variables

Equation (3.6.14) is to be transformed into the new variables using the Change of
Variables Th. C.8.3. Since Th. C.8.3 does not apply directly to the boundary integrals
of (3.6.14), some preparatory remarks are needed. Let S ⊆ p be a (d− 1)-dimensional
polytope such that int[S] ⊆ p ∩ O. Since S is piecewise affine, by decomposition
one can assume that S already lies in a (d − 1)-dimensional affine subspace of Rd.
Thus, there is a (d− 1)-dimensional polytope S̃ ⊆ Rd−1 and an affine parametrization
Φ : S̃ × q −→ Rd+d′ of S × q such that gr Φ′ = 1, where Φ′ denotes the derivative of Φ,
and gr Φ′ := det[(Φ′)>Φ′] denotes its Gram determinant. Then T◦Φ is a parametrization
of T (S × int[q]), and by the chain rule gr(T ◦Φ)′ = gr((T ′ ◦Φ) ·Φ′) = (JT ◦Φ)2 gr Φ′ =
(JT ◦ Φ)2, where JT := det[T ′] denotes the Jacobian of T . Thus, for each integrable
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function g : T (S × int[q]) −→ K:

∫

T (S×int[q])

g =

∫

S̃×int[q]

(g ◦ T ◦ Φ)
√

gr(T ◦ Φ)′

=

∫

S̃×int[q]

(g ◦ T ◦ Φ) · (|JT | ◦ Φ) =

∫

S×int[q]

(g ◦ T ) · |JT |.
(3.6.15)

Combining Th. C.8.3 with (3.6.15) produces the the new variable version of (3.6.14):

(tν − tν−1)
−1

∑

j∈V [C]

∫

(O∩ω
(j)
k )×int[q]

((
b
(ν)
j ◦

(
u

(ν)
j

)sp.

− b
(ν−1)
j ◦

(
u

(ν−1)
j

)sp.
)
◦ T

)
· |JT | (3.6.16a)

+
∑

j∈V [C]

∫

(∂ω
(j)
k ∩int[pj ])×int[q]

(( (
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

)
◦ T

)
· |JT | (3.6.16b)

+
∑

j∈V [C]

∫

(O∩∂ω
(j)
k ∩∂p)×int[q]

(((
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

)
◦ T

)
· |JT | (3.6.16c)

+
∑

j∈V [C]

∑
γ∈IF

∫

(∂ω
(j)
k ∩γ)×int[q]

(( (
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

T̄ [ω
(j)
k ×q]

)
◦ T

)
· |JT | (3.6.16d)

−
∑

j∈V [C]

∫

(∂ω
(j)
k ∩int[pj ])×int[q]

((
F

(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) • n
T̄ [ω

(j)
k ×q]

)
◦ T

)
· |JT | (3.6.16e)

−
∑

j∈V [C]: 0∈Jj

∫

(O∩∂ω
(j)
k ∩Γj,0)×int[q]

((
F

(ν)

j,∂
(

T̄ [ω
(j)
k ×q]

) • n
T̄ [ω

(j)
k ×q]

)
◦ T

)
· |JT |

−
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

(O∩∂ω
(j)
k ∩Γj,ι)×int[q]

(
(Bj,ι)

ex.-im.[(
u(ν−1), u(ν)

)] ◦ T
)
· |JT | (3.6.16f)

+
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

(O∩∂ω
(j)
k ∩Γj,ι)×int[q]

((
(aj,ι,ν

out )
ex.-im. ◦ (

u
(ν−1)
j , u

(ν)
j

)sp.
)
◦ T

)
· |JT | (3.6.16g)

−
∑

γ∈IFcon

∫

(γ∩Sj∈V [C] ∂ω
(j)
k )×int[q]

(
(AT̄ [γ×q])

ex.-im.[(u(ν−1), u(ν))
] ◦ T

)
· |JT | (3.6.16h)

+
∑

γ∈IFcon

∫

(γ∩Sj∈V [C] ∂ω
(j)
k )×int[q]

((
−

(
a

T̄ [γ×q],1,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i1[T̄ [γ×q]]
, u

(ν)

i1[T̄ [γ×q]]

)sp.

+
(
a

T̄ [γ×q],2,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i2[T̄ [γ×q]]
, u

(ν)

i2[T̄ [γ×q]]

)sp.
)
◦ T

)
· |JT | (3.6.16i)
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+
∑

γ∈Gjump,1[C]

∫

(∂ω
(i1[γ])
k ∩γ)×int[q]

((
a

T̄ [γ×q],1,ν
jump ◦

(
u

(ν)

i1[T̄ [γ×q]]

)sp.

− a
T̄ [γ×q],2,ν
jump ◦

(
u

(ν)

i2[T̄ [γ×q]]

)sp.
)
◦ T

)
· |JT | (3.6.16j)

−
∑

γ∈Gjump,2[C]

∫

(∂ω
(i2[γ])
k ∩γ)×int[q]

(
(AT̄ [γ×q])

ex.-im.[(u(ν−1), u(ν))
] ◦ T

)
· |JT | (3.6.16k)

+
∑

γ∈Gjump,2[C]

∫

(∂ω
(i2[γ])
k ∩γ)×int[q]

((
−

(
a

T̄ [γ×q],1,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i1[T̄ [γ×q]]
, u

(ν)

i1[T̄ [γ×q]]

)sp.

+
(
a

T̄ [γ×q],2,ν
flux

)ex.-im.

◦
(
u

(ν−1)

i2[T̄ [γ×q]]
, u

(ν)

i2[T̄ [γ×q]]

)sp.
)
◦ T

)
· |JT | (3.6.16l)

+
∑

γ∈Gjump,2[C]

∫

(∂ω
(i2[γ])
k ∩γ)×int[q]

((
− a

T̄ [γ×q],1,ν
jump ◦

(
u

(ν)

i1[T̄ [γ×q]]

)sp.

+ a
T̄ [γ×q],2,ν
jump ◦

(
u

(ν)

i2[T̄ [γ×q]]

)sp.
)
◦ T

)
· |JT | (3.6.16m)

−
∑

j∈V [C]

∫

(O∩ω
(j)
k )×int[q]

((
f (ν)

j
◦

(
u

(ν)
j

)sp.
)
◦ T

)
· |JT | = 0. (3.6.16n)

3.6.5 Symmetry Assumptions and Dimension Reduction

Finally, in this section, the assumed symmetry of the problem is used to achieve a
dimension reduction from d + d′ to d in (3.6.16).

Definition 3.6.6. Given a subset A ⊆ O, a continuous function g : T (A×int[q]) −→ K
is called q-independent iff there is a continuous function g : A −→ K such that g[xO] =
(g ◦ T )[(xO, xq)] for each (xO, xq) ∈ A × int[q]. The function g is called the dependent
part of g.

Assumption 3.6.7. The coordinate transformation T is compatible with q-independ-
ence in the sense that there exists a matrix T̃ = (t̃i,i′)(i,i′)∈{1,...,d}2 , t̃i,i′ ∈ C(p,K), such
that for each sufficiently smooth q-independent function w : T (pj × int[q]) −→ K with
dependent part w and for each d-polytope ω ⊆ pj, j ∈ J :

∧

(xp,xq)
∈((∂ω)×q)∩Ω




(
∇w[xp] · T̃ [xp]

)
• nω[xp]

=
(
∇(w ◦ T )[(xp, xq)] · (T ′)−1[(xp, xq)]

)
• nT̄ [ω×q]

[
T [(xp, xq)]

]


. (3.6.17)
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Basically, the following Assumptions 3.6.8, 3.6.10, and 3.6.12 say that all relevant quan-
tities of the considered problem are assumed to be q-independent for each fixed time
t ∈ τ . The solution functions are treated first:

Assumption 3.6.8. It is assumed that for each j ∈ J , there exist functions uj ∈
C(τ × pj, υ) such that

∧
(

t,(xp,xq)
)
∈τ×

(
(pj×q)∩Ω

) uj[(t, xp)] = (uj¹{t}×T (pj×int[q]) ◦T )[(xp, xq)] = uj

[(
t, T [(xp, xq)]

)]
.

(3.6.18a)

Remark 3.6.9. Since according to Assumption 3.6.8, for each j ∈ J and each t ∈ τ ,
uj ¹{t}×T (pj×int[q]) is q-independent, and T is compatible with q-independence by As-
sumption 3.6.7, the chain rule yields for each d-polytope ω ⊆ pj, j ∈ J :

∧
(

t,(xp,xq)
)

∈τ×
(
((∂ω)×q)∩Ω

)




(
∇uj[(t, xp)] · T̃ [xp]

)
• nω[xp]

=
(
(∇uj¹{t}×T (pj×int[q])) ◦ T

)
[(xp, xq)] • nT̄ [ω×q]

[
T [(xp, xq)]

]


.

(3.6.18b)

Assumption 3.6.10. The functions bj, vj, kj, f
j
, a

γ,α

jump, a
γ,α

flux, and aj,ι
out are also pre-

sumed to be independent of xq ∈ q, i.e. there are functions bj ∈ C(υ × τ × pj,K),
vj ∈ C(υ×τ×pj,Rd), kj ∈ C(υ×τ×pj,K), fj ∈ C(υ×τ×pj,K), aγ,α

jump ∈ C(υ×τ×γ,K),

aγ,α
flux ∈ C(υ × τ × γ,K), and aj,ι

out ∈ C(υ × τ × Γj,ι,K), such that

∧
j∈J

∧
(

y,t,(xp,xq)
)
∈υ×τ×

(
(pj×q)∩Ω

) bj

[(
y, t, xp

)]
= bj

[(
y, t, T [(xp, xq)]

)]
, (3.6.18c)

for each d-polytope ω ⊆ pj:

∧
j∈J

∧
(

t,(xp,xq)
)

∈τ×
(
((∂ω)×q)∩Ω

)

(
vj

[(
y, t, xp

)] • nω[xp]

= vj

[(
y, t, T [(xp, xq)]

)] • nT̄ [ω×q]

[
T [(xp, xq)]

]
)

, (3.6.18d)

∧
j∈J

∧
(

y,t,(xp,xq)
)
∈υ×τ×

(
(pj×q)∩Ω

) kj

[(
y, t, xp

)]
= kj

[(
y, t, T [(xp, xq)]

)]
, (3.6.18e)

∧
j∈J

∧
(

y,t,(xp,xq)
)
∈υ×τ×

(
(pj×q)∩Ω

) fj

[(
y, t, xp

)]
= f

j

[(
y, t, T [(xp, xq)]

)]
, (3.6.18f)



98 CHAPTER 3. FINITE VOLUME METHOD

∧

(γ,α)
∈IFjump×{1,2}

∧
(

y,t,(xp,xq)
)
∈υ×τ×

(
(γ×q)∩Ω

)aγ,α
jump

[(
y, t, xp

)]
= a

T̄ [γ×q],α
jump

[(
y, t, T [(xp, xq)]

)]
,

(3.6.18g)∧

(γ,α)
∈IF×{1,2}

∧
(

y,t,(xp,xq)
)
∈υ×τ×

(
(γ×q)∩Ω

)a
γ,α
flux

[(
y, t, xp

)]
= a

T̄ [γ×q],α
flux

[(
y, t, T [(xp, xq)]

)]
,

(3.6.18h)∧

(j,ι)
∈J×Jj\{0}

∧
(

y,t,(xp,xq)
)
∈υ×τ×

(
(Γj,ι×q)∩Ω

)aj,ι
out

[(
y, t, xp

)]
= aj,ι

out

[(
y, t, T [(xp, xq)]

)]
. (3.6.18i)

Moreover, it is also assumed that analogous symmetry conditions hold for the chosen

dependency splittings (a
γ,α

flux)
ex.-im.

, (aj,ι
out)

ex.-im.
, and (aγ,α

flux)
ex.-im., (aj,ι

out)
ex.-im.

, respectively.

Remark 3.6.11. If the symmetry conditions of Assumptions 3.6.8 and 3.6.10 hold,
then the analogous symmetry conditions also hold for the corresponding time-discrete

functions u
(ν)
j , b

(ν)
j , v

(ν)
j , k

(ν)
j , f (ν)

j
, a

γ,α,ν

jump , (a
γ,α,ν

flux )
ex.-im.

, (aj,ι,ν
out )

ex.-im.
, and u

(ν)
j , b

(ν)
j , v

(ν)
j ,

k
(ν)
j , f

(ν)
j , aγ,α,ν

jump , (aγ,α,ν
flux )ex.-im., (aj,ι,ν

out )
ex.-im.

, ν ∈ {0, . . . , n}.
—

Next, the symmetry conditions for the nonlocal operators are formulated:

Assumption 3.6.12. It is assumed that for each γ ∈ IF, there is a nonlocal interface
operator Aγ, and that for each (j, ι) ∈ J × J j \ {0}, there is a nonlocal boundary
operator Bj,ι such that for each family of q-independent functions w = (wj)j∈J , it holds
that

∧

(xp,xq)∈(γ×q)∩Ω

Aγ[w][xp] = AT̄ [γ×q][w]
[
T [(xp, xq)]

]
, (3.6.19a)

∧

(xp,xq)∈(Γj,ι×q)∩Ω

Bj,ι[w][xp] = Bj,ι[w]
[
T [(xp, xq)]

]
, (3.6.19b)

where w = (wj)j∈J , wj being the dependent part of wj, j ∈ J .

As before, it is also assumed that analogous relations hold for the chosen dependency
splittings (AT̄ [γ×q])

ex.-im., (Bj,ι)
ex.-im., and (Aγ)

ex.-im., (Bj,ι)
ex.-im..

Assumption 3.6.13. Assume that JT factorizes into functions JT,p : O −→ R, JT,q :
int[q] −→ R, i.e. ∧

(xp,xq)∈Ω

JT [(xp, xq)] = JT,p[xp] · JT,q[xq]. (3.6.20)

Moreover, assume that JT,p is continuous and extends to the whole set p continuously:
JT,p ∈ C(p,R).

—
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If T = Tcyl with p and q as in Ex. 3.6.3, then according to Rem. B.3.2(c) one has
JTcyl

[(r, ϑ, z)] = r, i.e. one can let JTcyl,p[(r, z)] = r and JTcyl,q[ϑ] = 1.

Presuming that the unknown is sufficiently regular, it is

(
tr

T
(
(O∩∂ω

(j)
k )×int[q]

)
( (

k
(ν)
j ◦

(
u

(ν)
j

)sp.)
∇ u

(ν)
j

))
◦ T

= tr
(O∩∂ω

(j)
k )×int[q]

(( (
k

(ν)
j ◦

(
u

(ν)
j

)sp.)
∇ u

(ν)
j

)
◦ T

)
.

(3.6.21)

Define the following families consisting of the dependent parts of the q-independent
time-discrete solutions: ∧

ν∈{0,...,n}
u(ν) :=

(
u

(ν)
j

)
j∈J

.

Putting everything together, i.e. using (3.6.5), (3.6.21), (3.6.8), Rem. 3.6.11, (3.6.19),
(3.6.20), and the Fubini Th. C.8.3 in (3.6.16), then dividing the equation by

∫
int[q]

|JT,q|,
results in

(tν − tν−1)
−1

∑

j∈V [C]

∫

ω
(j)
k

(
b
(ν)
j ◦

(
u

(ν)
j

)sp.

− b
(ν−1)
j ◦

(
u

(ν−1)
j

)sp.
)
· |JT,p| (3.6.22a)

+
∑

j∈V [C]

∫

∂ω
(j)
k ∩int[pj ]

( (
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

ω
(j)
k

)
· |JT,p| (3.6.22b)

+
∑

j∈V [C]

∫

∂ω
(j)
k ∩∂p

( (
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

ω
(j)
k

)
· |JT,p| (3.6.22c)

+
∑

j∈V [C]

∑
γ∈IF

∫

∂ω
(j)
k ∩γ

( (
v

(ν)
j ◦

(
u

(ν)
j

)sp.)
• n

ω
(j)
k

)
· |JT,p| (3.6.22d)

−
∑

j∈V [C]

∫

∂ω
(j)
k ∩int[pj ]

(
tr

O∩∂ω
(j)
k

((
k

(ν)
j ◦

(
u

(ν)
j

)sp.)
∇u

(ν)
j · T̃

)
• n

ω
(j)
k

)
· |JT,p| (3.6.22e)

−
∑

j∈V [C]: 0∈Jj

∫

∂ω
(j)
k ∩Γj,0

(
tr

O∩∂ω
(j)
k

((
k

(ν)
j ◦

(
u

(ν)
j

)sp.)
∇u

(ν)
j · T̃

)
• n

ω
(j)
k

)
· |JT,p|

−
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

∂ω
(j)
k ∩Γj,ι

(Bj,ι)
ex.-im.[(

u(ν−1), u(ν)
)] · |JT,p| (3.6.22f)

+
∑

j∈V [C]

∑

ι∈Jj\{0}

∫

∂ω
(j)
k ∩Γj,ι

(
(aj,ι,ν

out )
ex.-im.◦

(
u

(ν−1)
j , u

(ν)
j

)sp.
)
· |JT,p| (3.6.22g)

−
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂ω
(j)
k

(Aγ)
ex.-im.[(u(ν−1), u(ν))

] · |JT,p| (3.6.22h)
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+
∑

γ∈IFcon

∫

γ∩Sj∈V [C] ∂ω
(j)
k

(
− (

aγ,1,ν
flux

)ex.-im. ◦
(
u

(ν−1)
i1[γ] , u

(ν)
i1[γ]

)sp.

+
(
aγ,2,ν

flux

)ex.-im.◦
(
u

(ν−1)
i2[γ] , u

(ν)
i2[γ]

)sp.
)
· |JT,p| (3.6.22i)

+
∑

γ∈Gjump,1[C]

∫

∂ω
(i1[γ])
k ∩γ

(
aγ,1,ν

jump ◦
(
u

(ν)
i1[γ]

)sp.

− aγ,2,ν
jump ◦

(
u

(ν)
i2[γ]

)sp.
)
· |JT,p| (3.6.22j)

−
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(Aγ)
ex.-im.[(u(ν−1), u(ν))

] · |JT,p| (3.6.22k)

+
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(
− (

aγ,1,ν
flux

)ex.-im. ◦
(
u

(ν−1)
i1[γ] , u

(ν)
i1[γ]

)sp.

+
(
aγ,2,ν

flux

)ex.-im.◦
(
u

(ν−1)
i2[γ] , u

(ν)
i2[γ]

)sp.
)
· |JT,p| (3.6.22l)

+
∑

γ∈Gjump,2[C]

∫

∂ω
(i2[γ])
k ∩γ

(
− aγ,1,ν

jump ◦
(
u

(ν)
i1[γ]

)sp.

+ aγ,2,ν
jump ◦

(
u

(ν)
i2[γ]

)sp.
)
· |JT,p| (3.6.22m)

−
∑

j∈V [C]

∫

ω
(j)
k

(
f

(ν)
j ◦

(
u

(ν)
j

)sp.
)
· |JT,p| = 0. (3.6.22n)

Comparing (3.6.22) with (3.5.24), one finds that one also ends up with (3.6.22) when
starting out with a (d,N)-dimensional evolution equation complex

C =
(
D,

(
H|JT,p|·bj ,|JT,p|·vj ,|JT,p|·kj ·T̃ ,|JT,p|·fj

)
j∈J

,
(
(aγ,1

jump, a
γ,2
jump)

)
γ∈IFjump

,

(
(aγ,1

flux, a
γ,2
flux,Aγ)

)
γ∈IF

,
(
uj,Dir

)
j∈J : 0∈Jj

,
(
(aj,ι

out,Bj,ι)
)
(j,ι)∈J×(Jj\{0}),

(
u

(0)
j

)
j∈J

)
,

∧

(j,ι)∈J×Jj,0




aj,ι
out = 0,

Bj,ι = 0,

vj¹Γj,ι
•npj

= 0


 , (3.6.23)

and then proceeding as in Sec. 3.5 (without change of variables). This shows that
the general setting of an evolution equation complex as defined in Def. 3.4.6 is almost
sufficiently general to include all situations arising from dimension reductions via a
change of variables as described in the present section. To make clear what is meant by
“almost sufficiently general”, the evolution equations in the new variables are written:

∂t(|JT,p| · bj ◦ ut.−sp.
j ) + div(|JT,p| · vj ◦ ut.−sp.

j )

− div
(
(∇uj) · (|JT,p|kjT̃ ◦ ut.−sp.

j )
)− |JT,p| · fj ◦ ut.−sp.

j = 0.
(3.6.24)

If |JT,p| is sufficiently regular, then (3.6.24) has the same form as (3.3.4) with the
exception of the diffusion term. While the diffusion was assumed to be scalar-valued in
(3.3.2c), it needs to be matrix-valued to include the generic situation of (3.6.24).
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However, the case of cylindrical coordinates, that is used for the simulation applications
of this work, is more benign than the generic case of (3.6.24). By (B.3.4) in App. B.3,
one has JTcyl,p = r which is C∞, and by Rem. B.3.3, T̃cyl is the identity matrix.

It just remains to mention the symmetry conditions for the Dirichlet functions and for
the initial distributions: It is assumed that for each j ∈ J where 0 ∈ Jj and for each

ν ∈ {0, . . . , n}, it is u
(ν)
j,Dir ∈ C(Γj,0,K) such that

∧

(xp,xq)∈(Γj,0×q)∩Ω

u
(ν)
j,Dir[xp] = u

(ν)
j,Dir

[
T [(xp, xq)]

]
; (3.6.25)

and for each j ∈ J , it is u
(0)
j ∈ C(pj,K) such that

∧

(xp,xq)∈(pj×q)∩Ω

u
(0)
j [xp] = u

(0)
j

[
T [(xp, xq)]

]
. (3.6.26)

3.7 Finite Volume Discretization and Discrete A

Priori Estimates

The contents of Sec. 3.7 consists of the formulation of a space discretization of (3.5.24)
and of the supply of discrete a priori estimates. The discrete a priori estimates are used
in Sec. 3.8 in the prove of existence and uniqueness of discrete solutions.

The discretization strategy is outlined in Sec. 3.7.1, followed by a detailed treatment
of each term of (3.5.24) in the subsequent Secs 3.7.2 – 3.7.11. The discretization is
summarized in the definitions of Sec. 3.7.12, and the discrete a priori estimates are
provided in Sec. 3.7.13.

3.7.1 Outline of Discretization Strategy

As already mentioned in Sec. 3.5, it is assumed that the control volumes introduced
in Sec. 3.5.1 are small, such that the functions occurring in the integrands of (3.5.24)
can be approximated as being constant inside their respective domains of integration.
More precisely, for each k ∈ IΠ (where Π = (ωk)k∈IΠ is the partition of p into control
volumes), associate a discretization point xk with the control volume ωk, such that (cf.
Fig. 3.15) ∧

k∈IΠ

xk ∈ ωk. (3.7.1)

Moreover, it is assumed that the discretization points are chosen such that for each
integral in (3.5.24), there is always precisely one discretization point inside the respec-
tive domain of integration. The only exceptions are the integrals involving interior
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fluxes, i.e. the integrals in (3.5.24b) and (3.5.24e), where the domain of integration is
perpendicular to the line segment joining neighboring discretization points (s. condition
(dispt-(i)) below). All integrands in (3.5.24), except the ones occurring in (3.5.24b) and
(3.5.24e), and except the ones occurring in the nonlocal terms (3.5.24f), (3.5.24h), and
(3.5.24k), are then replaced by their values at the respective discretization points (see
the following Secs 3.7.2 – 3.7.11 for details, where the discretization of the nonlocal
terms (3.5.24f), (3.5.24h), and (3.5.24k) is the subject of Secs 3.7.7 and 3.7.8).

The integrands in (3.5.24b) and (3.5.24e) involve the normal fluxes through regular
interfaces ∂regωk∩∂regωl between neighboring control volumes ωk and ωl (see Sec. 3.7.3).
For the approximation of these terms in Secs 3.7.3 and 3.7.4, it is assumed that the
partition Π is such that the line segment joining the neighboring discretization points
xk and xl is always perpendicular to the interface ∂regωk ∩ ∂regωl, i.e.

∧

{k,l}∈EIF[Π]

xk 6= xl and
xl − xk

‖xk − xl‖2

= nωk
¹∂regωk∩∂regωl

, (dispt-(i))

where the set EIF[Π] is defined in (3.7.11) below. In Fig. 3.15, the discretization points
are chosen such that (dispt-(i)) is satisfied.

ω
(1)
1

x3

ω
(1)
2

ω
(1)
4

ω
(1)
6 ω

(1)
7

x2

ω
(1)
5ω

(1)
3

x5

x7

x4

x1

x6

Figure 3.15: The partition of Fig. 3.4 including discretization points x1, . . . , x7.

As described in Sec. 3.5.3, the partition Π gives rise to partitions Π(j) = (ω
(j)
k )k∈I(j) of

pj, j ∈ J . Now, the value u
(ν)
(k,j) := u

(ν)
j [xk] is to be used as an approximation of the

time-discrete solution u
(ν)
j in ω

(j)
k at time tν . Therefore, (3.7.1) is strengthened to

∧

k∈IΠ

∧
j∈Vωk

xk ∈ ω
(j)
k (dispt-(ii))

(cf. (3.5.17) for the definition of Vωk
). For example in the situations depicted in Fig.

3.16, the chosen position for the discretization point xω is the only one possible to
satisfy (dispt-(ii)).
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The vector U
(ν)
long := (u

(ν)
(k,j))(k,j)∈IΠ×Vωk

constitutes a time- and space-discrete approxima-

tion of the family of time-discrete solutions (u
(ν)
j )j∈J at time tν . Suitable interpolations

of the U
(ν)
long should converge to the (u

(ν)
j )j∈J as the size of the control volumes tends to

zero; and suitable interpolations of the (u
(ν)
j )j∈J should converge to a solution (uj)j∈J

to C (cf. Def. 3.4.7) as the size of the time steps tends to zero.

As will be explained shortly, the approximation U
(ν)
long is also represented by the smaller

vector U (ν) := U
(ν)
short := (u

(ν)
(k,C))(k,C)∈IΠ,D , where

IΠ,D :=
{
(k, C) : k ∈ IΠ, C ∈ CoCmp[Gωk

]
}
. (3.7.2)

The index D in IΠ,D is used to indicate that the set depends on the domain complex
D, as it needs the information about the distribution of continuous interfaces and jump
interfaces (cf. the definition of Gωk

according to Def. 3.5.3). The reason for passing

from the vector U
(ν)
long to the vector U (ν) is the fact that values u

(ν)
k,j1

and u
(ν)
k,j2

must be
the same whenever pj1 and pj2 are connected via continuous interfaces, i.e. whenever j1

and j2 lie in the same connected component of the graph Gωk
. For example in case (a)

of Fig. 3.16, u
(ν)
1 [xω], . . . , u

(ν)
4 [xω] can have four different values, whereas in case (b) of

Fig. 3.16, u
(ν)
2 [xω], u

(ν)
3 [xω], and u

(ν)
4 [xω] all have the same value, which can be different

from u
(ν)
1 [xω].

It was shown in Sec. 3.5, that, if (u
(ν)
j ) is a solution to the time discretization T of C,

then Eqs (3.5.24) are satisfied, i.e. precisely one equation for each discrete time tν and
for each (k, C) ∈ IΠ,D (cf. the remarks immediately after the formulation of (3.5.24)).
The strategy is to determine U (ν) using discretized versions of (3.5.24). However, if
xk ∈ Γj,0, j ∈ V [C], then

u
(ν)
(k,C) = uj,Dir[(tν , xk)] (3.7.3)

is known a priori. This actuates the introduction of the index sets

IΠ,D,Dir := {(k, C) ∈ IΠ,D : 0 ∈ Jj, Γj,0 ∩ ∂regωk 6= ∅ for some j ∈ V [C]}, (3.7.4a)

IΠ,D,¬Dir := IΠ,D \ IΠ,D,Dir. (3.7.4b)

Here, and also in the following, the handling of the boundary conditions makes use
of the assumption that one can find a discretization point in each (d− 1)-dimensional
intersection between a control volume and an outer boundary Γj,ι:

∧

k∈IΠ

∧

(j,ι)∈J×Jj

Γj,ι ∩ ∂regωk 6= ∅ ⇒ xk ∈ Γj,ι. (dispt-(iii))

In Fig. 3.17(a), (dispt-(iii)) is satisfied, whereas the condition is violated in Fig. 3.17(b)
for k ∈ {3, 5, 7}.
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ω(j) := int(ω ∩ pj)

Gω :

xω

Gω :

ω(4)

ω(1)

ω(4)

ω(1)

3 4

12

3 4

12

ω

jump interfaces

continuous interfaces

p1 p2 p3 p4

(a) (b)

ω(2)

ω(3)

ω(2)

ω(3)

Figure 3.16: Control volume ω with discretization point xω for two different disributions
of jump and continuous interfaces.

(a)

ω1 ω2

ω4
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Γ5

Γ0 = ΓDir

Γ1

Γ3

Γ2

Γ4

ω1 ω2

ω4

ω6 ω7

x2

ω5ω3

x5

x7

x4

Γ5

Γ0 = ΓDir

Γ1

Γ3

Γ2

Γ4

x1

x6

x1

x3

x6

x4x3 x5

(b)

Figure 3.17: Illustration of Condition (dispt-(iii)).

As the vector (u
(ν)
(k,C))(k,C)∈IΠ,D,Dir

is known a priori, only (u
(ν)
(k,C))(k,C)∈IΠ,D,¬Dir

is determined

using discretized versions of (3.5.24), where it will suffice to discretize (3.5.24) for
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(k, C) ∈ IΠ,D,¬Dir.

The discretization of the (k, C)-th equation of (3.5.24) at time tν , (k, C) ∈ IΠ,D,¬Dir,
according to the strategy described above and as carried out in the following sections,
has the form

h
(ν)
(k,C)[(U

(ν−1), U (ν))] = 0, (3.7.5a)

h
(ν)
(k,C) : υIΠ,D,¬Dir × υIΠ,D,¬Dir −→ K, (3.7.5b)

which can be combined to

h(ν)[(U (ν−1), U (ν))] = 0, (3.7.6a)

h(ν) : υIΠ,D,¬Dir × υIΠ,D,¬Dir −→ KIΠ,D,¬Dir . (3.7.6b)

Each operator h
(ν)
(k,C) in (3.7.5) is a sum of operators

h
(ν)
(k,C) = h

(ν)
(k,C),(a) + · · ·+ h

(ν)
(k,C),(n), (3.7.7)

where the operator h
(ν)
(k,C),(a) represents the space discretization of (3.5.24a) etc. It is

noted that the summand between (3.5.24e) and (3.5.24f) vanishes for (k, C) ∈ IΠ,D,¬Dir.

The operators h
(ν)
(k,C),(a), . . . , h

(ν)
(k,C),(n) are defined in the succeeding Secs 3.7.2 - 3.7.11 .

A discrete solution will have to satisfy (3.7.6a) for each ν ∈ {1, . . . , n} (cf. Def.
3.7.42(iii)).

On the way to establish discrete a priori estimates in Th. 3.7.50, it is an important
auxiliary result to prove an upper bound for the operators s(ν) defined by

∧

ν∈{0,...,n}




s(ν) : υIΠ,D,¬Dir × υIΠ,D,¬Dir −→ K,

s(ν) := −
∑

(k,C)∈IΠ,D,¬Dir

(
h

(ν)
(k,C) − h

(ν)
(k,C),(a)

)

 . (3.7.8)

Subtracting h
(ν)
(k,C),(a) in (3.7.8) eliminates the time-step-dependent terms from s(ν) (cf.

(3.7.9)). The proof of the upper bound for the s(ν) involves estimating upper bounds
of the terms

−
∑

(k,C)∈IΠ,D,¬Dir

h
(ν)
(k,C),(b), . . . , −

∑

(k,C)∈IΠ,D,¬Dir

h
(ν)
(k,C),(n),

which is accomplished in the subsequent Secs 3.7.3 – 3.7.11 succeeding the definitions
of the respective operators. The result is then summarized in Lem. 3.7.45.
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3.7.2 Terms Involving the Time Step

(3.5.24a) is discretized by replacing the integrand by its value at xk, i.e. (3.5.24a) is
replaced by

h
(ν)
(k,C),(a)

[
(U (ν−1), U (ν))

]
:= (tν − tν−1)

−1
(
b

(ν)
(k,C)[U

(ν)
(k,C)]− b

(ν−1)
(k,C) [U

(ν−1)
(k,C) ]

)
, (3.7.9)

where the b
(ν)
(k,C) : υ −→ K are defined by:

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir

b
(ν)
(k,C)[y] :=

∑

j∈V [C]
b
(ν)
j [(y, xk)] · λd[ω

(j)
k ]. (3.7.10)

3.7.3 Terms Involving Interior Diffusion Flux

(3.5.24e) is to be discretized.

First, the domain of integration ∂ω
(j)
k ∩ int[pj] is partitioned further: For that purpose

define
EIF[Π] :=

{{k, l} ⊆ IΠ : ∂regωk ∩ ∂regωl 6= ∅, k 6= l
}
, (3.7.11)

where it is noted that (3.7.11) is analogous to (3.4.4). A control volume ωl, l ∈ I(j)

(cf. (3.5.15)), is called a j-neighbor of ωk iff {k, l} ∈ EIF[Π]. The set of corresponding
indices is defined by

∧

k∈IΠ

nbj[k] :=
{
l ∈ I(j) : {k, l} ∈ EIF[Π]

}
. (3.7.12)

Remark 3.7.1. The family (∂ω
(j)
k ∩ ∂ω

(j)
l )l∈nbj [k] forms a partition of ∂ω

(j)
k ∩ int[pj]

with respect to the relative topology (see Fig. 3.18).

—

In the following, one frequently needs to determine the index in IΠ,D that corresponds
to (l, j) ∈ IΠ × J . To that end, define

∧

(l,j)∈IΠ×J

C[(l, j)] := CoCmpGωl
[j]. (3.7.13)

Now for l ∈ nbj[k], there is a difference depending on
(
l, C[(l, j)]

)
being an element of

IΠ,D,Dir or not. Define

∧

k∈IΠ

(
nbj,Dir[k] :=

{
l ∈ nbj[k] :

(
l, C[(l, j)]

) ∈ IΠ,D,Dir

}
,

nbj,¬Dir[k] := nbj[k] \ nbj,Dir[k]

)
. (3.7.14)
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Figure 3.18: Enlargement of p1 of Figs 3.5 and 3.6 on p. 75, illustrating the partition of
∂ω

(1)
2 ∩ int[p1] into ∂ω

(1)
2 ∩ ∂ω

(1)
1 , ∂ω

(1)
2 ∩ ∂ω

(1)
4 , and ∂ω

(1)
2 ∩ ∂ω

(1)
5 ; and of ∂ω

(1)
6 ∩ int[p1]

into ∂ω
(1)
6 ∩ ∂ω

(1)
3 , ∂ω

(1)
6 ∩ ∂ω

(1)
4 , and ∂ω

(1)
6 ∩ ∂ω

(1)
7 . One has nb1[2] = {1, 4, 5} and

nb1[6] = {3, 4, 7}.
Example 3.7.2. (a) In Fig. 3.17(a) (where the index j = 1 has been discarded), it is

nb1,Dir[2] = nb1,Dir[4] = nb1,Dir[7] = {5}, and nb1,Dir[k] = ∅ for k ∈ {1, 3, 5, 6}.

(b) If the interface γ = ∂regp1 ∩ ∂regp2 in Fig. 3.19 is a jump interface, then nb1,Dir[3] =
{1}, and nb2,Dir[3] = ∅.

(c) If the interface γ = ∂regp1 ∩ ∂regp2 in Fig. 3.19 is a continuous interface, then
nb1,Dir[3] = {1}, and nb2,Dir[3] = {1} (even though x1 /∈ Γ2,Dir which might not
even exist).

—
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Figure 3.19: Illustration of (3.7.14), cf. Ex. 3.7.2 (b),(c)
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If l ∈ nbj,Dir[k], then u
(ν)
(l,C[(l,j)]) is known a priori from

u
(ν)
(l,C[(l,j)]) = ujDir,Dir[(tν , xl)],

where jDir is an element of V
[C[(l, j)]

]
such that 0 ∈ JjDir

. Example 3.7.2(c) shows that
one can not expect j = jDir in general. To avoid the ambiguity in the choice of jDir, the
following Not. 3.7.3 is introduced.

Notation 3.7.3. For each (l, j) such that (l, C[(l, j)]) ∈ IΠ,D,Dir, let jDir[(l, j)] be an
element of V

[C[(l, j)]
]

such that 0 ∈ JjDir
. The element jDir[(l, j)] is kept fixed for the

remainder of Ch. 3.

If l ∈ nbj,¬Dir[k], then u
(ν)
(l,C[(l,j)]) has to be determined using the discretization of (3.5.24).

To proceed with the discretization of (3.5.24e), it is recalled that according to (3.4.18):

F
(ν)

j,∂ω
(j)
k

[x] = tr
∂ω

(j)
k

(
k

(ν)
j

[
(u

(ν)
j [x], x)

]∇u
(ν)
j [x]

)
.

As mentioned in Sec. 3.7.1, for {k, l} ∈ EIF[Π], it is assumed that the line segment
joining xk and xl is perpendicular to ∂regωk ∩ ∂regωl, i.e. (dispt-(i)) holds. The normal

vector in (3.5.24e) is replaced using (dispt-(i)). The gradient of u
(ν)
j on ∂regωk ∩ ∂regωl

in the normal direction is approximated by the difference quotient
u
(ν)
(l,j)

−u
(ν)
(k,j)

xl−xk
, and the

value of k
(ν)
j on ∂regωk∩∂regωl is approximated by the arithmetic mean of k

(ν)
j evaluated

at xk and xl, respectively.

At this point, all the preparations are in place to write the discretization of (3.5.24e),
where (3.5.24e) is replaced by

h
(ν)
(k,C),(e)[U

(ν)] := −k
(ν)
¬Dir,(k,C)[U

(ν)]− k
(ν)
Dir,(k,C)[U

(ν)
(k,C)], (3.7.15)

where the k
(ν)
¬Dir,(k,C) : υIΠ,D,¬Dir −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




k
(ν)
¬Dir,(k,C)[U ]

:=
∑

j∈V [C],
l∈nbj,¬Dir[k]

k
(ν)
j [(U(k,C), xk)] + k

(ν)
j

[(
U(l,C[(l,j)]), xl

)]

2

·
U(l,C[(l,j)]) − U(k,C)

‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]




, (3.7.16)
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and the k
(ν)
Dir,(k,C) : υ −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




k
(ν)
Dir,(k,C)[y]

:=
∑

j∈V [C],
l∈nbj,Dir[k]

k
(ν)
j

[
(y, xk)

]
+ k

(ν)
j

[(
ujDir[(l,j)],Dir[(tν , xl)], xl

)]

2

· ujDir[(l,j)],Dir[(tν , xl)]− y

‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]




. (3.7.17)

The estimates provided in the following Lems 3.7.4 and 3.7.6 are steps towards proving
an upper bound for the s(ν) according to the remarks at the end of Sec. 3.7.1.

Lemma 3.7.4. The following holds:
∧

ν∈{0,...,n}

∑

(k,C)∈IΠ,D,¬Dir

k
(ν)
¬Dir,(k,C) = 0. (3.7.18)

—

The main ingredient to the proof of Lem. 3.7.4 is the following Lem. 3.7.5 that con-
stitutes a purely combinatorial result to the effect that a certain sum vanishes if the
summands satisfy the symmetry condition (3.7.21). Lemma 3.7.5 is also used in the
proof of Lem. 3.7.16 below.

Lemma 3.7.5. Consider a function

F : IΠ,D,nb,¬Dir −→ K, (3.7.19)

IΠ,D,nb,¬Dir :=
{(

j, (k, C), (l, C̃)
) ∈ J × IΠ,D,¬Dir × IΠ,D,¬Dir :

{k, l} ∈ EIF[Π], j ∈ V [C] ∩ V [C̃]
}

, (3.7.20)

satisfying the symmetry condition
∧

(
j,(k,C),(l,C̃)

)
∈IΠ,D,nb,¬Dir

F
[(

j, (k, C), (l, C̃)
)]

= −F
[(

j, (l, C̃), (k, C)
)]

. (3.7.21)

Then ∑

(k,C)∈IΠ,D,¬Dir,
j∈V [C],

l∈nbj,¬Dir[k]

F
[(

j,
(
k, C), (l, C[(l, j)]

))]
= 0. (3.7.22)

Proof. It is shown how the order of summation on the left-hand side of (3.7.22) can
be changed such that (3.7.21) can be applied. The index set for the sum in (3.7.22) is
given by

A :=
{(

(k, C), j, l
) ∈ IΠ,D,¬Dir × J × IΠ : j ∈ V [C], l ∈ nbj,¬Dir[k]

}
. (3.7.23)
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Instead, one can use the index set

B :=

{
(k, j, l) ∈ IΠ × J × IΠ :

(
j,

(
k, C[(k, j)]

)
,
(
l, C[(l, j)]

)) ∈ IΠ,D,nb,¬Dir

}
, (3.7.24)

as the following map I establishes a bijection between A and B:

I : A −→ B, I[
((k, C), j, l)

]
: = (k, j, l),

I−1 : B −→ A, I−1
[
(k, j, l)

]
=

((
k, C[(k, j)]

)
, j, l

)
.

Since (k, j, l) ∈ B if and only if (l, j, k) ∈ B, condition (3.7.21) finishes the proof. ¥

Proof of Lem. 3.7.4. Fix ν ∈ {0, . . . , n}. To apply Lem. 3.7.5, define

F : IΠ,D,nb,¬Dir −→ K,

F
[(

j, (k, C), (l, C̃)
)]

:=
k

(ν)
j

[
(U(k,C), xk)

]
+ k

(ν)
j

[
(U(l,C̃), xl)

]

2

· U(l,C̃) − U(k,C)
‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
.

(3.7.25)

Then (3.7.21) is satisfied, and (3.7.22) together with (3.7.16) yields (3.7.18). ¥

Lemma 3.7.6. Assume that the range of the unknowns uj is a real interval of the form
υ = [mυ,∞[. Moreover, assume that kj and uj,Dir are real-valued and kj is nonnegative
for each j ∈ J . Then

∧

ν∈{0,...,n}



−

∑

(k,C)∈IΠ,D,¬Dir

h
(ν)
(k,C),(e) =

∑

(k,C)∈IΠ,D,¬Dir

k
(ν)
Dir,(k,C)

≤ Bk,Dir[C] · (BDir[C]−mυ

) · dDir[Π]


 , (3.7.26)

where

BDir[C] := max
{‖uj,Dir‖max : j ∈ J, 0 ∈ Jj

}
, (3.7.27)

Bk,Dir[C] := max
{
kj[(y, t, x)] : y ∈ [mυ, BDir[C]], t ∈ τ, x ∈ pj, j ∈ J

}
, (3.7.28)

dDir[Π] :=
∑

(k,C)∈IΠ,D,Dir, j∈V [C],
l∈nbj,¬Dir[k]

λd−1

[
ω

(j)
k ∩ ω

(j)
l

]

‖xk − xl‖2

. (3.7.29)

Proof. The equality in (3.7.26) is (3.7.15) combined with Lem. 3.7.4. To verify the

estimate, it is noted that by the nonnegativity of the kj, k
(ν)
Dir,(k,C)[y] ≤ 0 whenever

ujDir[(l,j)],Dir[(tν , xl)]− y ≤ 0. Moreover,

sup
{
k

(ν)
j [(y, xk)] : ujDir[(l,j)],Dir[(tν , xl)]− y > 0,
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(k, C) ∈ IΠ,D,¬Dir, j ∈ V [C], l ∈ nbj,Dir[k]
}

≤ max
{
k

(ν)
j [(y, x)] : mυ ≤ y ≤ BDir[C], x ∈ pj, j ∈ J

} ≤ Bk,Dir[C],

which, together with k
(ν)
j

[(
ujDir[(l,j)],Dir[(tν , xl)], xl

)] ≤ Bk,Dir[C], establishes the case.
Using a correspondence similar to the one established in the proof of Lem. 3.7.5, the
sum in (3.7.29) is written in terms of IΠ,D,Dir, whereas the sums in (3.7.26) are witten
in terms of IΠ,D,¬Dir. ¥

Remark 3.7.7. The number dDir[Π] measures the size of the surface consisting of the
collection of all interfaces between control volumes at Dirichlet vertices and control
volumes at non-Dirichlet vertices in relation to its distance from the outer boundary.
Unfortunately, the following Ex. 3.7.8 shows that dDir[Π] can not be expected to stay
bounded as Π becomes finer. Thus, to prove convergence in the presence of Dirichlet
boundaries, the estimate (3.7.26) needs to be improved, e.g. by first establishing a

bound for the discrete gradients
u
(ν)
j [xl]−u

(ν)
j [xk]

xl−xk
.

Example 3.7.8. For the polytope discretizations depicted in Fig. 3.20, one has λ1[ωk∩
ωl] = a for a control volume ωk adjacent to ΓDir and a control volume ωl directly
underneath ωk, except at the right side and at the left side, where λ1[ωk ∩ ωl] = a

2
.

Moreover, ‖xk − xl‖2 = h for the corresponding discretization points. Thus dDir = d
h
,

which tends to infinity if h tends to zero.

a

(b)(a)

ΓDir

control volumes

discretization points

h

b

⋃
k∈IΠ,D,Dir,
l∈IΠ,D,¬Dir

ωk ∩ ωl

a

b

Figure 3.20: Polytope discretizations illustrating the definition of dDir according to
(3.7.29). For the depicted discretizations, one has dDir = b

h
(s. Ex. 3.7.8).

Example 3.7.9. In Ex. 3.1.1(b) and in the first case of 3.1.1(a), the hypotheses of
Lem. 3.7.6 are satisfied, as the unknown is either mass density or absolute temperature,
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i.e. υ = [0,∞[, and the kj are nonnegative, since they either vanish or they represent
thermal conductivity.

3.7.4 Terms Involving Interior Convection Flux; Upwind

(3.5.24b) is to be discretized. The discretization is similar to the discretization of

(3.5.24e) in Sec. 3.7.3, but some new complications arise from the v
(ν)
j being vector-

valued. For the discretization of (3.5.24e) in Sec. 3.7.3, resulting in (3.7.16) and (3.7.17),

it sufficed to approximate k
(ν)
j on ∂regωk ∩ ∂regωl by taking the arithmetic mean of k

(ν)
j

evaluated at xk and xl. However, to guarantee certain monotonicity properties of the
finite volume discretization that are used to prove the existence of a discrete solution
in Th. 3.8.35 (cf. Lem. 3.8.12), choosing an appropriate average of the v

(ν)
j evaluated at

xk and xl is more subtle.

The general idea is to choose the average depending on the directions of the vectors
v

(ν)
j

[
(u

(ν)
j [xk], xk)

]
and v

(ν)
j

[
(u

(ν)
j [xl], xl)

]
. Unfortunately, due to the dependence on the

solution, the directions are a priori unknown. To circumvent this problem, the sim-
plifying assumption is made that the solution dependence of the vj can be decoupled
from their vector-valuedness in the sense that vj can be decomposed into two factors,
one factor being scalar, but allowed to depend on the solution, the other factor being
vector-valued, but independent of the solution. In other words, the vj are assumed to
have a scalar-vector-splitting in the sense of the following Def. 3.7.10:

Definition 3.7.10. Let A ⊆ Rd. A pair (vsca, vvec) is called a scalar-vector-splitting of
a function v ∈ C(υ × τ × A,Rd) iff vsca ∈ C(υ × τ × A,R), vvec ∈ C(τ × A,Rd), and

∧

(y,t,x)∈υ×τ×A

v[(y, t, x)] = vsca[(y, t, x)] · vvec[(t, x)]. (3.7.30)

—

Example 3.7.11 shows that scalar-vector-splittings exist for all the cases considered in
Ex. 3.1.1.

Example 3.7.11. Scalar-vector-splittings of nonzero functions vj occurring in Ex. 3.1.1
are considered. The potential time dependence present in Ex. 3.1.1 is disregarded in
the present example to simplify notation. It poses no difficulty if time dependence is
indeed present. In each of the following examples, the functions vsca and vvec are chosen
such that they constitute a scalar-vector-splitting of the function under consideration.

In the first case of Ex. 3.1.1(a), vj[(y, x)] = yvgas[x]. One can set vsca[(y, x)] := y,
vvec[x] := vgas[x]. In the second case of Ex. 3.1.1(a), vj[(y, x)] = R

M(Ar) ρgas[x]Tgas[x]ei.

One can set vsca[(y, x)] := 1, vvec[x] := R
M(Ar) ρgas[x]Tgas[x]ei. One can also set vsca[(y, x)]

:= R
M(Ar) ρgas[x]Tgas[x], vvec[x] := ei. It is seen that scalar-vector-splittings are not unique.
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In the first case of Ex. 3.1.1(b), vj[(y, x)] =
(z(Ar)+1)R

M(Ar) ρgas[x]yvgas[x]. One can set

vsca[(y, x)] :=
(z(Ar)+1)R

M(Ar) ρgas[x]y, vvec[x] := vgas[x]. In the second case of Ex. 3.1.1(b),
vj = 0. In the third case, vj[(y, x)] = εgas[(y, x)] ρgas[x]vgas[x]. One can set vsca[(y, x)] :=
εgas[(y, x)] ρgas[x], vvec[x] := vgas[x].

In Ex. 3.1.1(e), vj[(y, x)] = K[(y, x)]g[x]. One can set vsca[(y, x)] := K[(y, x)], vvec[x] :=
g[x].

Definition 3.7.12. A family

V =
(
(vj,sca, vj,vec)

)
j∈J

(3.7.31)

is called a family of scalar-vector-splittings for the evolution equation complex C iff
(vj,sca, vj,vec) is a solution-vector-splitting of vj for each j ∈ J .

The time discretization of V is defined as the family
(
(v

(ν)
j,sca, v

(ν)
j,vec)

)
(j,ν)∈J×{0,...,n}

, (3.7.32)

where for each (j, ν) ∈ J × {0, . . . , n}:

v
(ν)
j,sca ∈ C(υ × pj,R), v

(ν)
j,sca[(y, x)] := vj,sca[(y, tν , x)], (3.7.33a)

v
(ν)
j,vec ∈ C(pj,Rd), v

(ν)
j,vec[x] := vj,vec[(tν , x)]. (3.7.33b)

For each ν ∈ {0, . . . , n}, the pair (v
(ν)
j,sca, v

(ν)
j,vec) is called a scalar-vector-splitting of v

(ν)
j (cf.

Rem. 3.7.13 below). The context should always make clear, if a scalar-vector-splitting
belongs to a time-dependent or to a time-discrete function.

Remark 3.7.13. If V as given by (3.7.31) is a family of scalar-vector-splittings for C

with time discretization (3.7.32), then

∧

(j,ν)∈J×{0,...,n}

∧

(y,x)∈υ×pj

v
(ν)
j [(y, x)] = v

(ν)
j,sca[(y, x)] · v(ν)

j,vec[x]. (3.7.34)

—

For the remainder of Ch. 3, fix a family of scalar-vector-splittings V for C according to
(3.7.31).

A direction-dependent average of v
(ν)
j

[
(u

(ν)
j [xk], xk)

]
and v

(ν)
j

[
(u

(ν)
j [xl], xl)

]
can now be

selected by taking the arithmetic mean of v
(ν)
j,vec[xk] and v

(ν)
j,vec[xl] multiplied by a convex

combination w
(ν)
j [(k, l)]v

(ν)
j,sca[xl] +

(
1− w

(ν)
j [(k, l)]

)
v

(ν)
j,sca[xk], where w

(ν)
j is the so-called

upwind function for Π(j) and v
(ν)
j,vec, the value of w

(ν)
j depending on the direction of

v
(ν)
j,vec[xk] + v

(ν)
j,vec[xl] according to the following Def. 3.7.14.
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One finds different kinds of upwind functions in the literature. If the upwind function
is defined as in Def. 3.7.14, then one usually speaks of full upwinding. Since special
properties of full upwinding are used to prove the existence of a discrete solution in Th.
3.8.35, no other upwind functions are considered here.

Definition 3.7.14. Define the ordered analogues of the set EIF[Π] for the Π(j), j ∈ J ,
(cf. (3.7.11)):

EIF,pairs[Π
(j)] :=

{
(k, l) ∈ (I(j))2 : {k, l} ∈ EIF[Π]

}
. (3.7.35)

Moreover, given a function v ∈ C(pj,Rd), define auxiliary quantities

∧

(k,l)∈EIF,pairs[Π(j)]

v̄(k,l) := (v[xl] + v[xk]) • nωk
¹∂regωk∩∂regωl

. (3.7.36)

The upwind function w for Π(j) and v is defined by

w : EIF,pairs[Π
(j)] −→ [0, 1], w[(k, l)] :=





0 for v̄(k,l) > 0,
1
2

for v̄(k,l) = 0,

1 for v̄(k,l) < 0.

(3.7.37)

—

Using the value 1
2

for the upwind function in the case where v̄(k,l) = 0 is not essential,
since the corresponding term in the discretization of (3.5.24b) vanishes anyway (s.
(3.7.40) and (3.7.41)). Using 1

2
has the advantage that some assertions about w can be

stated more concisely, as e.g. in the following Rem. 3.7.15.

Remark 3.7.15. For each v ∈ C(pj,Rd), the upwind function w for Π(j) and v satisfies
the symmetry condition

∧

(k,l)∈EIF,pairs[Π(j)]

w[(k, l)] = 1− w[(l, k)], (3.7.38)

which is immediate from nωk
¹∂regωk∩∂regωl

= −nωl
¹∂regωk∩∂regωl

, (3.7.36), and (3.7.37).

—

For the rest of Ch. 3, w
(ν)
j denotes the upwind function for Π(j) and v

(ν)
j,vec, j ∈ J ,

ν ∈ {0, . . . , n}.
Finally, the discretization of (3.5.24b) can be carried out, replacing (3.5.24b) by

h
(ν)
(k,C),(b)[U

(ν)] := v
(ν)
int,¬Dir,(k,C)[U

(ν)] + v
(ν)
int,Dir,(k,C)[U

(ν)
(k,C)], (3.7.39)
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where the v
(ν)
int,¬Dir,(k,C) : υIΠ,D,¬Dir −→ R are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




v
(ν)
int,¬Dir,(k,C)[U ]

:=
∑

j∈V [C],
l∈nbj,¬Dir[k]

(
w

(ν)
j [(k, l)] · v(ν)

j,sca

[(
U(l,C[(l,j)]), xl

)]

+
(
1− w

(ν)
j [(k, l)]

)
· v(ν)

j,sca[(U(k,C), xk)]

)

·

(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

)
• (xl − xk)

2‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]




, (3.7.40)

and the v
(ν)
int,Dir,(k,C) : υ −→ R are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




v
(ν)
int,Dir,(k,C)[y]

:=
∑

j∈V [C],
l∈nbj,Dir[k]

(
w

(ν)
j [(k, l)] · v(ν)

j,sca

[(
ujDir[(l,j)],Dir[(tν , xl)], xl

)]

+
(
1− w

(ν)
j [(k, l)]

)
· v(ν)

j,sca

[
(y, xk)

])

·

(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

)
• (xl − xk)

2‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]




. (3.7.41)

The following Lems 3.7.16 and 3.7.18 are analogous to Lems 3.7.4 and 3.7.6 and are
used in proving an upper bound for the s(ν).

Lemma 3.7.16. The following holds:
∧

ν∈{0,...,n}

∑

(k,C)∈IΠ,D,¬Dir

v
(ν)
int,¬Dir,(k,C) = 0. (3.7.42)

Proof. Fix ν ∈ {0, . . . , n}. To apply Lem. 3.7.5, define

F : IΠ,D,nb,¬Dir −→ R,

F
[(

j, (k, C), (l, C̃)
)]

:=

(
w

(ν)
j [(k, l)] · v(ν)

j,sca

[(
U(l,C̃), xl

)]

+
(
1− w

(ν)
j [(k, l)]

)
· v(ν)

j,sca[(U(k,C), xk)]

)

·

(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

)
• (xl − xk)

2‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
.

(3.7.43)
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Then (3.7.21) is satisfied using (3.7.38), and (3.7.22) together with (3.7.40) yields
(3.7.42). ¥

Definition 3.7.17. Let A be a set. A function F : A −→ R is called bounded from
above iff sup F := sup

{
F [a] : a ∈ A

}
< ∞ and bounded from below iff inf F :=

inf
{
F [a] : a ∈ A

}
> −∞.

Lemma 3.7.18. If the family of scalar-vector-splittings V =
(
(vj,sca, vj,vec)

)
j∈J

is such

that each vj,sca is bounded from below, then

∧

ν∈{0,...,n}



−

∑

(k,C)∈IΠ,D,¬Dir

h
(ν)
(k,C),(b) = −

∑

(k,C)∈IΠ,D,¬Dir

v
(ν)
int,Dir,(k,C)

≤ max
{
Bv,Dir[(C,V)], Bv,sca,Dir[(C, V)]

} · lDir[Π]


 , (3.7.44)

where

Bv,Dir[(C,V)] := max
{
vj,sca

[(
uj,Dir[(t, x)], t, x

)] ·
∥∥vj,vec[(t, x)]

∥∥
2

:

(j, j, t, x, x) ∈ J × J × τ × Γj,0 × pj, 0 ∈ Jj

}
, (3.7.45)

Bv,sca,Dir[(C,V)] := max
{− vj,sca

[(
y, t, x

)] ·
∥∥vj,vec[(t, x)]

∥∥
2

:

(j, y, t, x, x) ∈ J × υ × τ × pj × pj,
}
, (3.7.46)

lDir[Π] :=
∑

(k,C)∈IΠ,D,Dir, j∈V [C],
l∈nbj,¬Dir[k]

λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
. (3.7.47)

Proof. The equality in (3.7.44) is (3.7.15) combined with Lem. 3.7.16. To verify the es-

timate, it is recalled that w
(ν)
j is the upwind function for Π(j) and v

(ν)
j,vec. Thus, according

to (3.7.37), if
(
v

(ν)
j,vec[xl]+v

(ν)
j,vec[xk]

)•(xl−xk) < 0, then v
(ν)
j,sca

[(
ujDir[(l,j)],Dir[(tν , xl)], xl

)]
is

selected in (3.7.41). Then by the Cauchy-Schwarz Inequality (Rem. C.2.2), the negative

of the corresponding summand has the upper bound Bv,Dir[(C,V)] · λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
.

On the other hand, if
(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

) • (xl − xk) > 0, then v
(ν)
j,sca

[
(y, xk)

]
is se-

lected in (3.7.41), and, according to the hypothesis of Lem. 3.7.18 and the Cauchy-
Schwarz Inequality, the negative of the corresponding summand has the upper bound
Bv,sca,Dir[(C,V)]·λd−1

[
ω

(j)
k ∩ω

(j)
l

]
. Analogous to Lem. 3.7.6, the sum in (3.7.47) is written

in terms of IΠ,D,Dir, whereas the sums in (3.7.41) are witten in terms of IΠ,D,¬Dir. ¥

Remark and Example 3.7.19. The number lDir[Π] measures the size of the surface
consisting of the collection of all interfaces between control volumes at Dirichlet vertices
and control volumes at non-Dirichlet vertices. For the type of polytope discretizations
depicted in Fig. 3.20 on p. 111, one has lDir[Π] = b independently of h.

Example 3.7.20. It is verified for the cases considered in Ex. 3.7.11 that correspond
to Ex. 3.1.1(b) and to the first case of Ex. 3.1.1(a), that under natural hypotheses, vsca

is bounded from below, as is required in Lem. 3.7.18.
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If vsca[(y, x)] = y, then inf vsca = mυ. If vsca[(y, x)] :=
(z(Ar)+1)R

M(Ar) ρgas[x]y, then inf vsca ≥
min{0, (z(Ar)+1)R

M(Ar) ‖ρgas‖max ·mυ}, since ρgas ≥ 0.

If vsca[(y, x)] = εgas[(y, x)] ρgas[x], then vsca is bounded from below assuming εgas is
bounded from below, again using ρgas ≥ 0.

3.7.5 Terms on Outer Boundaries

In this section, (3.5.24c) and (3.5.24g) are discretized, whereas the discretization of
(3.5.24f) is postponed to Sec. 3.7.7.

Approximating the integrand of (3.5.24c) as being constant on ∂ω
(j)
k ∩∂p, both functions

in the scalar-vector-splitting of v
(ν)
j are evaluated at xk, where xk ∈ ∂ω

(j)
k ∩ ∂p is

guaranteed by (dispt-(iii)). In contrast to the cases of the discretizations of (3.5.24e)
and (3.5.24b) in Secs 3.7.3 and 3.7.4, respectively, the remaining integrals involving the
normal vector are not evaluated using (dispt-(i)), since the normal vector does not have
to be constant on the entire domain of integration (cf. Fig. 3.21).
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xk

pj

ω
(j)
k

xright

n
ω

(j)
k

[xright]

xtop
n

ω
(j)
k

[xtop]

v[xk] = n
ω

(j)
k

[xright]

Figure 3.21: In this example, v[xk] • n
ω

(j)
k

is not constant on ∂ω
(j)
k as it is 0 on the part

of the boundary facing upwards and 1 on the part of the boundary facing right.

Thus, (3.5.24c) is replaced by

h
(ν)
(k,C),(c)[U

(ν)] := v
(ν)
out,(k,C)[U

(ν)
(k,C)], (3.7.48)

where the v
(ν)
out,(k,C) : υ −→ R are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir

v
(ν)
out,(k,C)[y] :=

∑

j∈V [C]
v

(ν)
j,sca[(y, xk)]

∫

∂ω
(j)
k ∩∂p

v
(ν)
j,vec[xk] • n

ω
(j)
k

. (3.7.49)
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Approximating the integrand of (3.5.24g) as being constant on ∂ω
(j)
k ∩Γj,ι, it is evaluated

at xk, where xk ∈ ∂ω
(j)
k ∩ Γj,ι is guaranteed by (dispt-(iii)). Thus, (3.5.24g) is replaced

by
h

(ν)
(k,C),(g)[(U

(ν−1), U (ν))] := a
(ν)
out,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))], (3.7.50)

where the a
(ν)
out,(k,C) : υ × υ −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir

a
(ν)
out,(k,C)[(ỹ, y)] :=

∑

(j,ι)∈V [C]×Jj\{0}:
λd−1[∂ω

(j)
k ∩Γj,ι]>0

(aj,ι,ν
out )

ex.-im.[(
(ỹ, y), xk

)]·λd−1[∂ω
(j)
k ∩Γj,ι]. (3.7.51)

3.7.6 Terms on Interfaces

In this section, (3.5.24d), (3.5.24i), (3.5.24j), (3.5.24l), and (3.5.24m) are discretized,
whereas the discretization of (3.5.24h) and (3.5.24k) is postponed to Sec. 3.7.7.

Throughout this section, xk ∈ ∂ω
(j)
k ∩ γ is guaranteed by

∧

k∈IΠ

∧
j∈Vωk

∧
γ∈IF

γ ∩ ∂regω
(j)
k 6= ∅ ⇒ xk ∈ γ, (3.7.52)

which is a consequence of (dispt-(ii)) and of the ωk being nontangent to interfaces.

The discretization of (3.5.24d) is analogous to the discretization of (3.5.24c) in Sec.
3.7.5, and the term (3.5.24d) is replaced by

h
(ν)
(k,C),(d)[U

(ν)] := v
(ν)
con,(k,C)[U

(ν)
(k,C)] + v

(ν)
jump,(k,C)[U

(ν)
(k,C)], (3.7.53)

where the v
(ν)
con,(k,C) : υ −→ R are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir

v
(ν)
con,(k,C)[y] :=

∑

j∈V [C],
γ∈IFcon

v
(ν)
j,sca[(y, xk)]

∫

∂ω
(j)
k ∩γ

v
(ν)
j,vec[xk] • n

ω
(j)
k

, (3.7.54)

and the v
(ν)
jump,(k,C) : υ −→ R are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir

v
(ν)
jump,(k,C)[y] :=

∑

j∈V [C],
γ∈IFjump

v
(ν)
j,sca[(y, xk)]

∫

∂ω
(j)
k ∩γ

v
(ν)
j,vec[xk] • n

ω
(j)
k

. (3.7.55)

The reason for decomposing h
(ν)
(k,C),(d) into one operator for continuous interfaces and

one operator for jump interfaces is their different treatment in the estimates in Lems
3.7.31 and 3.7.33, respectively.
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Approximating the integrands of (3.5.24i) as being constant on γ ∩ ⋃
j∈V [C] ∂regω

(j)
k ,

they are evaluated at xk, where it is noted that u
(ν−1)
i1[γ] [xk] = u

(ν−1)
i2[γ] [xk] and u

(ν)
i1[γ][xk] =

u
(ν)
i2[γ][xk], since γ is a continuous interface. Thus, (3.5.24i) is replaced by

h
(ν)
(k,C),(i)[(U

(ν−1), U (ν))] := a
(ν)
flux,con,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))], (3.7.56)

where the a
(ν)
flux,con,(k,C) : υ × υ −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




a
(ν)
flux,con,(k,C)[(ỹ, y)] :=

∑
γ∈IFcon:

λd−1

h
γ∩Sj∈V [C] ∂regω

(j)
k

i
>0

(
−(aγ,1,ν

flux )
ex.-im.[(

(ỹ, y), xk

)]

+(aγ,2,ν
flux )

ex.-im.[(
(ỹ, y), xk

)])

· λd−1


γ ∩

⋃

j∈V [C]
∂regω

(j)
k







.

(3.7.57)

The discretization of the terms (3.5.24j), (3.5.24l), and (3.5.24m) is similar to the

discretization of the term (3.5.24i). However, since γ is now a jump interface, u
(ν−1)
i1[γ] and

u
(ν−1)
i2[γ] can have different values at xk and likewise for u

(ν)
i1[γ][xk] and u

(ν)
i2[γ][xk]. Moreover,

xk can be a non-Dirichlet vertex on one side of the interface and a Dirichlet vertex on
the other side of the interface (s. Fig. 3.19 on p. 107 and consider xk = x1). In this
case, the solution value is known a priori at the Dirichlet vertex, which has to be taken
into account in the following discretizations.

The term (3.5.24j) is replaced by

h
(ν)
(k,C),(j)[U

(ν)] := a
(ν)
jump,1,¬Dir,(k,C)[U

(ν)] + a
(ν)
jump,1,Dir,(k,C)[U

(ν)
(k,C)], (3.7.58)

where the a
(ν)
jump,1,¬Dir,(k,C) : υIΠ,D,¬Dir −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




a
(ν)
jump,1,¬Dir,(k,C)[U ]

:=
∑

γ∈Gjump,1[C]:(
k,C[(k,i2[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i1[γ])
k ∩γ

]
>0

(
aγ,1,ν

jump

[
(U(k,C), xk)

]− aγ,2,ν
jump

[
(U(

k,C[(k,i2[γ])]
), xk)

])

· λd−1

[
∂ω

(i1[γ])
k ∩ γ

]




, (3.7.59)
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and the a
(ν)
jump,1,Dir,(k,C) : υ −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




a
(ν)
jump,1,Dir,(k,C)[y]

:=
∑

γ∈Gjump,1[C]:(
k,C[(k,i2[γ])]

)
∈IΠ,D,Dir,

λd−1

[
∂ω

(i1[γ])
k ∩γ

]
>0

(
aγ,1,ν

jump

[
(y, xk)

]

− aγ,2,ν
jump

[
(ujDir[(k,i2[γ])],Dir[(tν , xk)], xk)

])

· λd−1

[
∂ω

(i1[γ])
k ∩ γ

]




. (3.7.60)

The term (3.5.24l) is replaced by

h
(ν)
(k,C),(l)[(U

(ν−1), U (ν))] :=a
(ν)
flux,jump,2,¬Dir,(k,C)[(U

(ν−1), U (ν))]

+ a
(ν)
flux,jump,2,Dir,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))],

(3.7.61)

where the a
(ν)
flux,jump,2,¬Dir,(k,C) : υIΠ,D,¬Dir × υIΠ,D,¬Dir −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




a
(ν)
flux,jump,2,¬Dir,(k,C)[(Ũ , U)]

:=
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− (aγ,1,ν

flux )
ex.-im.[(

(Ũ(
k,C[(k,i1[γ])]

), U(
k,C[(k,i1[γ])]

)), xk

)]

+ (aγ,2,ν
flux )

ex.-im.[(
(Ũ(k,C), U(k,C)), xk

)])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]




, (3.7.62)

and the a
(ν)
flux,jump,2,Dir,(k,C) : υ × υ −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




a
(ν)
flux,jump,2,Dir,(k,C)[(ỹ, y)]

:=
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− (aγ,1,ν

flux )
ex.-im.[(

(ujDir[(k,i1[γ])],Dir[(tν−1, xk)],

ujDir[(k,i1[γ])],Dir[(tν , xk)]), xk

)]

+ (aγ,2,ν
flux )

ex.-im.[
((ỹ, y), xk)

])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]




. (3.7.63)

The term (3.5.24m) is replaced by

h
(ν)
(k,C),(m)[U

(ν)] := a
(ν)
jump,2,¬Dir,(k,C)[U

(ν)] + a
(ν)
jump,2,Dir,(k,C)[U

(ν)
(k,C)], (3.7.64)

where the a
(ν)
jump,2,¬Dir,(k,C) : υIΠ,D,¬Dir −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




a
(ν)
jump,2,¬Dir,(k,C)[U ]

:=
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− aγ,1,ν

jump

[
(U(

k,C[(k,i1[γ])]
), xk)

]

+ aγ,2,ν
jump

[
(U(k,C), xk)

])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]




, (3.7.65)
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and the a
(ν)
jump,2,Dir,(k,C) : υ −→ K are defined by

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




a
(ν)
jump,2,Dir,(k,C)[y]

:=
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− aγ,1,ν

jump

[
(ujDir[(k,i1[γ])],Dir[(tν , xk)], xk)

]

+ aγ,2,ν
jump

[
(y, xk)

])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]




. (3.7.66)

3.7.7 Terms Involving Nonlocal Operators

The subject of this section is the discretization of (3.5.24f), (3.5.24h), and (3.5.24k). In
contrast to the discretization of the remaining terms of (3.5.24) described in other parts
of Sec. 3.7, the discretization procedure for the nonlocal terms described in the following
is less concrete. If at all feasible, the determination of a universal discretization method
for general nonlocal operators seems to need an investigation of the continuous solution
theory (s. Rem. 3.7.21 below). Since the continuous solution theory is not the subject of
this work, certain aspects of the discretization procedure are left open. However, in Sec.
3.7.8, it is shown, how a concrete discretization of the terms (3.5.24f), (3.5.24h), and
(3.5.24k) can be constructed, if the nonlocal interface and boundary operators represent
nonlocal radiative heat transport between surfaces, i.e. for the cases considered in Exs
3.1.2(c) and 3.1.3(e) (also see Exs 3.4.10 and 3.4.12).

The terms (3.5.24f), (3.5.24h), and (3.5.24k) are replaced by

h
(ν)
(k,C),(f)[(U

(ν−1), U (ν))] := −B
(ν)
(k,C)[(U

(ν−1), U (ν))], (3.7.67a)

h
(ν)
(k,C),(h)[(U

(ν−1), U (ν))] := −A
(ν)
con,(k,C)[(U

(ν−1), U (ν))], (3.7.67b)

h
(ν)
(k,C),(k)[(U

(ν−1), U (ν))] := −A
(ν)
jump,(k,C)[(U

(ν−1), U (ν))], (3.7.67c)

respectively, where for each ν ∈ {1, . . . , n} and for each (k, C) ∈ IΠ,D,¬Dir, the B
(ν)
(k,C),

A
(ν)
con,(k,C), and A

(ν)
jump,(k,C) are functions from υIΠ,D,¬Dir × υIΠ,D,¬Dir into K such that the

right-hand sides of (3.7.67) are suitable approximations of (3.5.24f), (3.5.24h), and
(3.5.24k), respectively.

The nonlocal interface operators Aγ, γ ∈ IF, and the nonlocal boundary operators
Bj,ι, (j, ι) ∈ J × (

Jj \ {0}
)
, can depend nonlocally on (potentially) all unknowns uj.

Correspondingly, the same holds for the dependency splittings (Aγ)
ex.-im. and (Bj,ι)

ex.-im.

with respect to the time-discrete unknowns u
(ν)
j . Thus, the approximations on the right-

hand sides of (3.7.67) can depend on the entire vectors U (ν−1) and U (ν), i.e. they can
depend on all solution values at discretization points of control volumes of Π.
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Remark 3.7.21. In a suitable sense, the approximations on the right-hand sides of
(3.7.67) should become better as Π becomes finer (i.e. as h(j) decreases, s. (3.5.2)).
However, to make this more precise, one needs an analysis of the continuous solution
and convergence theory, which is not considered here.

3.7.8 Example: Discretization of Nonlocal Radiation Terms

The subject of this section is the concrete construction of the discretization operators
on the right-hand sides of (3.7.67) for the special case described in Exs 3.1.2(c) and
3.1.3(e) (also see Exs 3.4.10 and 3.4.12), i.e. if the nonlocal interface and boundary
operators represent nonlocal radiative heat transport between surfaces.

Using the model of diffuse-gray radiation as described in Sec. 2.4 together with the
assumed cylindrical symmetry (cf. Sec. 2.4.3), the discretization strategy follows the
same paradigm used so far in this work: The relevant equations are integrated over
control elements (more precisely, over boundary elements on interfaces, compatible
with the control volumes of the polytope discretization Π), followed by quadratures,
where functions are approximated as constant in the respective domains of integration
(see Sec. 3.5 and the description in Sec. 3.7.1 for the case of evolution equations in
general).

Let prad be a 2-dimensional polytope that constitutes the circular projection (cf. (2.4.20))
of some cylindrically symmetric radiation region. One should have in mind that prad

typically represents (the circular projection of) a gas-filled cavity inside a complex ap-
paratus. Thus, there are usually several prad,j within a domain complex. However, to
simplify notation, the index j is dropped, and the considerations are performed for just
one radiation region prad. Moreover, as in the case of Ex. 3.1.3(e), where the nonlocal
boundary operator represents radiative interactions between surfaces inside the upper
and lower blind hole in Fig. 4.1 on p. 195, it can happen that prad lies outside the total
space domain p, i.e. no evolution equation is solved on prad.

The case of Ex. 3.1.3(e) is the one considered in the following. The three cases of
nonlocal radiation operators on interfaces considered in Ex. 3.1.2(c) can be treated
analogously. The operator B := Bj,ι of Ex. 3.1.3(e) in axisymmetric form (cf. Sec.
2.4.3) reads

B[Tsolid,circ] := εcirc[(Tsolid,circ, x)] · Jcirc

[Rcirc[Tsolid,circ]
]
. (3.7.68)

Once again, the precise meaning of Rcirc acting on Tsolid,circ is according to the remark
made at the beginning of Ex. 3.1.2(c). The function B[Tsolid,circ] is defined on Γ :=
prad ∩ p. The set ∂prad \ p consists of some part lying on the r = 0 axis and a phantom
closure. For the lower blind hole of the apparatus in Fig. 4.1 on p. 195, this is illustrated
in Fig. 3.22. The phantom closure Γph (corresponding to Γbottom or Γtop in Fig. 4.1) is
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assumed to radiate as a black body at room temperature, setting εcirc = 1 on Γph. Thus

∧
x∈Γph

Rcirc[x] = σ T 4
room. (3.7.69)

prad

Γph = Γbottom

r = 0

Γ = prad ∩ p

Figure 3.22: Circular projection of the lower blind hole of the configuration of Fig. 4.1
on p. 195.

Now, Γ ∪ Γph is discretized into line segments. To that end, let Πrad := (ζκ)κ∈Irad be
a partition of Γ ∪ Γph such that each ζκ is a line segment. The ζκ are called boundary
elements. With each ζκ associate a discretization point xκ ∈ ζκ. Moreover, if a constant
approximation of radiation is to be reasonable on each ζκ, then each ζκ should lie within
a single solid material. On Γ, Πrad is supposed to be compatible with the partition Π
of p in the following sense: For each control volume ω such that Γ ∩ ∂regω 6= ∅, the
family (ζκ ∩ ω)κ∈Iω is supposed to form a partition of Γ ∩ ∂ω, where Iω := {κ ∈ Irad :
int[ζκ] ∩ ∂regω 6= ∅}. Furthermore, for the discretization point xω of ω, it is presumed
that ∧

κ∈Iω

xω = xκ. (3.7.70)

In particular, Iω has at most two elements. The situation is illustrated in Fig. 3.23.

So far, for the sake of readability, the fact that Rcirc (and thus B) only depends on
Tsolid,circ restricted to a fixed time t ∈ τ , was hidden in the notation. However, this

plays a role in the following. Thus, for each ν ∈ {0, . . . , n}, let T
(ν)
solid,circ denote the

restriction of Tsolid,circ to the time tν .

To find B
(ν)
(k,C) such that the right-hand side of (3.7.67a) approximates the term (3.5.24f),

the dependency splitting (cf. Ex. 3.4.12)

Bex.-im.[(T
(ν−1)
solid,circ, T

(ν)
solid,circ)] = εcirc[(T

(ν−1)
solid,circ, x)] · Jcirc

[Rcirc[T
(ν)
solid,circ]

]
(3.7.71)

is multiplied by r and integrated over ζκ for each κ ∈ Irad,Γ, where Irad,Γ := {κ ∈ Irad :
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prad

ω6

Γph = Γbottom

discretization point
control volume with

1st element of Iωk

2nd element of Iωk

(if any)

ω1 ω2

ω3

ω4 ω5

Figure 3.23: Magnification of the radiation region of the lower blind hole that was
depicted in Fig. 3.22. Here, to illustrate the assumed compatibility between Πrad and
Π, the control volumes adjacent to prad are also shown.

ζκ ⊆ Γ}. This yields

∧
κ∈Irad,Γ

∫

ζκ

εcirc

[(
T

(ν−1)
solid,circ[(r, z)], (r, z)

)] · Jcirc

[Rcirc[T
(ν)
solid,circ]

]
[(r, z)] · r d(r, z) .

(3.7.72)

Actually, this is the same as integrating ε[(T
(ν−1)
solid [x], x)] ·J [R[T

(ν)
solid]

]
[x] over π−1

circζκ and
then performing a change of variables analogous to the description in Sec. 3.6.

Now, using that on Γ, with obvious notation, R
(ν)
circ = Rcirc[T

(ν)
solid,circ] according to

(2.4.27), (3.7.72) is approximated by evaluating εcirc, T
(ν−1)
solid,circ, and R

(ν)
circ at the dis-

cretization point xκ, κ ∈ Irad,Γ. If xκ lies in the boundary of ζκ, then the functions
to be evaluated at xκ might not be continuous at xκ. However, the functions are con-
tinuous on int[ζκ] and can be extended continuously to xκ. In that case, the following
evaluations at xκ are meant to be those of the continuous extensions.

Thus, the approximation of (3.7.72) yields

∧
κ∈Irad,Γ

Vκ := εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

] ∫

ζκ

Jcirc[R
(ν)
circ][(r, z)]r d(r, z) , (3.7.73)
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and furthermore, using (2.4.22), one gets

∧
κ∈Irad,Γ




∫

ζκ

Jcirc[R
(ν)
circ][(r, z)]r d(r, z)

=

∫

ζκ

∫

Γ∪Γph

Λcirc

[(
(r, z), (r̃, z̃)

)]
R

(ν)
circ[(r̃, z̃)] r̃ d(r̃, z̃) r d(r, z)

=
∑

λ∈Irad

R
(ν)
circ[xλ]

∫

ζκ

∫

ζλ

Λcirc

[(
(r, z), (r̃, z̃)

)]
r̃ d(r̃, z̃) r d(r, z)

=
∑

λ∈Irad

R
(ν)
circ[xλ] Λκ,λ




, (3.7.74)

where

∧

(κ,λ)∈I2
rad

Λκ,λ :=

∫

ζκ

∫

ζλ

Λcirc

[(
(r, z), (r̃, z̃)

)]
r̃ d(r̃, z̃) r d(r, z) . (3.7.75)

Definitions (2.4.23) and (3.7.75) together with the forms of Λ and ω imply the symmetry
condition ∧

(κ,λ)∈I2
rad

Λκ,λ = Λλ,κ. (3.7.76)

Since Γ∪Γph is the circular projection of a closed surface, the conservation of radiation
energy (2.4.24) yields

∧
κ∈Irad,Γ




∑

λ∈Irad

Λκ,λ =

∫

ζκ

∑

λ∈Irad

∫

ζλ

Λcirc

[(
(r, z), (r̃, z̃)

)]
r̃ d(r̃, z̃) r d(r, z)

=

∫

ζκ

∫

Γ∪Γph

Λcirc

[(
(r, z), (r̃, z̃)

)]
r̃ d(r̃, z̃) r d(r, z)

=

∫

ζκ

1 · r d(r, z) =: lκ




. (3.7.77)

Substituting (3.7.74) in (3.7.73) results in

∧
κ∈Irad,Γ

Vκ = εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

] ∑

λ∈Irad

R
(ν)
circ[xλ] Λκ,λ. (3.7.78)

Multiplying (2.4.21) by r, integrating over ζκ, κ ∈ Irad,Γ, and approximating the result

by evaluating R
(ν)
circ, εcirc, T

(ν−1)
solid,circ, and T

(ν)
solid,circ, at the discretization point xκ leads to

∧
κ∈Irad,Γ




R
(ν)
circ[xκ]lκ −

(
1− εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

]) ∫

ζκ

Jcirc[R
(ν)
circ][(r, z)]r d(r, z)

= σεcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

](
T

(ν)
solid,circ[xκ]

)4
lκ


 .

(3.7.79)
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The combination of (3.7.79) and (3.7.74) yields

∧
κ∈Irad,Γ




R
(ν)
circ[xκ]lκ −

(
1− εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

]) ∑

λ∈Irad

R
(ν)
circ[xλ] Λκ,λ

= σεcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

](
T

(ν)
solid,circ[xκ]

)4
lκ


 . (3.7.80)

If the families of values
(
T

(ν−1)
solid,circ[xκ]

)
κ∈Irad,Γ

and
(
T

(ν)
solid,circ[xκ]

)
κ∈Irad,Γ

are known, then

(3.7.80) constitutes a linear system of equations for the determination of the family of

values
(
R

(ν)
circ[xκ]

)
κ∈Irad,Γ

.

In matrix form, (3.7.80) reads

AX = Y, (3.7.81a)

with vectors X = (Xκ)κ∈Irad,Γ
∈ RIrad,Γ , Y = (Yκ)κ∈Irad,Γ

∈ RIrad,Γ , and a matrix A =
(Aκ,λ)(κ,λ)∈I2

rad,Γ
,

∧
κ∈Irad,Γ

Xκ := R
(ν)
circ[xκ], (3.7.81b)

∧
κ∈Irad,Γ

Yκ := σεcirc

[(
T

(ν−1)
solid,circ[xκ], xκ

)](
T

(ν)
solid,circ[xκ]

)4
lκ. (3.7.81c)

The matrix A has the form

A = D + L (3.7.81d)

with matrices D = (Dκ,λ)(κ,λ)∈I2
rad,Γ

∈ RI2
rad,Γ and L = (Lκ,λ)(κ,λ)∈I2

rad,Γ
∈ RI2

rad,Γ , where

D is diagonal,

∧

(κ,λ)∈I2
rad,Γ

Dκ,λ :=

{
lκ for κ = λ,

0 for κ 6= λ,
(3.7.81e)

∧

(κ,λ)∈I2
rad,Γ

Lκ,λ := −(
1− εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

]) · Λκ,λ. (3.7.81f)

Using Def. C.3.1 and Lem. C.3.2 of App. C.3, the following Lem. 3.7.22 provides some
important properties of the matrix A.

Lemma 3.7.22. If 1 ≥ εcirc > 0, then the following holds:

(a) A is strictly diagonally dominant.

(b) A is an M-matrix. In particular, A is invertible, and A−1 is nonnegative.
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Proof. (a): Since r can not vanish identically on ζκ, one has

∧
κ∈Irad,Γ

lκ > 0 (3.7.82)

directly from (3.7.77). In particular, for each κ ∈ Irad,Γ, there has to be at least one
λ ∈ Irad such that Λκ,λ > 0. If 1 ≥ εcirc > 0, then (3.7.81f) yields by (3.7.77) and
(3.7.82): ∧

κ∈Irad,Γ

∑

λ∈Irad,Γ

|Lκ,λ| <
∑

λ∈Irad

Λκ,λ = lκ. (3.7.83)

Thus ∧
κ∈Irad,Γ

∑

λ∈Irad,Γ\{κ}
|Aκ,λ| < Aκ,κ, (3.7.84)

showing that A is strictly diagonally dominant.

(b): Combining (3.7.81d), (3.7.81e), and (3.7.81f) with (3.7.82) shows that the hypoth-
esis of Lem. C.3.2(b) is satisfied. Then (a) yields that A is an M-matrix. Thus, A is
invertible, and A−1 is nonnegative according to Def. C.3.1(d) and Lem. C.3.2(a). ¥

Lemma 3.7.22(b) allows to write (3.7.81a) in the form

X = A−1 Y. (3.7.85)

Moreover, combining (3.7.85) with Lem. 3.7.22(b), (3.7.81c), and (3.7.81b) yields

∧
κ∈Irad,Γ

R
(ν)
circ[xκ] = Xκ ≥ 0. (3.7.86)

Finally, introducing the matrix L̃ = (L̃κ,λ)(κ,λ)∈I2
rad,Γ

∈ RI2
rad,Γ ,

∧

(κ,λ)∈I2
rad,Γ

L̃κ,λ := εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

] · Λκ,λ, (3.7.87)

(3.7.85) allows to write (3.7.78) in the form

V = L̃A−1Y, (3.7.88)

where V = (Vκ)κ∈Irad,Γ
.

In the present example, the total space domain p can be decomposed into p = psolid ∪
pgas, where psolid and pgas represent the domains of solid materials and gas cavities,
respectively. The unknown is the temperature which is called Tsolid,circ on psolid and
Tgas,circ on pgas. Both Tsolid,circ and Tgas,circ are continuous, but the temperature can
be discontinuous on psolid ∩ pgas. In particular, for each k ∈ IΠ, Gωk

has at most two
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connected components which are referred to by the supscripts “solid” and “gas”. Thus,
the notation (k, C) ∈ IΠ,D is replaced by (k, solid) ∈ IΠ,D and (k, gas) ∈ IΠ,D, and

∧

ν∈{0,...,n}

(
U

(ν)
k,solid = T

(ν)
solid,circ[xk] for xk ∈ psolid,

U
(ν)
k,gas = T

(ν)
gas,circ[xk] for xk ∈ pgas

)
. (3.7.89)

Moreover, it follows from the above definitions of V, L̃, A, and Y, that

V = V[(U (ν−1), U (ν))] = V
[(

(U
(ν−1)
k,solid, U

(ν)
k,solid)

)
k∈IΠ: xk∈Γ

]
. (3.7.90)

One is now in the position to define B
(ν)
k,solid such that −B

(ν)
k,solid[(U

(ν−1), U (ν))] is an
approximation of (3.5.24f) by letting

∧

ν∈{1,...,n},
Γ∩∂regωk 6=∅

B
(ν)
k,solid[(U

(ν−1), U (ν))] :=
∑

κ∈Iωk

Vκ[(U
(ν−1), U (ν))]. (3.7.91)

Here it is used that Γ∩∂regωk 6= ∅ implies xk ∈ Γ∩∂ωk by (dispt-(iii)) and that xκ = xk

for κ ∈ Iωk
according to (3.7.70).

It was mentioned earlier that the discretization of nonlocal radiation operators on in-
terfaces considered in Ex. 3.1.2(c) can be treated by a procedure analogous to the one
presented above. In this case prad ⊆ p, Γ = ∂prad = Γcon ∪ Γjump, where Γcon :=
Γ ∩⋃

γ∈IFcon
γ, Γjump := Γ ∩⋃

γ∈IFjump
γ, and there is no Γph, i.e. Irad,Γ = Irad. For each

control volume ω such that Iω 6= ∅, let Iω,con := {κ ∈ Irad : Γcon ∩ int[ζκ] ∩ ∂regω 6= ∅},
Iω,jump := {κ ∈ Irad : Γjump∩ int[ζκ]∩∂regω 6= ∅}. Depending on the case of Ex. 3.1.2(c),
one has to replace εcirc with εt,circ, εt,circ + εr,circ, or εr,circ. One is then led to the fol-

lowing definitions of A
(ν)
con,k,solid and A

(ν)
jump,k,solid such that −A

(ν)
con,k,solid[(U

(ν−1), U (ν))] and

−A
(ν)
jump,k,solid[(U

(ν−1), U (ν))] are approximations of (3.5.24h) and (3.5.24k), respectively:

∧

ν∈{1,...,n},
Γcon∩∂regωk 6=∅

A
(ν)
con,k,solid[(U

(ν−1), U (ν))] :=
∑

κ∈Iωk,con

Vκ[(U
(ν−1), U (ν))], (3.7.92)

∧

ν∈{1,...,n},
Γjump∩∂regωk 6=∅

A
(ν)
jump,k,solid[(U

(ν−1), U (ν))] :=
∑

κ∈Iωk,jump

Vκ[(U
(ν−1), U (ν))]. (3.7.93)

It is used that Γcon ∩ ∂regωk 6= ∅ implies xk ∈ Γcon ∩ ∂ωk by (3.7.52) and analogously for
Γjump.

The situation of Ex. 3.1.2(c) is depicted in Fig. 3.1 on p. 50. In this case, one has
Ωj1 ∩ Ωj2 ⊆ Γjump, Ωj1 ∩ Ωj3 ⊆ Γjump, Ωj1 ∩ Ωj4 ⊆ Γjump, and Ωj3 ∩ Ωj4 ⊆ Γcon.
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3.7.9 Upper Bound for Terms on Outer Boundaries

In this section, under suitable hypotheses, upper bounds are proved for the contributions
to the operators s(ν) stemming from terms on outer boundaries, i.e. stemming from
h

(ν)
(k,C),(c), h

(ν)
(k,C),(f), and h

(ν)
(k,C),(g). Since no universal discretization procedure was given

for the nonlocal boundary operators Bj,ι in Sec. 3.7.7, a general estimate just depending
on conditions on the input functions can only be expected if no nonlocal boundary
operators are present. Therefore, the strategy in the following is different from the
procedure that was used for the corresponding estimates in earlier sections. First, Def.
3.7.23 defines the needed estimate as a property of the discretization operators. If no
nonlocal boundary operators are present, Lem. 3.7.25 proves the upper bound, using a
sufficient condition on the input functions. Finally, Ex. 3.7.27 proves an upper bound
for the case where the nonlocal boundary operator is as in Sec. 3.7.8, i.e. it represents
the nonlocal radiation operators arising from Ex. 3.1.3(e).

Definition 3.7.23. The discretizations B
(ν)
(k,C), v

(ν)
out,(k,C), and a

(ν)
out,(k,C), (k, C) ∈ IΠ,D,¬Dir,

are called bounded from above iff they are real-valued and there is Bout[C] ∈ R such that
independently of Π and ν,

∑

(k,C)∈IΠ,D,¬Dir

(
B

(ν)
(k,C) − v

(ν)
out,(k,C) − a

(ν)
out,(k,C)

)
≤ Bout[C] · λd−1[∂p]. (3.7.94)

Remark 3.7.24. As a trivial consequence of Def. 3.7.23, if B
(ν)
(k,C), v

(ν)
out,(k,C), and a

(ν)
out,(k,C),

(k, C) ∈ IΠ,D,¬Dir, are bounded from above, then

∧

ν∈{0,...,n}




−
∑

(k,C)∈IΠ,D,¬Dir

(
h

(ν)
(k,C),(c) + h

(ν)
(k,C),(f) + h

(ν)
(k,C),(g)

)

=
∑

(k,C)∈IΠ,D,¬Dir

(
B

(ν)
(k,C) − v

(ν)
out,(k,C) − a

(ν)
out,(k,C)

)
≤ Bout[C] · λd−1[∂p]


 . (3.7.95)

Lemma 3.7.25. Suppose that all nonlocal boundary operators vanish (i.e. Bj,ι = B
(ν)
(k,C)

= 0). Moreover, assume that for each (j, ι) ∈ J × (
Jj \ {0}

)
, the functions aj,ι

out are
real-valued, and that the function

avj,ι
out : υ × υ × τ × Γj,ι −→ R,

avj,ι
out[(ỹ, y, t, x)] := −vj[(y, t, x)] • npj

[x]− (aj,ι
out)

ex.-im.[(
(ỹ, y), t, x

)]
,

(3.7.96)

is bounded from above. Then B
(ν)
(k,C), v

(ν)
out,(k,C), and a

(ν)
out,(k,C), (k, C) ∈ IΠ,D,¬Dir, are

bounded from above with

Bout[C] := max
{

sup(avj,ι
out) : (j, ι) ∈ J × (

Jj \ {0}
)}

. (3.7.97)
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Proof. The hypothesis implies that each

−v
(ν)
j,sca[(y, xk)]v

(ν)
j,vec[xk] • n

ω
(j)
k
− (aj,ι,ν

out )
ex.-im.[(

(ỹ, y), xk

)]

is bounded from above by Bout[C]. Hence, (3.7.94) follows from (3.7.49) and (3.7.51),

and since (ω
(j)
k )j∈J : k∈I(j) is a partition of ωk, k ∈ IΠ, Π is a partition of p, and (Γj,ι)ι∈Jj

is a partition of ∂p ∩ ∂pj. ¥
Example 3.7.26. Examples 3.1.3(b),(c),(d), Ex. 3.1.1(b), and the first case of 3.1.1(a)
are investigated with respect to the hypothesis of Lem. 3.7.25, i.e. with respect to
whether avj,ι

out is bounded from above. In each of these cases, it is Bj,ι = 0.

Suppose υ = [mυ,∞[, as for example if the unknown represents temperature. Moreover,
let Γ be a (d− 1)-dimensional polyhedral subset of ∂p.

It is first assumed that (aj,ι
out)

ex.-im.[(
(ỹ, y), t, x

)]
= aj,ι

out[(y, t, x)], i.e. there is no depen-
dency splitting.

For the boundary conditions considered in Exs 3.1.3(b),(c),(d), using natural hypothe-
ses, −aj,ι

out is always bounded from above: Let aj,ι
out ∈ C(τ × Γ,R). Ex. 3.1.3(b):

sup(−aj,ι
out) = max{−aj,ι

out[(t, x)] : (t, x) ∈ τ × Γ} since aj,ι
out does not depend on

the unknown. Ex. 3.1.3(c): sup(−aj,ι
out) ≤ ξ

(‖uext‖max − mυ

)
for −aj,ι

out[(y, t, x)] =

ξ
(
uext[(t, x)] − y

)
, ξ ∈ R+, uext ∈ C(τ × Γ,R). Ex. 3.1.3(d): sup(−aj,ι

out) ≤ σT 4
room for

mυ = 0, −aj,ι
out[(y, t, x)] = σε[(y, t, x)](T 4

room − y4), σ ∈ R+, ε ∈ C
(
υ × τ × Γ, [0, 1]

)
,

Troom ∈ υ.

Thus, in these cases, avj,ι
out is bounded from above if −vj ¹υ×τ×Γ •npj

is bounded from
above, e.g. if vj does not depend on the unknown as in the second case of Ex. 3.1.1(b).
However, if −vj¹υ×τ×Γ •npj

is not bounded from above, then avj,ι
out can only be bounded

from above if the two remaining summands of avj,ι
out compensate each other. Example

3.1.1(a), first case: One has −vj[(y, t, x)] = −yvgas[x]. Letting λ := max(−vgas ¹Γ

•npj
), −vj ¹υ×τ×Γ •npj

is bounded from above if and only if λ ≤ 0. If λ > 0 and

−aj,ι
out[(y, t, x)] = ξ

(
uext[(t, x)] − y

)
, ξ ∈ R+, then avj,ι

out is bounded from above if and

only if λ − ξ ≤ 0. If −aj,ι
out[(y, t, x)] = σε[(y, t, x)]

(
T 4

room − y4
)
, then avj,ι

out is bounded
from above if ε is bounded away from zero. The first case of Ex. 3.1.1(b), where

vj[(y, t, x)] :=
(z(Ar)+1)R

M(Ar) ρgas yvgas[x], is similar. Example 3.1.1(b), third case: One has

−vj[(y, t, x)] := −εgas[y] ρgas[x]vgas[x], and whether avj,ι
out is bounded from above or not

depends on the special form of ε.

Finally, consider Ex. 3.1.3(d) with the dependency splitting

(aj,ι
out)

ex.-im.[(
(ỹ, y), t, x

)]
= σε[(ỹ, t, x)](y4 − T 4

room).

Since ε is [0, 1]-valued, −(aj,ι
out)

ex.-im.
is bounded from above. Moreover, it is still true,

that for −vj[(y, t, x)] = −yvgas[x], the function avj,ι
out is bounded from above if ε is

bounded away from zero.
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Example 3.7.27. As in Sec. 3.7.8, consider the case where the nonlocal boundary
operator B := Bj,ι is given by (3.7.68), i.e. it represents the nonlocal radiation operators
arising from Ex. 3.1.3(e). Moreover, considering Ex. 3.1.3(e) in axisymmetric form, one
has

aout[(Tsolid,circ, t, x)] := aj,ι
out[(Tsolid,circ, t, x)] = εcirc[(Tsolid,circ, x)] σ T 4

solid,circ.

Thus, using the dependency splitting of Ex. 3.4.12, it is

Bex.-im.[(T
(ν−1)
solid,circ, T

(ν)
solid,circ)][x]− (a

(ν)
out)

ex.-im.[(
(T

(ν−1)
solid,circ, T

(ν)
solid,circ), x

)]

= εcirc[(T
(ν−1)
solid,circ, x)] · Jcirc

[Rcirc[T
(ν)
solid,circ]

]− εcirc[(T
(ν−1)
solid,circ, x)] σ

(
T

(ν)
solid,circ

)4
.

(3.7.98)

The considerations of Sec. 3.7.8 led to the definition of B
(ν)
(k,C) = B

(ν)
k,solid in (3.7.91).

Together with a
(ν)
out,k,solid = a

(ν)
out,(k,C) defined according to (3.7.51), and recalling (3.7.89),

this yields

B
(ν)
k,solid[(U

(ν−1), U (ν))]− a
(ν)
out,k,solid[(U

(ν−1)
k,solid, U

(ν)
k,solid)]

=
∑

κ∈Iωk

(
Vκ[(U

(ν−1), U (ν))]− εcirc[(U
(ν−1)
k,solid, xk)] σ

(
U

(ν)
k,solid

)4
lκ

)
. (3.7.99)

Let Irad,ph := Irad\Irad,Γ. The following (3.7.100) is another instance of the conservation
of radiation energy. Using that Γ ∪ Γph as defined in Sec. 3.7.8 (s. Fig. 3.22 on p.
123) forms the circular projection of a closed surface, and using (3.7.99), (3.7.89), and
(3.7.78), one calculates

∑

(k,C)∈IΠ,D,¬Dir

(
B

(ν)
(k,C)[(U

(ν−1), U (ν))]− a
(ν)
out,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))]

)

=
∑

κ∈Irad,Γ

εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

] ∑

λ∈Irad

R
(ν)
circ[xλ] Λκ,λ

−
∑

κ∈Irad,Γ

εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

]
σ

(
T

(ν)
solid,circ[xκ]

)4
lκ

(3.7.80)
= −

∑
κ∈Irad,Γ

R
(ν)
circ[xκ]lκ +

∑
κ∈Irad,Γ

∑

λ∈Irad

R
(ν)
circ[xλ] Λκ,λ

(3.7.77)
= −

∑
κ∈Irad,Γ

R
(ν)
circ[xκ]

∑

λ∈Irad

Λκ,λ +
∑

κ∈Irad,Γ

∑

λ∈Irad

R
(ν)
circ[xλ] Λκ,λ

(3.7.76)
= −

∑
κ∈Irad,Γ

∑

λ∈Irad

R
(ν)
circ[xκ]Λκ,λ +

∑

λ∈Irad,Γ

∑
κ∈Irad

R
(ν)
circ[xκ] Λκ,λ

= −
∑

κ∈Irad,Γ

∑

λ∈Irad,ph

R
(ν)
circ[xκ]Λκ,λ +

∑

λ∈Irad,Γ

∑
κ∈Irad,ph

R
(ν)
circ[xκ] Λκ,λ
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(3.7.86)

≤
∑

λ∈Irad,Γ

∑
κ∈Irad,ph

R
(ν)
circ[xκ] Λκ,λ

(3.7.69)

≤ σ T 4
room

∑

λ∈Irad,Γ

∑
κ∈Irad,ph

Λκ,λ

(3.7.77)

≤ σ T 4
room

∑
κ∈Irad,ph

lκ
(3.7.77)

≤ σ T 4
room

∫

Γph

r d(r, z) < ∞. (3.7.100)

Thus, for v
(ν)
out,(k,C) = 0, (3.7.100) shows that the operators are bounded from above in

the sense of Def. 3.7.23.

It is remarked that it is straightforward to superpose the situation of the present ex-
ample with the situations considered in Ex. 3.7.26 (discarding the condition Bj,ι = 0 in
Ex. 3.7.26).

3.7.10 Upper Bound for Terms on Interfaces

In this section, under suitable hypotheses, upper bounds are proved for the contributions
to the operators s(ν) stemming from terms on interfaces, i.e. stemming from h

(ν)
(k,C),(d), and

h
(ν)
(k,C),(h), . . . , h

(ν)
(k,C),(m). The following is organized analogous to the strategy described

at the beginning of the previous Sec. 3.7.9.

Definition 3.7.28. The discretizations

A
(ν)
con,(k,C), v

(ν)
con,(k,C), a

(ν)
flux,con,(k,C),A

(ν)
jump,(k,C), v

(ν)
jump,(k,C),

a
(ν)
jump,1,Dir,(k,C), a

(ν)
jump,2,Dir,(k,C), a

(ν)
flux,jump,2,¬Dir,(k,C), a

(ν)
flux,jump,2,Dir,(k,C),

(3.7.101)

(k, C) ∈ IΠ,D,¬Dir, are called bounded from above iff they are real-valued and there is
BIF[C] ∈ R such that independently of Π and ν,

∑

(k,C)∈IΠ,D,¬Dir

(
A

(ν)
con,(k,C) − v

(ν)
con,(k,C) − a

(ν)
flux,con,(k,C) + A

(ν)
jump,(k,C) − v

(ν)
jump,(k,C) − a

(ν)
jump,1,Dir,(k,C)

−a
(ν)
jump,2,Dir,(k,C) − a

(ν)
flux,jump,2,¬Dir,(k,C) − a

(ν)
flux,jump,2,Dir,(k,C)

)

≤ BIF[C] ·
∑
γ∈IF

λd−1[γ]. (3.7.102)

—

The following Lem. 3.7.33 is similar to Lems 3.7.4 and 3.7.16.

Lemma 3.7.29. The following holds:

∧

ν∈{0,...,n}

∑

(k,C)∈IΠ,D,¬Dir

(
a

(ν)
jump,1,¬Dir,(k,C) + a

(ν)
jump,2,¬Dir,(k,C)

)
= 0. (3.7.103)
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Proof. Fix U ∈ υIΠ,D,¬Dir .

Due to (3.7.59), a1[U ] :=
∑

(k,C)∈IΠ,D,¬Dir

a
(ν)
jump,1,¬Dir,(k,C)[U ] actually involves a sum over the

set

A :=
{(

(k, C), γ
) ∈ IΠ,D,¬Dir ×Gjump,1[C] :

(
k, C[(k, i2[γ])]

) ∈ IΠ,D,¬Dir, λd−1

[
γ ∩ ∂ω

(i1[γ])
k

]
> 0

}
.

(3.7.104)

Analogously, due to (3.7.65), a2[U ] :=
∑

(k,C)∈IΠ,D,¬Dir

a
(ν)
jump,2,¬Dir,(k,C)[U ] involves a sum over

B :=
{(

(k, C), γ
) ∈ IΠ,D,¬Dir ×Gjump,2[C] :

(
k, C[(k, i1[γ])]

) ∈ IΠ,D,¬Dir, λd−1

[
γ ∩ ∂ω

(i2[γ])
k

]
> 0

}
.

(3.7.105)

Now a bijection I : A −→ B is established by letting

I
[(

(k, C), γ
)]

:=
((

k, C[(k, i2[γ])]
)
, γ

)
. (3.7.106)

The proof is completed by observing that for each
(
(k, C), γ

) ∈ A, the summand
of a1[U ] corresponding to

(
(k, C), γ

)
cancels the summand of a2[U ] corresponding to

I[(
(k, C), γ

)]
(cf. Rem. 3.5.7). ¥

Remark 3.7.30. As a trivial consequence of Def. 3.7.28 and Lem. 3.7.29, if the dis-
cretizations (3.7.101) are bounded from above, then

∧

ν∈{0,...,n}




−
∑

(k,C)∈IΠ,D,¬Dir

(
h

(ν)
(k,C),(d) + h

(ν)
(k,C),(h) + h

(ν)
(k,C),(i)

+h
(ν)
(k,C),(j) + h

(ν)
(k,C),(k) + h

(ν)
(k,C),(l) + h

(ν)
(k,C),(m)

)

=
∑

(k,C)∈IΠ,D,¬Dir

(
A

(ν)
con,(k,C) − v

(ν)
con,(k,C) − a

(ν)
flux,con,(k,C)

+ A
(ν)
jump,(k,C) − v

(ν)
jump,(k,C) − a

(ν)
jump,1,Dir,(k,C)

−a
(ν)
jump,2,Dir,(k,C) − a

(ν)
flux,jump,2,¬Dir,(k,C) − a

(ν)
flux,jump,2,Dir,(k,C)

)

≤ BIF[C] ·
∑
γ∈IF

λd−1[γ]




.

If there are no nonlocal interface operators, then the operators (3.7.101) are bounded
from above, given a sufficient condition on the input function. This is the contents of
the following Lems 3.7.31 and 3.7.33, and of Rem. 3.7.35, where Lem. 3.7.31 deals with
terms on continuous interfaces, and Lem. 3.7.33 deals with terms on jump interfaces.
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Lemma 3.7.31. If for each γ ∈ IFcon, the functions aγ,α
flux, α ∈ {1, 2}, are real-valued,

and the function

avcon[γ] : υ × υ × τ × γ −→ R,

avcon[γ][(ỹ, y, t, x)] := −
∑

α∈{1,2}
viα[γ][(y, t, x)] • npiα[γ]

[x]

+ (aγ,1
flux)

ex.-im.[(
(ỹ, y), t, x

)]− (aγ,2
flux)

ex.-im.[(
(ỹ, y), t, x

)]
(3.7.108)

is bounded from above, then
∧

ν∈{0,...,n}

∑

(k,C)∈IΠ,D,¬Dir

(
−v

(ν)
con,(k,C) − a

(ν)
flux,con,(k,C)

)
≤ Bcon[C] ·

∑
γ∈IFcon

λd−1[γ], (3.7.109)

where

Bcon[C] := max
{

sup(avcon[γ]) : γ ∈ IFcon

}
. (3.7.110)

Proof. The hypothesis implies that each

−
∑

α∈{1,2}
v

(ν)
iα[γ],sca[(y, xk)]v

(ν)
iα[γ],vec[xk] • n

ω
(iα[γ])
k

+(aγ,1,ν
flux )

ex.-im.[(
(ỹ, y), xk

)]− (aγ,2,ν
flux )

ex.-im.[(
(ỹ, y), xk

)]

is bounded from above by Bcon[C]. Hence, (3.7.109) follows from (3.7.54) and (3.7.57),

since (ω
(j)
k )j∈J : k∈I(j) is a partition of ωk, k ∈ IΠ, Π is a partition of p, and since γ ∩

∂regω
(j)
k 6= ∅ holds if and only if j ∈ {i1[γ], i2[γ]}. ¥

Example 3.7.32. Suppose γ ∈ IFcon is a continuous interface. Let vα,γ := viα[γ]¹υ×τ×γ,
α ∈ {1, 2}. Suppose υ = [mυ,∞[ and that there is no dependency splitting, i.e.
(aγ,α

flux)
ex.-im.[((ỹ, y), t, x

)]
= aγ,α

flux[(y, t, x)].

The function avcon[γ] is bounded from above for aγ,1
flux = aγ,2

flux = 0 if both v1,γ and v2,γ

are independent of y ∈ υ or if v1,γ = v2,γ, i.e. if the convection through γ is continuous.

However, in general, if the convection through the interface γ is discontinuous, then
avcon[γ] is only bounded from above for a suitable nonvanishing choice of aγ,1

flux and aγ,2
flux.

For example, if v1,γ = 0 and v2,γ[(y, t, x)] = −ynpi2[γ]
, then avcon[γ] is bounded from

above for aγ,1
flux = 0 and aγ,2

flux[(y, t, x)] = ξy, ξ ∈ [1,∞[.

Lemma 3.7.33. Assume that for each γ ∈ IFjump, the functions aγ,α
flux, and aγ,α

jump, α ∈
{1, 2}, are real-valued, and each of the functions

avjump,α[γ] : υ × υ × τ × γ −→ R, α ∈ {1, 2},
avjump,1[γ][(ỹ, y, t, x)] :=−vi1[γ][(y, t, x)]•npi1[γ]

[x]+ (aγ,1
flux)

ex.-im.[(
(ỹ, y), t, x

)]
,

avjump,2[γ][(ỹ, y, t, x)] :=−vi2[γ][(y, t, x)]•npi2[γ]
[x]− (aγ,2

flux)
ex.-im.[(

(ỹ, y), t, x
)]

(3.7.111)
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are bounded from above. For simplicity, also assume that the functions aγ,1
jump and aγ,2

jump

are bounded from below (this assumption can be avoided whenever γ does not intersect
a Dirichlet boundary). Then

∧

ν∈{0,...,n}




∑

(k,C)∈IΠ,D,¬Dir

(
−v

(ν)
jump,(k,C) − a

(ν)
jump,1,Dir,(k,C) − a

(ν)
jump,2,Dir,(k,C)

−a
(ν)
flux,jump,2,¬Dir,(k,C) − a

(ν)
flux,jump,2,Dir,(k,C)

)

≤ (
Bjump[C] + Bjump,Dir[C]

) ·
∑

γ∈IFjump

λd−1[γ]




, (3.7.112)

where

Bjump[C] := max
{

sup(avjump,1[γ]) + sup(avjump,2[γ]) : γ ∈ IFjump

}

+ max
{
(aγ,1

flux)
ex.-im.[(

(uj,Dir[(t̃, x)], uj,Dir[(t, x)]), t, x
)]

:

γ ∈ IFjump, j ∈ J : 0 ∈ Jj, (t̃, t, x) ∈ τ × τ × γ ∩ Γj,Dir

}
,

(3.7.113)

Bjump,Dir[C] := max
{

sup(−aγ,α
jump) : γ ∈ IFjump, α ∈ {1, 2}}

+ max
{
aγ,α

jump

[
(uj,Dir[(t, x)], t, x)

]
:

α ∈ {1, 2}, γ ∈ IFjump, j ∈ J : 0 ∈ Jj, (t, x) ∈ τ × γ ∩ Γj,Dir

}
.

(3.7.114)

Proof. The hypothesis implies that each

−v
(ν)
i1[γ],sca[(y1, xk)]v

(ν)
i1[γ],vec[xk] • n

ω
(i1[γ])
k

− v
(ν)
i2[γ],sca[(y2, xk)]v

(ν)
i2[γ],vec[xk] • n

ω
(i2[γ])
k

+(aγ,1,ν
flux )

ex.-im.[(
(ỹ1, y1), xk

)]− (aγ,2,ν
flux )

ex.-im.[(
(ỹ2, y2), xk

)]
(3.7.115)

is bounded from above by Bjump[C] and that this is still the case if summands with
index 1 in (3.7.115) are replaced with the Dirichlet term from (3.7.63). Moreover, each

summand in (3.7.60) is bounded from below by −Bjump,Dir[C]λd−1

[
∂ω

(i1[γ])
k ∩ γ

]
and

each summand in (3.7.66) is bounded from below by −Bjump,Dir[C]λd−1

[
∂ω

(i2[γ])
k ∩ γ

]
.

Hence, (3.7.112) follows from (3.7.55), (3.7.60), (3.7.62), (3.7.63), and (3.7.66), since

(ω
(j)
k )j∈J : k∈I(j) is a partition of ωk, k ∈ IΠ, Π is a partition of p, and since γ∩∂regω

(j)
k 6= ∅

holds if and only if j ∈ {i1[γ], i2[γ]}. ¥

Example 3.7.34. Suppose γ ∈ IFjump is a jump interface.

First, it is remarked that for aγ,1
jump[(y, t, x)] = aγ,2

jump[(y, t, x)] = ξy, ξ ∈ R+, according

to Ex. 3.1.2(b), aγ,1
jump and aγ,2

jump are bounded from below, satisfying the hypothesis of
Lem. 3.7.33.
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Let vα,γ := viα[γ]¹υ×τ×γ, α ∈ {1, 2}. Suppose υ = [mυ,∞[ and that there is no depen-

dency splitting, i.e. (aγ,α
flux)

ex.-im.[((ỹ, y), t, x
)]

= aγ,α
flux[(y, t, x)].

The situation is similar to Ex. 3.7.32, except that the contributions from the two sides
of γ can no longer compensate each other. Still, the avjump,α[γ] are bounded from above
for aγ,1

flux = aγ,2
flux = 0, if both v1 and v2 are independent of y ∈ υ. However, while in

Ex. 3.7.32, the hypothesis of Lem. 3.7.25 was satisfied for v1,γ = v2,γ, in the current
situation, v1,γ = v2,γ does not suffice to ensure the hypotheses of Lem. 3.7.33. For
example, if v1,γ[(y, t, x)] = v2,γ[(y, t, x)] = −ynpi2[γ]

, then −(v1,γ • npi1[γ]
)[(y, t, x)] = −y

is bounded from above, but −(v2,γ • npi2[γ]
)[(y, t, x)] = y is not bounded from above.

In particular, avjump,2[γ] is not bounded from above if aγ,2
flux = 0. However, analogous

to Ex. 3.7.32, avjump,α[γ], α ∈ {1, 2}, are both bounded from above for aγ,1
flux = 0 and

aγ,2
flux[(y, t, x)] = ξy, ξ ∈ [1,∞[.

Remark 3.7.35. The combination of Lems 3.7.31 and 3.7.33 yields that the discretiza-
tions (3.7.101) are bounded from above with

BIF[C] = max
{
Bcon[C], Bjump[C] + Bjump,Dir[C]

}
,

if all nonlocal interface operators vanish (i.e. Aγ = A
(ν)
con,(k,C) = A

(ν)
jump,(k,C) = 0) and if

the hypotheses of Lems (3.7.31) and (3.7.33) are satisfied.

The following Ex. 3.7.36 is similar to Ex. 3.7.27, showing that under natural hypotheses,
the discretizations (3.7.101) are bounded from above if the nonlocal interface operators
represent the nonlocal radiation operators that are discretized according to Sec. 3.7.8.

Example 3.7.36. As at the end of Sec. 3.7.8, consider the case where the nonlo-
cal interface operators Aγ represent the nonlocal radiation operators arising from Ex.
3.1.2(c). More precisely, cylindrical symmetry is assumed and only the contributions
from the transmittive band are considered (s. Sec. 2.4.4, the contributions from the
reflective band can be handled similarly). Thus, using the notation of Fig. 3.1 on p. 50,
Γcon = Ωj2 ∩Ωj4 , Γjump = (Ωj1 ∩Ωj2)∪ (Ωj1 ∩Ωj3) (cf. last paragraph of Sec. 3.7.8), and

Aγ[Tsolid,circ] = εt,circ[(Tsolid,circ, x)] · Jt,circ

[Rt,circ[Tsolid,circ]
]
,

aγ,1
flux[(Tsolid,circ, t, x)] = 0,

aγ,2
flux[(Tsolid,circ, t, x)] = εt,circ[(Tsolid,circ, x)] σ T 4

solid,circ.

Thus, using the dependency splitting of Ex. 3.4.10, it is

(Aγ)
ex.-im.[(T

(ν−1)
solid,circ, T

(ν)
solid,circ)][x]− (aγ,2,ν

flux )
ex.-im.[(

(T
(ν−1)
solid,circ, T

(ν)
solid,circ), x

)]

= εt,circ[(T
(ν−1)
solid,circ, x)] · Jt,circ

[Rt,circ[T
(ν)
solid,circ]

]− εt,circ[(T
(ν−1)
solid,circ, x)] σ

(
T

(ν)
solid,circ

)4
.
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Then, if A
(ν)
con,(k,C) = A

(ν)
con,k,solid and A

(ν)
jump,(k,C) = A

(ν)
jump,k,solid are defined by (3.7.92)

and (3.7.93), respectively, then together with a
(ν)
flux,jump,2,¬Dir,(k,C) = a

(ν)
flux,jump,2,¬Dir,k,solid

defined according to (3.7.62), and recalling (3.7.89), this yields

A
(ν)
con,k,solid[(U

(ν−1), U (ν))]− a
(ν)
flux,jump,2,¬Dir,k,solid[(U

(ν−1)
k,solid, U

(ν)
k,solid)]

=
∑

κ∈Iωk,con

(
Vκ[(U

(ν−1), U (ν))]− εt,circ[(U
(ν−1)
k,solid, xk)] σ

(
U

(ν)
k,solid

)4
lκ

)
(3.7.116)

and the analogous equation involving A
(ν)
jump,k,solid.

Using Γph = ∅, an argument analogous to (3.7.100) shows

∑

(k,C)∈IΠ,D,¬Dir

(
A

(ν)
con,(k,C)[(U

(ν−1), U (ν))] + A
(ν)
jump,(k,C)[(U

(ν−1), U (ν))]

− a
(ν)
flux,jump,2,¬Dir,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))]

)
= 0.

(3.7.117)

Superposing the situation of the present example with the situations considered in Exs
3.7.32 and 3.7.34 shows that under natural hypotheses, the discretizations (3.7.101) are
bounded from above.

3.7.11 Source and Sink Terms

(3.5.24n) is discretized by replacing the integrand by its value at xk, i.e. (3.5.24n) is
replaced by

h
(ν)
(k,C),(n)[U

(ν)] := −f
(ν)
(k,C)[U

(ν)
(k,C)], (3.7.118)

where the f
(ν)
(k,C) : υ −→ K are defined by:

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir

f
(ν)
(k,C)[y] :=

∑

j∈V [C]
f

(ν)
j [(y, xk)] · λd[ω

(j)
k ]. (3.7.119)

Remark 3.7.37. As mentioned in Sec. 3.3.1, for the mathematical theory, it is often
not necessary to assume continuity of the fj. For example, if one just had square

integrability of fj with respect to x, then one would replace f
(ν)
j [(y, xk)] · λd[ω

(j)
k ] with∫

ω
(j)
k

f
(ν)
j [(y, x)] dx in (3.7.119).

As in the previous sections, the contributions to the operators s(ν) are estimated from
above:
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Lemma 3.7.38. If each fj, j ∈ J , is real-valued and bounded from above, then

∧

ν∈{0,...,n}

−
∑

(k,C)∈IΠ,D,¬Dir

h
(ν)
(k,C),(n) =

∑

(k,C)∈IΠ,D,¬Dir

f
(ν)
(k,C) ≤ Bf [C] · λd[p], (3.7.120)

where

Bf [C] := max
{

sup fj : j ∈ J
}
. (3.7.121)

Proof. By the hypothesis, each f
(ν)
j [(y, xk)] is bounded from above by Bf [C]. Hence,

(3.7.120) follows from (3.7.119) and since (ω
(j)
k )j∈J : k∈I(j) is a partition of ωk, k ∈ IΠ,

and Π is a partition of p. ¥

Example 3.7.39. Example 3.1.1(b) and the first case of Ex. 3.1.1(a) are investigated
with respect to the fj being bounded from above as needed in the hypothesis of Lem.
3.7.38.

The hypothesis of Lem. 3.7.38 is trivially satisfied, where the fj are independent of the
unknown: In the first case of 3.1.1(a), one has fj = 0. In the first case of 3.1.1(b), one
has fj[(y, t, x)] = ρgas[x]g • vgas[x].

In the second case of 3.1.1(a), it is fj[(y, t, x)] = f [βj ], where f [βj ] is supposed to represent
a heat source due to induction heating. Thus, the assumption that the fj are bounded
from above is physically reasonable, since it means that the power density of the heat
sources can not become arbitrarily large.

In the third case of 3.1.1(a), fj[(y, t, x)] = εgas[y] div
(
ρgas[x]vgas[x]

)− pgas[x] div vgas[x].
Since the internal energy ε is nonnegative, fj is bounded from above if and only if ε is
bounded from above or div(ρgasvgas) ≤ 0, i.e. there are no gas sources.

3.7.12 Summarizing Definitions

For the sake of easy reference, the ingredients to a finite volume discretization are
summarized in the following Defs 3.7.40 and 3.7.41, and the notion of a solution to a
finite volume discretization is provided by Def. 3.7.42. Moreover, the estimates proved
in Secs 3.7.2 - 3.7.11 are combined into Lem. 3.7.45.

Firstly, Def. 3.7.40 collects the requirements with respect to the polytope discretization
Π.

Definition 3.7.40. The partition Π = (ωk)k∈IΠ of p into finitely many d-dimensional
polytopes ωk (control volumes) together with a family of discretization points (xk)k∈IΠ

is called a space discretization of the domain complex D iff the following conditions (i) –

(iv) are satisfied, where according to Sec. 3.5.3, Π(j) := (ω
(j)
k )k∈I(j) , ω

(j)
k := int[ωk ∩ pj],

I(j) :=
{
k ∈ IΠ : ω

(j)
k 6= ∅}.
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(i)
∧

k∈IΠ

ωk is nontangent to interfaces.

(ii)
∧

{k,l}∈EIF[Π]

xk 6= xl and xl−xk

‖xk−xl‖2 = nωk
¹∂regωk∩∂regωl

.

(iii)
∧

k∈IΠ

∧
j∈Vωk

xk ∈ ω
(j)
k .

(iv)
∧

k∈IΠ

∧
(j,ι)∈J×Jj

Γj,ι ∩ ∂regωk 6= ∅ ⇒ xk ∈ Γj,ι.

Conditions (ii) – (iv) are conditions (dispt-(i)) – (dispt-(iii)) from Sec. 3.7.1.

—

Finding discretizations that satisfy Condition 3.7.40(ii) presents no difficulty, as it is
fulfilled for every Voronöı discretization as described in App. C.4.3 (s. Rem. C.4.19). A
Voronöı discretization yields a discretization of p into d-polytopes that has a prescribed
finite point set as discretization points. However, sufficiently many discretization points
need to lie on interfaces and boundaries to guarantee Conditions 3.7.40(i),(iii),(iv), and
to provide a construction procedure for the general case seems to be difficult.

If d = 2, i.e. if p is two-dimensional, then one can discretize the convex hull of p, conv[p],
into triangles satisfying the constrained Delaunay criterion (temporarily adding the
space domain pconv := conv[p] \ p). The constrained Delaunay criterion says that the
sum of two opposite angles can be at most 180◦, and that angles opposite boundaries
or interfaces must be at most 90◦ (cf. Fig. 3.24). Moreover, each interface and each Γj,ι

must be discretized into triangle edges. A constrained Delaunay triangulation is pro-
duced by the grid generator Triangle (cf. [She96]), which is used during the numerical
simulations of Ch. 4. It is also referred to [She96] for further information and references
on Delaunay triangulation. If V is the set of vertices of a constrained Delaunay trian-
gulation of conv[p], and (ωv)v∈V is the induced Voronöı discretization of p, then (ω̃v)v∈V

together with the set of discretization points V is a space discretization in the sense of
Def. 3.7.40, where ω̃v := ωv \ pconv. Figure 3.25 illustrates that, in general, it does not
suffice to use a Delaunay triangulation of just p to guarantee Conditions 3.7.40(iii),(iv).

Definition 3.7.41. A finite volume discretization F of the evolution equation complex
C consists of a time discretization T of C, a space discretization

(
Π, (xk)k∈IΠ

)
of D, a

family of scalar-vector-splittings V for C, and the family of discretization operators

(
h

(ν)
(k,C)

)
(ν,(k,C))∈{1,...,n}×IΠ,D,¬Dir

according to (3.7.7), given by means of the discretization operators defined in Secs 3.7.2
- 3.7.11 (s. (3.7.122) below).

—
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∂p

p

(a)

α

(b)

βα

Figure 3.24: The situation in (a) violates the constrained Delaunay criterion, as α > 90◦.
For the situation in (b), α = 110◦ and β = 60◦, i.e. the constrained Delaunay criterion is
violated if and only if the dashed line constitutes an interface between different spatial
subdomains pj1 and pj2 .

boundary of Voronöı boxes intersected with conv[p] \ p

boundary of Voronöı boxes intersected with p

p conv[p]

Figure 3.25: Delaunay triangulations of p and conv[p] and resulting Voronöı discretiza-
tions.

Since the definition of the h
(ν)
(k,C) is scattered over Secs 3.7.2 - 3.7.11, it can be useful

to have the following closed form (3.7.122), even though it is rather lengthy itself: For
each ν ∈ {1, . . . , n} and for each (k, C) ∈ IΠ,D,¬Dir, one has

h
(ν)
(k,C)

[
(U (ν−1), U (ν))

]
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= (tν − tν−1)
−1

(
b

(ν)
(k,C)[U

(ν)
(k,C)]− b

(ν−1)
(k,C) [U

(ν−1)
(k,C) ]

)
+ v

(ν)
int,¬Dir,(k,C)[U

(ν)] + v
(ν)
int,Dir,(k,C)[U

(ν)
(k,C)]

+ v
(ν)
out,(k,C)[U

(ν)
(k,C)] + v

(ν)
con,(k,C)[U

(ν)
(k,C)] + v

(ν)
jump,(k,C)[U

(ν)
(k,C)]− k

(ν)
¬Dir,(k,C)[U

(ν)]

− k
(ν)
Dir,(k,C)[U

(ν)
(k,C)]−B

(ν)
(k,C)[(U

(ν−1), U (ν))] + a
(ν)
out,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))]

− A
(ν)
con,(k,C)[(U

(ν−1), U (ν))] + a
(ν)
flux,con,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))] + a

(ν)
jump,1,¬Dir,(k,C)[U

(ν)]

+ a
(ν)
jump,1,Dir,(k,C)[U

(ν)
(k,C)]− A

(ν)
jump,(k,C)[(U

(ν−1), U (ν))] + a
(ν)
flux,jump,2,¬Dir,(k,C)[(U

(ν−1), U (ν))]

+ a
(ν)
flux,jump,2,Dir,(k,C)[(U

(ν−1)
(k,C) , U

(ν)
(k,C))] + a

(ν)
jump,2,¬Dir,(k,C)[U

(ν)] + a
(ν)
jump,2,Dir,(k,C)[U

(ν)
(k,C)]

− f
(ν)
(k,C)[U

(ν)
(k,C)]

= (tν − tν−1)
−1

∑

j∈V [C]

(
b
(ν)
j [(U

(ν)
(k,C), xk)]− b

(ν)
j [(U

(ν−1)
(k,C) , xk)]

)
· λd[ω

(j)
k ] (3.7.122a)

+
∑

j∈V [C],
l∈nbj,¬Dir[k]

(
w

(ν)
j [(k, l)] · v(ν)

j,sca

[(
U

(ν)

(l,C[(l,j)]), xl

)]

+
(
1− w

(ν)
j [(k, l)]

)
· v(ν)

j,sol[(U
(ν)
(k,C), xk)]

)

·

(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

)
• (xl − xk)

2‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
(3.7.122b)

+
∑

j∈V [C],
l∈nbj,Dir[k]

(
w

(ν)
j [(k, l)] · v(ν)

j,sca

[(
ujDir[(l,j)],Dir[(tν , xl)], xl

)]

+
(
1− w

(ν)
j [(k, l)]

)
· v(ν)

j,sca

[
(U

(ν)
(k,C), xk)

])

·

(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

)
• (xl − xk)

2‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
(3.7.122c)

+
∑

j∈V [C]
v

(ν)
j,sca[(U

(ν)
(k,C), xk)]

∫

∂ω
(j)
k ∩∂p

v
(ν)
j,vec[xk] • n

ω
(j)
k

(3.7.122d)

+
∑

j∈V [C],
γ∈IF

v
(ν)
j,sca[(U

(ν)
(k,C), xk)]

∫

∂ω
(j)
k ∩γ

v
(ν)
j,vec[xk] • n

ω
(j)
k

(3.7.122e)

−
∑

j∈V [C],
l∈nbj,¬Dir[k]

k
(ν)
j [(U

(ν)
(k,C), xk)] + k

(ν)
j

[(
U

(ν)

(l,C[(l,j)]), xl

)]

2

·
U

(ν)

(l,C[(l,j)]) − U
(ν)
(k,C)

‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
(3.7.122f)
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−
∑

j∈V [C],
l∈nbj,Dir[k]

k
(ν)
j

[
(U

(ν)
(k,C), xk)

]
+ k

(ν)
j

[(
ujDir[(l,j)],Dir[(tν , xl)], xl

)]

2

·
ujDir[(l,j)],Dir[(tν , xl)]− U

(ν)
(k,C)

‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]
(3.7.122g)

−B
(ν)
(k,C)[(U

(ν−1), U (ν))] (3.7.122h)

+
∑

(j,ι)∈V [C]×Jj\{0}:
λd−1[∂ω

(j)
k ∩Γj,ι]>0

(aj,ι,ν
out )

ex.-im.[(
(U

(ν−1)
(k,C) , U

(ν)
(k,C)), xk

)] · λd−1[∂ω
(j)
k ∩ Γj,ι] (3.7.122i)

− A
(ν)
con,(k,C)[(U

(ν−1), U (ν))] (3.7.122j)

+
∑

γ∈IFcon:

λd−1

h
γ∩Sj∈V [C] ∂regω

(j)
k

i
>0

(
− (aγ,1,ν

flux )
ex.-im.[(

(U
(ν−1)
(k,C) , U

(ν)
(k,C)), xk

)]

+ (aγ,2,ν
flux )

ex.-im.[(
(U

(ν−1)
(k,C) , U

(ν)
(k,C)), xk

)])

· λd−1


γ ∩

⋃

j∈V [C]
∂regω

(j)
k


 (3.7.122k)

+
∑

γ∈Gjump,1[C]:(
k,C[(k,i2[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i1[γ])
k ∩γ

]
>0

(
aγ,1,ν

jump

[
(U

(ν)
(k,C), xk)

]− aγ,2,ν
jump

[
(U

(ν)(
k,C[(k,i2[γ])]

), xk)
])

· λd−1

[
∂ω

(i1[γ])
k ∩ γ

]
(3.7.122l)

+
∑

γ∈Gjump,1[C]:(
k,C[(k,i2[γ])]

)
∈IΠ,D,Dir,

λd−1

[
∂ω

(i1[γ])
k ∩γ

]
>0

(
aγ,1,ν

jump

[
(U

(ν)
(k,C), xk)

]− aγ,2,ν
jump

[
(ujDir[(k,i2[γ])],Dir[(tν , xk)], xk)

])

· λd−1

[
∂ω

(i1[γ])
k ∩ γ

]
(3.7.122m)

− A
(ν)
jump,(k,C)[(U

(ν−1), U (ν))] (3.7.122n)

+
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− (aγ,1,ν

flux )
ex.-im.[(

(U
(ν−1)(
k,C[(k,i1[γ])]

), U
(ν)(
k,C[(k,i1[γ])]

)), xk

)]

+ (aγ,2,ν
flux )

ex.-im.[(
(U

(ν−1)
(k,C) , U

(ν)
(k,C)), xk

)])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]
(3.7.122o)

+
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− (aγ,1,ν

flux )
ex.-im.[(

(ujDir[(k,i1[γ])],Dir[(tν−1, xk)],

ujDir[(k,i1[γ])],Dir[(tν , xk)]), xk

)]

+ (aγ,2,ν
flux )

ex.-im.[(
(U

(ν−1)
(k,C) , U

(ν)
(k,C)), xk

)])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]
(3.7.122p)
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+
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− aγ,1,ν

jump

[
(U

(ν)(
k,C[(k,i1[γ])]

), xk)
]
+ aγ,2,ν

jump

[
(U

(ν)
(k,C), xk)

])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]
(3.7.122q)

+
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
− aγ,1,ν

jump

[
(ujDir[(k,i1[γ])],Dir[(tν , xk)], xk)

]
+ aγ,2,ν

jump

[
(U

(ν)
(k,C), xk)

])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]
(3.7.122r)

−
∑

j∈V [C]
f

(ν)
j [(y, xk)] · λd[ω

(j)
k ]. (3.7.122s)

Next, the notion of a solution to a finite volume discretization is defined in Def. 3.7.42.
The solution to a finite volume discretization should represent a discrete approximation
of a (continuous) solution to an evolution equation complex in the sense of Def. 3.4.7.
Thus, as explained in Sec. 3.7.1, for each discrete time tν , the solution consists of a
vector U (ν) = (u

(ν)
(k,C))(k,C)∈IΠ,D ∈ υIΠ,D , such that u

(ν)
(k,C) should represent the value of a

(continuous) solution at the discretization point xk. If xk lies in more than one space
domain pj, then the solution can have multiple values at xk if and only if xk lies on
a jump interface γ ∈ IFjump. Such multiple values are parametrized by means of the
connected components C.

At the initial time t0, the values of the solution are determined by the initial distri-
bution (Def. 3.7.42(i)), and on Dirichlet boundaries Γj,0, the values of the solution are
determined by the Dirichlet functions for each tν (Def. 3.7.42(ii)). For tν > t0 and xk

not on a Dirichlet boundary, the values of the solution are determined inductively from
tν−1 to tν by means of the discretization operators h(ν) (s. (3.7.6), (3.7.122), and Def.
3.7.42(iii)).

Definition 3.7.42. A solution to a finite volume discretization F of an evolution equa-
tion complex C is a family of vectors

(
U (ν)

)
ν∈{0,...,n} = (u

(ν)
(k,C))(ν,(k,C))∈{0,...,n}×IΠ,D ∈

(
υIΠ,D

){0,...,n}
, (3.7.123)

satisfying

(i)
∧

(k,C)∈IΠ,D

∧
j∈V [C]

u
(0)
(k,C) = u

(0)
j [xk].

(ii)
∧

(k,C)∈IΠ,D,Dir

∧
j∈V [C]

u
(ν)
(k,C) = uj,Dir[(tν , xk)].

(iii)
∧

ν∈{1,...,n}
h(ν)

[(
U (ν−1)¹IΠ,D,¬Dir

, U (ν)¹IΠ,D,¬Dir

)]
= 0.
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—

After each definition of the discretization operators in Secs 3.7.3 - 3.7.11, it was proved
that the corresponding contributions to the operators s(ν) defined in (3.7.8) are bounded
from above. These results are combined into the following Lem. 3.7.45, where Defs
3.7.43 and 3.7.44 collect all the used hypotheses.

Definition 3.7.43. The evolution equation complex C is called bounded from above iff
the following conditions (i) – (iv) hold:

(i) The range of the unknowns uj has the form υ = [mυ,∞[, and each of the functions
kj, uj,Dir, and fj is real-valued.

(ii) kj is nonnegative for each j ∈ J .

(iii) There is a scalar-vector-splitting V =
(
(vj,sca, vj,vec)

)
j∈J

such that each −vj,sca

is bounded from above. Then each such scalar-vector-splitting is called bnd-
admissible.

(iv) Each fj is bounded from above, j ∈ J .

Definition 3.7.44. The finite volume discretization F of C is called bounded from above
iff the following conditions (i) – (iv) hold:

(i) C is bounded from above.

(ii) V is bnd-admissible.

(iii) The discretizations B
(ν)
(k,C), v

(ν)
out,(k,C), and a

(ν)
out,(k,C), (k, C) ∈ IΠ,D,¬Dir, are bounded

from above according to Def. 3.7.23.

(iv) The discretizations (3.7.101) are bounded from above.

Lemma 3.7.45. If the finite volume discretization F of C is bounded from above, then
the operators s(ν) defined by (3.7.8) are real-valued and satisfy

∧

ν∈{0,...,n}
sup s(ν) ≤ Bs[(C, Π,V)], (3.7.124)

where

Bs[(C, Π,V)] :=Bk,Dir[C] · (BDir[C]−mυ

) · dDir[Π]

+ max
{
Bv,Dir[(C, V)], Bv,sca,Dir[(C,V)]

} · lDir[Π] + Bout[C] · λd−1[∂p]

+ BIF[C] ·
∑
γ∈IF

λd−1[γ] + Bf [C] · λd[p]. (3.7.125)
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Proof. The summation of the conclusions of Lems and Rems 3.7.6, 3.7.18, 3.7.24, 3.7.30,
and 3.7.38 yields (3.7.124). ¥

Remark 3.7.46. In the presence of Dirichlet boundaries, Bs[(C, Π, , V)] depends on
the discretization Π through dDir[Π] and lDir[Π]. As stated in Rem. 3.7.7, to prove
convergence in the presence of Dirichlet boundaries, the dependence on dDir[Π] needs
to be eliminated, since dDir[Π] does not stay bounded if Π becomes finer. In contrast,
the dependence of lDir[Π] on Π is not serious (s. Rem. 3.7.19).

3.7.13 Discrete L∞-L1 A Priori Estimates

Within this section, fix a finite volume discretization F of C according to Def. 3.7.41.
The goal of this section is to prove discrete L∞-L1 a priori estimates in Th. 3.7.50.

In the following Def. 3.7.47, the discrete L1-norms N
(ν)
Dir, N

(ν)
¬Dir, and N

(ν)
all are defined, as

well as the discrete L∞-L1-norms NDir, N¬Dir, and Nall. For each of these norms, there
is a variant just involving Dirichlet indices and a variant just involving non-Dirichlet
indices, since different techniques are used to estimate each variant in the sequel. The
numbers N

(ν)
b,¬Dir and Nb,¬Dir defined in (3.7.126) and (3.7.127), respectively, constitute

discrete L1- and L∞-L1-norms, where the vectors are first subject to an application of
b
(ν)
j . For these norms, the Dirichlet case is omitted, since it is not needed for subsequent

use.

Definition 3.7.47. Discrete L1-norms composed with b
(ν)
j :

∧

ν∈{0,...,n}




N
(ν)
b,¬Dir : υIΠ,D,¬Dir −→ R+

0 ,

N
(ν)
b,¬Dir[U ] :=

∑

j∈V [C],
(k,C)∈IΠ,D,¬Dir

∣∣∣b(ν)
j [(U(k,C), xk)]

∣∣∣ · λd[ω
(j)
k ]


 . (3.7.126)

Discrete L∞-L1-norms composed with b
(ν)
j :

Nb,¬Dir :
(
υIΠ,D,¬Dir

){0,...,n} −→ R+
0 ,

Nb,¬Dir

[
(U (ν))ν∈{0,...,n}

]
:= max

{
N

(ν)
b,¬Dir[U

(ν)] : ν ∈ {0, . . . , n}
}

.
(3.7.127)

Discrete L1-norms:

∧

ν∈{0,...,n}




N
(ν)
Dir : υIΠ,D,Dir −→ R+

0 ,

N
(ν)
Dir[U ] :=

∑

j∈V [C],
(k,C)∈IΠ,D,Dir

|U(k,C)| · λd[ω
(j)
k ]


 , (3.7.128a)
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∧

ν∈{0,...,n}




N
(ν)
¬Dir : υIΠ,D,¬Dir −→ R+

0 ,

N
(ν)
¬Dir[U ] :=

∑

j∈V [C],
(k,C)∈IΠ,D,¬Dir

|U(k,C)| · λd[ω
(j)
k ]


 , (3.7.128b)

∧

ν∈{0,...,n}

(
N

(ν)
all : υIΠ,D −→ R+

0 ,

N
(ν)
all [U ] := N

(ν)
Dir

[
U ¹IΠ,D,Dir

]
+ N

(ν)
¬Dir

[
U ¹IΠ,D,¬Dir

]
)

. (3.7.128c)

Discrete L∞-L1-norms:

NDir :
(
υIΠ,D,Dir

){0,...,n} −→ R+
0 ,

NDir

[
(U (ν))ν∈{0,...,n}

]
:= max

{
N

(ν)
Dir[U

(ν)] : ν ∈ {0, . . . , n}
}

, (3.7.129a)

N¬Dir :
(
υIΠ,D,¬Dir

){0,...,n} −→ R+
0 ,

N¬Dir

[
(U (ν))ν∈{0,...,n}

]
:= max

{
N

(ν)
¬Dir[U

(ν)] : ν ∈ {0, . . . , n}
}

, (3.7.129b)

Nall :
(
υIΠ,D

){0,...,n} −→ R+
0 ,

Nall

[
(U (ν))ν∈{0,...,n}

]
:= max

{
N

(ν)
all [U (ν)] : ν ∈ {0, . . . , n}

}
. (3.7.129c)

—

The following Lem. 3.7.48 shows that the discrete norms composed with b
(ν)
j yield an

upper bound for the discrete norms themselves, provided that the bj satisfy a linear
growth condition.

Lemma 3.7.48. If υ = [mυ,∞[, and for each j ∈ J and each (t, x) ∈ τ×pj, the function
bj¹υ×{t}×{x} is nonnegative, increasing, and inverse Linv,b-Lipschitz, Linv,b ∈ R+, (s. Def.
C.7.10 in App. C), then

∧

ν∈{0,...,n}
N

(ν)
¬Dir ≤

N
(ν)
b,¬Dir

Linv,b

+ |mυ| · λd[p], (3.7.130a)

N¬Dir ≤ Nb,¬Dir

Linv,b

+ |mυ| · λd[p]. (3.7.130b)

Analogous formulas hold for the Dirichlet case and for the combined case, but they are
not stated, since they are not used in the sequel.

Proof. Using Rem. C.7.12(a) in (3.7.128b), and using U(k,C) ≥ mυ, bj ¹υ×{t}×{x}≥ 0
being increasing, one has for each (k, C) ∈ IΠ,D,¬Dir such that U(k,C) ≥ 0:

|U(k,C)| ≤
∣∣∣∣∣
b
(ν)
j [(U(k,C), xk)]− b

(ν)
j [(mυ, xk)]

Linv,b

+ mυ

∣∣∣∣∣ ≤
b
(ν)
j [(U(k,C), xk)]

Linv,b

+ |mυ|, (3.7.131a)
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and for each (k, C) ∈ IΠ,D,¬Dir such that U(k,C) ≤ 0:

|U(k,C)| ≤ |mυ| ≤
b
(ν)
j [(U(k,C), xk)]

Linv,b

+ |mυ|. (3.7.131b)

Combining (3.7.131) with (3.7.126); and taking into account that (ω
(j)
k )j∈J : k∈I(j) is a

partition of ωk, k ∈ IΠ, and that Π is a partition of p, yields for each U ∈ υIΠ,D,¬Dir :

N
(ν)
¬Dir[U ] =

∑

j∈V [C],
(k,C)∈IΠ,D,¬Dir

|U(k,C)| · λd[ω
(j)
k ] ≤ N

(ν)
b,¬Dir[U ]

Linv,b

+ |mυ| · λd[p],

proving (3.7.130a). Then (3.7.130b) is a direct consequence of (3.7.130a), (3.7.127),
and (3.7.129b). ¥

Example 3.7.49. It is shown that under natural hypotheses, the functions bj occurring
in Ex. 3.1.1(b) and in the first case of Ex. 3.1.1(a) satisfy the hypotheses of Lem. 3.7.48,
i.e. they are nonnegative, increasing, and inverse Lipschitz.

In the first case of Ex. 3.1.1(a), the unknown function represents mass density, i.e.
υ = R+

0 is suitable. Then bj[(y, t, x)] = y is nonnegative, increasing, and inverse 1-
Lipschitz.

In Ex. 3.1.1(b), the unknown function represents absolute temperature, i.e. υ = R+
0 . In

the first case, one has bj[(y, t, x)] = z(Ar)R
M(Ar) ρgas[x] ·y, i.e. bj is nonnegative, increasing, and

inverse ( z(Ar)R
M(Ar) inv ρgas)-Lipschitz if ρgas is bounded away from 0. In the second and third

case, bj[(y, t, x)] = ρ[x]ε[y], which is nonnegative, increasing, and inverse Lipschitz, if ρ
is bounded away from 0, and ε is nonnegative, increasing, and inverse Lipschitz.

—

Theorem 3.7.50 combines Lems 3.7.45 and 3.7.48 to establish discrete L∞-L1 a priori
estimates for each solution to the finite volume discretization F according to Def. 3.7.42,
provided that F is bounded from above and the functions bj¹υ×{t}×{x} are nonnegative,
increasing, and inverse Lipschitz.

Theorem 3.7.50. Let
(
U (ν)

)
ν∈{0,...,n} = (u

(ν)
(k,C))(ν,(k,C))∈{0,...,n}×IΠ,D ∈

(
υIΠ,D

){0,...,n}

be a solution to F according to Def. 3.7.42. The initial distribution and the values on
Dirichlet boundaries can be estimated without further hypotheses:

N
(0)
b,¬Dir

[
U (0)

] ≤Bb,0[C] · λd[p], (3.7.132a)

NDir ≤BDir[C]
∑

j∈J : 0∈Jj

λd[pj], (3.7.132b)
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where BDir[C] is defined in (3.7.27), and

Bb,0[C] := max
{|bj

[(
u

(0)
j [x], t, x

)]| : j ∈ J, (t, x) ∈ τ × pj

}
. (3.7.133)

Suppose the additional hypotheses (i) and (ii) hold:

(i) F is bounded from above.

(ii) There is Linv,b[C] ∈ R+ such that for each j ∈ J and each (t, x) ∈ τ × pj, the
function bj¹υ×{t}×{x} is nonnegative, increasing, and inverse Linv,b-Lipschitz.

Then

Nb,¬Dir ≤N
(0)
b,¬Dir

[
U (0)

]
+ Bs[(C, Π,V)] · (tf − t0)

≤Bb,0[C] · λd[p] + Bs[(C, Π,V)] · (tf − t0), (3.7.134a)

N¬Dir ≤
(
|mυ|+ Bb,0[C]

Linv,b[C]

)
· λd[p] +

Bs[(C, Π,V)] · (tf − t0)

Linv,b[C]
, (3.7.134b)

Nall ≤
(
|mυ|+ BDir[C] +

Bb,0[C]

Linv,b[C]

)
· λd[p] +

Bs[(C, Π,V)] · (tf − t0)

Linv,b[C]
, (3.7.134c)

where the number Bs[(C, Π, V)] is defined in (3.7.125).

It is underscored that the estimates (3.7.132) and (3.7.134) hold idependently of the
discretizations (tν)ν∈{0,...,n} and Π, except in the case of the existence of Dirichlet bound-
aries, where there is a dependence on Π via the numbers dDir[Π] and lDir[Π] that occur
in the definition of Bs[(C, Π,V)] in (3.7.125) (s. Rems 3.7.7 and 3.7.46).

Proof. In each of the estimates (3.7.132) and (3.7.134), it is taken into account that

(ω
(j)
k )j∈J : k∈I(j) is a partition of ωk, k ∈ IΠ, and that Π is a partition of p.

(3.7.132a) follows from (3.7.126) using Def. 3.7.42(i) and (3.7.133).

(3.7.132b) follows from (3.7.128a) and (3.7.129a), using Def. 3.7.42(ii) and (3.7.27).

To verify (3.7.134a), using that the functions bj, j ∈ J , are nonnegative, one can
compute for each ν ∈ {1, . . . , n}:

N
(ν)
b,¬Dir

[
U (ν)¹IΠ,D,¬Dir

]−N
(ν−1)
b,¬Dir

[
U (ν−1)¹IΠ,D,¬Dir

]

(3.7.126),(3.7.9),(3.7.10)
=

∑

(k,C)∈IΠ,D,¬Dir

(tν − tν−1) · h(ν)
(k,C),(a)

[(
U (ν−1)¹IΠ,D,¬Dir

, U (ν)¹IΠ,D,¬Dir

)]

(3.7.8), Def. 3.7.42(iii)
= (tν − tν−1) · s(ν)

[(
U (ν−1)¹IΠ,D,¬Dir

, U (ν)¹IΠ,D,¬Dir

)]
Lem. 3.7.45≤ (tν − tν−1) ·Bs[(C, Π,V)]. (3.7.135)
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Then (3.7.134a) follows by summing (3.7.135) for ν ∈ {1, . . . , n}, and then using
(3.7.132a) in the result.

(3.7.134b) is implied by (3.7.134a) and (3.7.130b).

Combining (3.7.132b) and (3.7.134b) yields (3.7.134c), according to the definition of
Nall in (3.7.128c) and (3.7.129c). ¥

3.8 Existence and Uniqueness of a Discrete Solution

The goal of Sec. 3.8 is to prove the existence and uniqueness of a discrete solution in
Th. 3.8.35. More precisely, it is shown in Th. 3.8.35 that for sufficiently large M ∈
]mυ,∞[, and provided that the time discretization is sufficiently fine, there is a unique

family (u
(ν)
(k,C))(ν,(k,C))∈{0,...,n}×IΠ,D ∈ (

[mυ,M ]IΠ,D
){0,...,n}

satisfying (i), (ii), and (iii) of
Def. 3.7.42.

The proof is based on a fixed point argument, using the Banach Fixed Point Th. 3.8.1.
Starting from the initial distribution u(0), the u(ν), ν > 0, are constructed inductively,
assuming u(ν−1) to be given. In each time step, each operator h

(ν)
(k,C), (k, C) ∈ IΠ,D,¬Dir,

acting on u(ν) is decomposed into a function h
(ν)
(k,C), merely depending on the scalar u

(ν)
(k,C),

and a function g
(ν)
(k,C), which can depend on the entire vector u(ν) (cf. (3.8.51a)). The

main auxiliary result is Th. 3.8.4, where it is shown that, if the h
(ν)
(k,C) grow sufficiently

fast in relation to the growth of the g
(ν)
(k,C), then h(ν)[u] = 0 has a unique solution in

a sufficiently large hypercube [m,M ]IΠ,D,¬Dir . The proof of Th. 3.8.35 shows that by

choosing the time steps sufficiently fine, one can force the h
(ν)
(k,C) to grow sufficiently

fast.

As the Banach Fixed Point Theorem does not apply directly to the situation of Th.
3.8.4, it is adapted in the following Sec. 3.8.1 (s. Lems 3.8.2 and 3.8.3).

As the operators h
(ν)
(k,C) involve a considerable number of terms (s. (3.7.122)), their de-

composition into h
(ν)
(k,C) and g

(ν)
(k,C) as mentioned above, is somewhat tedious. It is carried

out term by term in Secs 3.8.3 – 3.8.8. For each term, the part of the decomposition
that is to become a summand of h

(ν)
(k,C) carries a superscript ↑ and is occasionally referred

to as an ↑-operator. Correspondingly, the future summands of g
(ν)
(k,C) carry a superscript

↓ and are sometimes called ↓-operators. Each decomposition is succeeded by a lemma
that establishes the properties needed to provide the hypotheses of Lem. 3.8.5 for its
application in the proof of Th. 3.8.35.
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3.8.1 Existence of Unique Fixed Points

In the current section as well as in the following sections, a number of elementary facts
on Lipschitz functions, inverse Lipschitz functions, and contracting functions are used.
These facts are provided in App. C.7.2, C.7.3, and C.7.4, respectively.

Banach Fixed Point Theorem 3.8.1. Suppose C is a closed nonempty subset of
a complete metric space, and f : C −→ C is a contraction. Then there is a unique
xfix ∈ C such that f [xfix] = xfix, i.e. f has a unique fixed point in C.

Proof. See for example [Zei86, p. 17]. ¥

The following Lem. 3.8.2 shows that a map f that is sufficiently contracting on a ball,
maps the ball into itself, and thus has a unique fixed point if the metric is complete.
Here sufficiently contracting means c-contracting, such that c multiplied by the ball’s
radius is less than the distance of f [x0] from the ball’s complement, x0 denoting the
center of the ball (cf. Fig. 3.26).

d(f [x0], X \Br[x0])

Br[x0]

f [x0]

rx0

X \Br[x0]
f

Figure 3.26: Illustration of Lem. 3.8.2: If f is
d
(

f [x0],X\Br[x0]
)

r
-contracting, then it maps

Br[x0] into itself.

Lemma 3.8.2. Let (X, d) be a metric space, x0 ∈ X, r ∈ R+, and f : Br[x0] −→ X.
Suppose f is c-contracting for some c ∈ [0, 1[, satisfying

c ≤ d
(
f [x0], X \Br[x0]

)

r
. (3.8.1)
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(a) It holds that f
[
Br[x0]

]
⊆ Br[x0].

(b) If (Br[x0], d) is a complete metric space, than f has a unique fixed point.

Proof. (a): For each x ∈ Br[x0], one calculates

d
[
(f [x], f [x0])

] ≤ c · d[
(x, x0)

] ≤ c · r ≤ d
(
f [x0], X \Br[x0]

)
,

i.e. f [x] ∈ Br[x0], establishing the case.

(b) is an immediate consequence of (a) and the Banach Fixed Point Th. 3.8.1. ¥

The ensuing Lem. 3.8.3 specializes Lem. 3.8.2 to the case X = ([m,∞[)I endowed with
the max-norm, where I is a finite index set, x0 = (m, . . . , m) (cf. Fig. 3.27). In the
application in Th. 3.8.35, one has I = IΠ,D,¬Dir.

υ = [m,∞[

m = (m,m) (M,m)

υ2 \BM−m[m]

f = (f1, f2)

f [m] = (f1[m], f2[m])

d
(
f [m], υ2 \BM−m[m]

)
(m,M)

Figure 3.27: Illustration of Lem. 3.8.3: f maps [m,M ]2 into itself if f is sufficiently
contracting, satisfying (3.8.2b).

Lemma 3.8.3. Given a finite, nonempty index set I and m ∈ R, let υ := [m,∞[. Let
M ∈]m,∞[, and consider maps fk : [m,M ]I −→ υ, k ∈ I, where [m, M ]I is endowed
with the max-norm. Let m := (m, . . . , m). Suppose

∧

k∈I

fk[m] ≤ M, (3.8.2a)
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and that there are numbers ck ∈ [0, 1[, k ∈ I, such that

cmax := max
{
ck : k ∈ I

} ≤ M −max
{
fk[m] : k ∈ I

}

M −m
. (3.8.2b)

If each fk is ck-contracting, k ∈ I, then the map f : [m,M ]I −→ υI , f [x] :=
(
fk[x]

)
k∈I

,

maps [m,M ]I into itself and has a unique fixed point.

Proof. By Rem. C.7.14, f is cmax-contracting with respect to the max-norm ‖ ‖max on
RI . Moreover, [m,M ]I = BM−m[m] and

cmax(M −m) ≤ M −max
{
fk[m] : k ∈ I

}

= inf
{
‖f [m]− y‖max : y ∈ υI \BM−m[m]

}
.

(3.8.3)

Thus f maps [m,M ]I into itself and has a unique fixed point according to Lem. 3.8.2. ¥

3.8.2 A Root Problem

Theorem 3.8.4. Given a finite, nonempty index set I and m ∈ R, let υ := [m,∞[.
Consider an operator

H : υI −→ RI , H[u] =
(Hk[u]

)
k∈I

. (3.8.4)

Assume there are continuous functions hk ∈ C(υ,R), gk ∈ C(υI ,R), k ∈ I, nonneg-
ative real numbers Lg, Linv,h, and a real number M ∈]m,∞[, such that the following
conditions (i) – (vii) are satisfied. Let m := (m, . . . , m).

(i)
∧
k∈I

Hk[u] = hk[uk]− gk[u].

(ii) Each hk is increasing, k ∈ I.

(iii)
∧
k∈I

∧
u∈υI

hk[m] ≤ gk[u].

(iv) Lg < Linv,h.

(v)
∧
k∈I

gk[m] < hk

[
M − (M −m) Lg

Linv,h

]
.

(vi) Each gk is Lg-Lipschitz with respect to the max-norm on [m,M ]I , k ∈ I.
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(vii) For each k ∈ I, there is λk ∈ R such that

∧

k∈I




λk ≥ M − (M −m)
Lg

Linv,h

,

hk¹[m,λk] ∈ InLipLinv,h

(
[m,λk],R

)
,

hk[λk] ≥ max
(
gk

(
[m,M ]I

) )




. (3.8.5)

Then H has a unique root in [m,M ]I , i.e. there is a unique u0 ∈ [m,M ]I such that
H[u0] = (0, . . . , 0).

Proof. Before starting the main part of the proof, it is remarked that the right-hand
side of (v) is always defined, since by (iv),

M > M − (M −m)
Lg

Linv,h

> M −M + m = m. (3.8.6)

To prove the theorem, define

f : [m,M ]I −→
∏

k∈I

[m,λk],
∧

k∈I

fk := h−1
k ◦ gk. (3.8.7)

It is noted that the h−1
k exist on

[
hk[m], hk[λk]

]
by Rem. C.7.12(b),(c). Moreover,

h−1
k can be composed with gk, since (iii) and (vii) imply that gk maps [m,M ]I into[
hk[m], hk[λk]

]
.

As (3.8.7) means gk = hk ◦ fk, Lem. C.7.15 shows that each fk is Lg

Linv,h
-contracting,

k ∈ I.

Moreover, it follows from (v) that

max
{
fk[m] : k ∈ I

}
< M − (M −m)

Lg

Linv,h

, (3.8.8)

implying
Lg

Linv,h

<
M −max

{
fk[m] : k ∈ I

}

M −m
. (3.8.9)

Now Lem. 3.8.3 yields that f maps [m,M ]I into itself and has a unique fixed point
u0 = (u0,k)k∈I ∈ [m,M ]I . That u0 is a fixed point of f means

∧

k∈I

hk[u0,k] = gk[u0]. (3.8.10)

According to (i), u0 is a root of H if and only if (3.8.10) holds, i.e. the proof is complete.
¥
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The following Lem. 3.8.5 gives a criterion for function families (hk) and (gk) to satisfy
the hypotheses (ii) – (vii) of Th. 3.8.4. It is designed to be directly applicable to the
situation arising in the proof of Th. 3.8.35 below.

Lemma 3.8.5. Given a finite, nonempty index set I and m ∈ R, let υ := [m,∞[.
Consider continuous functions hk ∈ C(υ,R), gk ∈ C(υI ,R), k ∈ I.

Assume there are numbers {δ, Linv} ⊆ R+, Pk ∈ R+
0 , and continuous functions g̃k ∈

C(υI ,R), bk ∈ C(υ,R+
0 ), h̃k ∈ C(υ,R), satisfying the following conditions (i) – (vii).

Let m := (m, . . . , m).

(i)
∧
k∈I

hk = bk

δ
+ h̃k.

(ii)
∧
k∈I

gk = Pk

δ
+ g̃k.

(iii) Each bk and each h̃k is increasing, k ∈ I.

(iv) Each g̃k is minimal at m, k ∈ I.

(v)
∧
k∈I

bk[m]
δ

+ h̃k[m] ≤ Pk

δ
+ g̃k[m].

(vi)
∧
y∈υ

∨
Lg,y∈R+

0

∧
k∈I

g̃k is Lg,y-Lipschitz on By[m] (i.e. g̃k is locally Lipschitz).

(vii) Each bk is inverse Linv-Lipschitz, k ∈ I.

Set

Sk :=
Pk + max

{
0, g̃k[m]

}−min
{
0, h̃k[m]

}

Linv

+ m, (3.8.11a)

S := max
{
Sk : k ∈ I

}
. (3.8.11b)

If

M > S, (3.8.12a)

δ · Lg,M−m < Linv · M − S

M −m
, (3.8.12b)

δ ≤ 1, (3.8.12c)

then gk, hk, k ∈ I, and M satisfy conditions (ii) – (vii) of Th. 3.8.4 with Lg := Lg,M−m

and Linv,h := Linv

δ
.
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Proof. Th. 3.8.4(ii): It follows from (i) and (iii) that hk is increasing for each k ∈ I.

Th. 3.8.4(iii): It follows from (i), (ii), (iv), and (v) that hk[m] ≤ gk[u] for each k ∈ I
and each u ∈ υI .

Th. 3.8.4(iv): If Lg = 0, then Lg < Linv,h holds. Assume Lg > 0. Using (3.8.12b), one
gets Linv,h = Linv

δ
> Lg,M−m · M−m

M−S
≥ Lg (it is S ≥ m by (3.8.11)).

Th. 3.8.4(v): Using (3.8.12b) and Linv,h = Linv

δ
, one finds

Lg

Linv,h

(M −m) < M − S, (3.8.13)

which implies

S < M − (M −m)
Lg

Linv,h

. (3.8.14)

Due to (iii), (vii), and (3.8.14), one can apply Rem. C.7.12(a),(b) to conclude

∧

k∈I




Pk + max
{
0, g̃k[m]

}−min
{
0, h̃k[m]

}

≤ Pk + max
{
0, g̃k[m]

}−min
{
0, h̃k[m]

}
+ bk[m]

= Linv · (Sk −m) + bk[m] ≤ bk[S] < bk

[
M − (M −m)

Lg

Linv,h

]


 . (3.8.15)

Together with (3.8.12c) and (iii), (3.8.15) implies

∧

k∈I




Pk + δ · g̃k[m] < bk

[
M − (M −m)

Lg

Linv,h

]
+ δ · h̃k[m]

≤ bk

[
M − (M −m)

Lg

Linv,h

]
+ δ · h̃k

[
M − (M −m)

Lg

Linv,h

]


 . (3.8.16)

Dividing (3.8.16) by δ and using (i) and (ii) establishes the case.

Th. 3.8.4(vi): This follows from the definition of Lg and (vi) by observing [m, M ]I =

BM−m[m].

Th. 3.8.4(vii): It follows from (i), (iii), (vii), Rem. C.7.12(d),(e), and the definition of
Linv,h, that hk is inverse Linv,h-Lipschitz on its whole domain υ for each k ∈ I. Since the
hk are unbounded from above according to Rem. C.7.12(a), there exist λk ∈ R, k ∈ I,
such that (3.8.5) holds. ¥

3.8.3 Decomposition of Terms Involving Interior Diffusion Flux

Following the strategy outlined at the beginning of Sec. 3.8, Secs 3.8.3 – 3.8.8 provide
the decompositions of the summands making up h

(ν)
(k,C) according to (3.7.122). The

summands are decomposed in the same order as they were defined in Secs 3.7.3 –
3.7.11.
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The decompositions make use of the concept of the variation of a function described in
App. C.6.3. It is pointed out that in this work, variation is only used as a technical tool
to decompose locally Lipschitz continuous functions into increasing locally Lipschitz
continuous functions (cf. Rem. C.6.8(h)).

In the present Sec. 3.8.3, the operators k
(ν)
¬Dir,(k,C) and k

(ν)
Dir,(k,C) defined in (3.7.16) and

(3.7.17) are decomposed. In preparation, the following Def. 3.8.6 defines the initial
supremum of a function, and a result concerning its Lipschitz continuity is proved in
Lem. 3.8.8. Lemma 3.8.8 is used in the succeeding Lem. 3.8.10. The initial supremum
is introduced to be able to establish (3.8.26) in the proof of Lem. 3.8.10.

Definition 3.8.6. Given m ∈ R, a set A, and a map k : [m,∞[×A −→ R, define the
initial supremum of k:

insup[k] : [m,∞[−→ R ∪ {∞}, y 7→ sup
{
k[(λ, x)] : (λ, x) ∈ [m, y]× A

}
. (3.8.17)

Remark 3.8.7. The initial supremum is always increasing.

Lemma 3.8.8. Let X be a compact metric space. Consider a continuous map k :
[m, M ]×X −→ R. Suppose k¹[m,M ]×{x} is Lipschitz for each x ∈ X. If

L := sup
{‖k¹[m,M ]×{x} ‖Lip : x ∈ X

}
< ∞ (3.8.18)

(cf. Def. C.7.8 of ‖ ‖Lip), then insup[k] is L-Lipschitz.

Proof. First, the special case is considered, where k is independent of x ∈ X:

Claim 1. If k : [m, M ] −→ R is L-Lipschitz, then insup[k] is L-Lipschitz.

Proof. Let {y1, y2} ⊆ [m,M ], where y1 < y2. If insup[k][y1] = insup[k][y2], then there
is nothing to show. If insup[k][y1] < insup[k][y2], then there is ỹ2 ∈]y1, y2] such that
insup[k][y2] = k[ỹ2]. By the intermediate value theorem, there is ỹ1 ∈ [y1, ỹ2[ such that
insup[k][y1] = k[ỹ1]. Hence, |ỹ2 − ỹ1| ≤ |y2 − y1|, and one calculates

∣∣ insup[k][y2]− insup[k][y1]
∣∣ =

∣∣k[ỹ2]− k[ỹ1]
∣∣ ≤ L · |ỹ2 − ỹ1| ≤ L · |y2 − y1|,

showing that insup[k] is L-Lipschitz. N

Now the general case of Lem. 3.8.8 is treated.

Using Cl. 1, it remains to show that the map maxX [k] : [m,M ] −→ R, maxX [k][y] :=
‖k ¹{y}×X ‖max is L-Lipschitz. Let (y1, y2) ∈ [m, M ]2. By a possible interchange of y1

and y2, one can assume maxX [k][y1] ≤ maxX [k][y2]. There are (x1, x2) ∈ X2 such that
maxX [k][y1] = k[(y1, x1)], maxX [k][y2] = k[(y2, x2)]. One calculates

∣∣maxX [k][y1]−maxX [k][y2]
∣∣ = k[(y2, x2)]− k[(y1, x1)]

≤ k[(y2, x2)]− k[(y1, x2)] ≤ L · |y2 − y1|,
showing that maxX [k] is L-Lipschitz. ¥
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However, the following Ex. 3.8.9 shows that, in general, the condition (3.8.18) in Lem.
3.8.8 can not be omitted:

Example 3.8.9. Consider k : [0, 1]× [0, 1] −→ R defined by

k[(y, x)] :=

{
y√
x

for 0 ≤ y ≤ x ≤ 1,√
x for 0 ≤ x ≤ y ≤ 1.

(3.8.19)

Then k is continuous, k ¹[0,1]×{0} is 0-Lipschitz, and for each x ∈]0, 1], the function
k¹[0,1]×{x} is 1√

x
-Lipschitz. However, one has insup[k][y] =

√
y for each y ∈ [0, 1], that

means insup[k] is not a Lipschitz function.

—

Now, to decompose k
(ν)
¬Dir,(k,C) and k

(ν)
Dir,(k,C), assume υ = [mυ,∞[ and that for each j ∈ J ,

kj is real-valued and locally Lipschitz in the sense of condition (locLip) of the following
Lem. 3.8.10. Let

∧

(j,ν,x)∈J×{0,...,n}×pj

k̃
(ν)
j,x : υ −→ R, k̃

(ν)
j,x [y] := k

(ν)
j [(y, x)](y −mυ), (3.8.20)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




kν,↑
¬Dir,(k,C) : υ −→ R,

kν,↑
¬Dir,(k,C)[y] :=

∑

j∈V [C],
l∈nbj,¬Dir[k]

(
insup

[
k

(ν)
j

]
[y] · (y −mυ)

+ var+
[
k̃

(ν)
j,xk

]
[y]

)
· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]

2 · ‖xk − xl‖2




,

(3.8.21a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




kν,↓
¬Dir,(k,C) : υIΠ,D,¬Dir −→ R,

kν,↓
¬Dir,(k,C)[U ] :=

∑

j∈V [C],
l∈nbj,¬Dir[k]

(
var−

[
k̃

(ν)
j,xk

]
[U(k,C)]

+

(
insup

[
k

(ν)
j

]
[U(k,C)]− k

(ν)
j

[(
U(l,C[(l,j)]), xl

)] )

· (U(k,C) −mυ

)

+

(
k

(ν)
j [(U(k,C), xk)] + k

(ν)
j

[(
U(l,C[(l,j)]), xl

)] )

·
(
U(l,C[(l,j)]) −mυ

) )

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]

2 · ‖xk − xl‖2




,

(3.8.21b)
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∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




kν,↑
Dir,(k,C) : υ −→ R,

kν,↑
Dir,(k,C)[y] :=

∑

j∈V [C],
l∈nbj,Dir[k]

(
var+

[
k̃

(ν)
j,xk

]
[y]

+ var−
[
k

(ν)
j ¹υ×{xk}

]
[y] · (ujDir[(l,j)],Dir[(tν , xl)]−mυ

)

+ k
(ν)
j

[(
ujDir[(l,j)],Dir[(tν , xl)], xl

)] · (y − ujDir[(l,j)],Dir[(tν , xl)]
))

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]

2 · ‖xk − xl‖2




,

(3.8.22a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




kν,↓
Dir,(k,C) : υ −→ R,

kν,↓
Dir,(k,C)[y] :=

∑

j∈V [C],
l∈nbj,Dir[k]

(
var−

[
k̃

(ν)
j,xk

]
[y]

+
(
k

(ν)
j [(mυ, xk)] + var+

[
k

(ν)
j ¹υ×{xk}

]
[y]

)

· (ujDir[(l,j)],Dir[(tν , xl)]−mυ

))

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]

2 · ‖xk − xl‖2




.

(3.8.22b)

Lemma 3.8.10. Suppose υ = [mυ,∞[, the kj are real-valued, and the conditions (nn)
and (locLip) below both hold:

(nn) kj is nonnegative for each j ∈ J .

(locLip)
∧

r∈R+
0

∨
Lk,r[C]∈R+

0

∧
(j,t,x)∈J×τ×pj

kj ¹υ×{t}×{x}∈ LipLk,r[C]

(
[mυ,mυ + r],R

)
, i.e. each

kj is locally Lipschitz with respect to its dependence on y ∈ υ.

Let m := (mυ, . . . , mυ). Then the following holds for each ν ∈ {0, . . . , n} and for each
(k, C) ∈ IΠ,D,¬Dir:

(a) −k
(ν)
¬Dir,(k,C)[U ] = kν,↑

¬Dir,(k,C)[U(k,C)]− kν,↓
¬Dir,(k,C)[U ] for each U ∈ υIΠ,D,¬Dir.

(b) kν,↑
¬Dir,(k,C) is increasing.

(c) kν,↓
¬Dir,(k,C) is minimal at m.

(d) kν,↑
¬Dir,(k,C)[mυ] ≤ kν,↓

¬Dir,(k,C)[m].
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(e) max
{
0, kν,↓

¬Dir,(k,C)[m]
}

= min
{
0, kν,↑

¬Dir,(k,C)[mυ]
}

= 0.

(f) kν,↓
¬Dir,(k,C) is L↓k,r[C] · dmax[Π]-Lipschitz on [mυ,mυ + r]IΠ,D,¬Dir with respect to the

max-norm for each r ∈ R+, where

L↓k,r[C] :=
5

2
· (2Lk,r[C] · r + Bk,mυ [C]

)
, (3.8.23)

Bk,mυ [C] := max
{∣∣kj[(mυ, t, x)]

∣∣ : (t, x) ∈ τ × pj, j ∈ J
}
, (3.8.24)

dmax[Π] := max





∑
j∈J

∑

l∈nbj [k]

λd−1

[
ω

(j)
k ∩ ω

(j)
l

]

‖xk − xl‖2

: k ∈ IΠ



 . (3.8.25)

The number dmax[Π] measures how large the size of interfaces between a control
volume and neighboring control volumes can get in relation to the distance between
the corresponding discretization points.

Proof. (a) follows from hypothesis (locLip) and Rem. C.6.8(h).

(b): Each kν,↑
¬Dir,(k,C) is increasing according to Rems 3.8.7 and C.6.8(c).

(c): It is immediate from (3.8.21b) and Rem. C.6.8(a) that kν,↓
¬Dir,(k,C)[m] = 0, it suffices to

show that kν,↓
¬Dir,(k,C) is nonnegative. Indeed, each summand in (3.8.21b) is nonnegative:

Remark C.6.8(b) yields var−
[
k̃

(ν)
j,x

] ≥ 0. Moreover, k
(ν)
j ≥ 0 and insup

[
k

(ν)
j

] ≥ 0 by
hypothesis (nn). It remains to show that

∧
(

ν,j,(x,z),(λ,µ)
)

∈{0,...,n}×J×p2
j×υ2




kν,x,z
j,λ,µ :=

(
insup

[
k

(ν)
j

]
[λ]− k

(ν)
j [(µ, z)]

)
· (λ−mυ)

+

(
k

(ν)
j [(λ, x)] + k

(ν)
j [(µ, z)]

)
· (µ−mυ) ≥ 0


 . (3.8.26)

If λ ≤ µ, then k
(ν)
j [(µ, z)](µ −mυ) − k

(ν)
j [(µ, z)](λ −mυ) ≥ 0, since k

(ν)
j ≥ 0, proving

kν,x,z
j,λ,µ ≥ 0.

If λ > µ, then insup
[
k

(ν)
j

]
[λ] − k

(ν)
j [(µ, z)] ≥ 0 according to Rem. 3.8.7, again proving

kν,x,z
j,λ,µ ≥ 0. Thereby (3.8.26) is established and thus (c).

For (d) and (e), it is remarked that kν,↑
¬Dir,(k,C)[mυ] = kν,↓

¬Dir,(k,C)[m] = 0, which is a direct

consequence of (3.8.21a), (3.8.21b), and Rem. C.6.8(a).

(f): First, the Lipschitz constant of k̃
(ν)
j,x is determined:

Claim 1. For each r ∈ R+
0 and for each (j, ν, x) ∈ J × {0, . . . , n} × pj, the map k̃

(ν)
j,x

defined in (3.8.20) is L-Lipschitz on [mυ,mυ + r], where L := 2 · Lk,r[C] · r + Bk,mυ [C].

Proof. Hypothesis (locLip) and Rem. C.7.7(a),(e) yield the claim. N
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Thus, by Rem. C.6.8(h), var−
[
k̃

(ν)
j,xk

]
contributes the Lipschitz constant 2Lk,r[C] · r +

Bk,mυ [C]. Since τ ×pj is compact, and since ‖kj¹[mυ,mυ+r]×{t}×{x} ‖Lip ≤ Lk,r[C] for each

(r, j, t, x) ∈ R+
0 × J × τ × pj by hypothesis (locLip), Lem. 3.8.8 shows that insup

[
k

(ν)
j

]

is Lk,r[C]-Lipschitz, and by the same argument as in Cl. 1, insup
[
k

(ν)
j

]
(U(k,C)−mυ) also

contributes the Lipschitz constant 2Lk,r[C] · r + Bk,mυ [C]. Remark C.7.7(h) shows that

each of the remaining three summands in front of
λd−1

[
ω

(j)
k ∩ω

(j)
l

]
2·‖xk−xl‖2 in (3.8.21b) contribute

the Lipschitz constant 2Lk,r[C] · r + Bk,mυ [C]. Then, Rem. C.7.7(c),(d) finish the proof
of (f). ¥

Lemma 3.8.11. Suppose υ = [mυ,∞[, the kj are real-valued, and the conditions (nn)
and (locLip) of Lem. 3.8.10 hold. Then the following holds for each ν ∈ {0, . . . , n} and
for each (k, C) ∈ IΠ,D,¬Dir:

(a) −k
(ν)
Dir,(k,C) = kν,↑

Dir,(k,C) − kν,↓
Dir,(k,C).

(b) kν,↑
Dir,(k,C) is increasing.

(c) kν,↓
Dir,(k,C) is minimal at mυ.

(d) kν,↑
Dir,(k,C)[mυ] ≤ kν,↓

Dir,(k,C)[mυ].

(e) max
{
0, kν,↓

Dir,(k,C)[mυ]
} − min

{
0, kν,↑

Dir,(k,C)[mυ]
} ≤ 1

2

(
B↓

k,Dir[C] + B↑
k,Dir[C]

) · dmax[Π],
where

B↓
k,Dir[C] := Bk,mυ [C] · (BDir[C]−mυ), (3.8.27a)

B↑
k,Dir[C] := Bk,Dir[C] · (BDir[C]−mυ). (3.8.27b)

The numbers BDir[C], Bk,Dir[C], Bk,mυ [C], and dmax[Π] were previously defined in
(3.7.27), (3.7.28), (3.8.24), and (3.8.25), respectively.

(f) kν,↓
Dir,(k,C) is LDir,k,r[C] · dmax[Π]-Lipschitz on [mυ,mυ + r] for each r ∈ R+, where

LDir,k,r[C] :=
1

2
Lk,r[C] · (2r + BDir[C]−mυ

)
+ Bk,mυ [C]. (3.8.28)

Proof. It is noted that the contributions of the Dirichlet terms are constant in kν,↑
Dir,(k,C)

and kν,↓
Dir,(k,C).

(a) follows from hypothesis (locLip) and Rem. C.6.8(h).

Both kν,↑
Dir,(k,C) and kν,↓

Dir,(k,C) are increasing due to hypothesis (nn) and Rem. C.6.8(c),

proving (b) and (c).
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(d) follows from (a), since k
(ν)
Dir,(k,C)[mυ] ≥ 0 is immediate from (3.7.17), hypothesis (nn)

and ujDir[(l,j)],Dir[(tν , xl)] ≥ mυ.

(e): Since the variation terms in (3.8.22a) and (3.8.22b) vanish at mυ (s. Rem. C.6.8(a)),
the estimate is immediate from the definitions of BDir[C], Bk,Dir[C], Bk,mυ [C], and
dmax[Π].

(f): Since var−
[
k̃

(ν)
j,xk

]
is (2Lk,r[C] · r + Bk,mυ [C])-Lipschitz by Cl. 1 of Lem. 3.8.10

and Rem. C.6.8(h), and var+
[
k

(ν)
j ¹υ×{xk}

]
is Lk,r[C]-Lipschitz by hypothesis (lo-

cLip) and Rem. C.6.8(h), (f) follows the definition of BDir[C] in (3.7.27) and Rem.
C.7.7(3.8.28),(d). ¥

3.8.4 Decomposition of Interior Convection Flux Terms

In this section, the operators v
(ν)
int,¬Dir,(k,C) defined in (3.7.40) are decomposed. The

operators v
(ν)
int,Dir,(k,C) defined in (3.7.41) are not decomposed, as they themselves have

all the properties of an ↑-operator (cf. Lem. 3.8.12,(b),(d),(e) below). Let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




vν,↑
int,¬Dir,(k,C) : υ −→ R,

vν,↑
int,¬Dir,(k,C)[y] :=

∑

j∈V [C],
l∈nbj,Dir[k]

(
1− w

(ν)
j [(k, l)]

)
· v(ν)

j,sca[(y, xk)]

·

(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

)
• (xl − xk)

2‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]




,

(3.8.29a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




vν,↓
int,¬Dir,(k,C) : υIΠ,D,¬Dir −→ R,

vν,↓
int,¬Dir,(k,C)[U ] := −

∑

j∈V [C],
l∈nbj,Dir[k]

w
(ν)
j [(k, l)] · v(ν)

j,sca

[(
U(l,C[(l,j)]), xl

)]

·

(
v

(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

)
• (xl − xk)

2‖xk − xl‖2

· λd−1

[
ω

(j)
k ∩ ω

(j)
l

]




.

(3.8.29b)

Lemma 3.8.12. Suppose υ = [mυ,∞[ and that the conditions (inc), (np), and (locLip)
below all hold:

(inc) The family of scalar-vector-splittings V =
(
(vj,sca, vj,vec)

)
j∈J

is such that the func-

tion vj,sca¹υ×{t}×{x} is increasing for each (t, x) ∈ τ × pj, j ∈ J .
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(np) The family of scalar-vector-splittings V is such that vj,sca[(mυ, t, x)] = 0 for each
(t, x) ∈ τ × pj, j ∈ J .

(locLip) The family of scalar-vector-splittings V is such that

∧

r∈R+
0

∨

Lv,sca,r[(C,V)]∈R+
0

∧

(j,t,x)∈J×τ×pj

vj,sca¹υ×{t}×{x}∈ LipLv,sca,r[(C,V)]

(
[mυ,mυ+r],R

)
,

i.e. each vj,sca is locally Lipschitz with respect to its dependence on y ∈ υ.

Let m := (mυ, . . . , mυ). Then the following holds for each ν ∈ {0, . . . , n} and for each
(k, C) ∈ IΠ,D,¬Dir:

(a) v
(ν)
int,¬Dir,(k,C)[U ] = vν,↑

int,¬Dir,(k,C)[U(k,C)]− vν,↓
int,¬Dir,(k,C)[U ] for each U ∈ υIΠ,D,¬Dir.

(b) vν,↑
int,¬Dir,(k,C) and v

(ν)
int,Dir,(k,C) are increasing.

(c) vν,↓
int,¬Dir,(k,C) is minimal at m.

(d) vν,↑
int,¬Dir,(k,C)[mυ] = vν,↓

int,¬Dir,(k,C)[m] = v
(ν)
int,Dir,(k,C)[mυ] = 0.

(e) max
{
0, vν,↓

int,¬Dir,(k,C)[m]
}

= min
{
0, vν,↑

int,¬Dir,(k,C)[mυ]
}

= max
{
0, v

(ν)
int,Dir,(k,C)[mυ]

}
=

0.

(f) vν,↓
int,¬Dir,(k,C) is

(
Lv,r[(C, V)] · λd−1,max[Π]

)
-Lipschitz on [mυ,mυ + r]IΠ,D,¬Dir with re-

spect to the max-norm for each r ∈ R+, where

Lv,r[(C,V)] := Lv,sca,r[(C,V)] ·max
{∥∥‖vj,vec‖2

∥∥
max

: j ∈ J
}

, (3.8.30)

λd−1,max[Π] := max





∑

j∈J : k∈I(j)

λd−1[∂ω
(j)
k ] : k ∈ IΠ



 . (3.8.31)

The number λd−1,max[Π] measures the maximal size of the combined surfaces of

partial control volumes ω
(j)
k making up a control volume ωk.

Proof. It is noted that in v
(ν)
int,Dir,(k,C), the summands involving the Dirichlet contributions

are constant.

(a) is clear, since (3.8.29a) and (3.8.29b) are merely an algebraic decomposition of
(3.7.40).

(b): It follows from (3.7.36) and (3.7.37) that

(
1− w

(ν)
j [(k, l)]

) · (v(ν)
j,vec[xl] + v

(ν)
j,vec[xk]

) • (xl − xk) ≥ 0
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in the definitions of vν,↑
int,¬Dir,(k,C) and v

(ν)
int,Dir,(k,C) in (3.8.29a) and (3.7.41), respectively.

This, together with v
(ν)
j,sca[(y, xk)] being increasing in y by hypothesis (inc) proves (b).

(c): It follows from (3.7.36) and (3.7.37) that

−w
(ν)
j [(k, l)] · (v(ν)

j,vec[xl] + v
(ν)
j,vec[xk]

) • (xl − xk) ≥ 0

in the definition of vν,↓
int,¬Dir,(k,C) in (3.8.29b). This, together with v

(ν)
j,sca ¹υ×{x} being

minimal at mυ for each x ∈ pj by hypothesis (inc), proves (c).

(d) and (e) are immediate from hypothesis (np).

(f): vν,↓
int,¬Dir,(k,C) is

(
Lv,r[(C,V)] · λd−1,max[Π]

)
-Lipschitz by hypothesis (locLip), the

Cauchy-Schwarz Inequality (Rem. C.2.2), and Rem. C.7.7(c),(g). ¥

Remark 3.8.13. If υ = [mυ,∞[, then a family
(
(vj,sca, vj,vec)

)
j∈J

of scalar-vector-

splittings that satisfies condition (inc) of Lem. 3.8.12, also satisfies Def. 3.7.43(iii),
since (inc) implies that vj,sca is bounded from below by min

{
vj,sca[(mυ, t, x)] : (t, x) ∈

τ × pj, j ∈ J
}
.

Example 3.8.14. It is verified for the cases considered in Ex. 3.7.11 that correspond
to Ex. 3.1.1(b) and to the first case of Ex. 3.1.1(a), that under natural hypotheses,
vsca := vj,sca is increasing in y ∈ υ and vanishes at y = mυ, as is required in conditions
(np) and (inc) of Lem. 3.8.12. Moreover, vsca is locally Lipschitz in the sense of condition
(locLip) of Lem. 3.8.12.

Since in Ex. 3.1.1(b), the unknown represents mass density, and in the first case of Ex.
3.1.1(a), the unknown represents absolute temperature, one has mυ = 0.

If vsca[(y, t, x)] = y or if vsca[(y, t, x)] =
(z(Ar)+1)R

M(Ar) ρgas[x]y, then vsca[(0, t, x)] = 0, and vsca

is an increasing linear function in y, as ρgas ≥ 0. In its y-dependence, vsca is 1-Lipschitz

in the first case and
((z(Ar)+1)R

M(Ar) · ‖ρgas‖max

)
-Lipschitz in the second case.

If vsca[(y, t, x)] = εgas[(y, x)] ρgas[x], then vsca vanishes at y = 0 and is increasing in y,
assuming εgas vanishes at y = 0 and is increasing in y, again using ρgas ≥ 0. Moreover,
if εgas is (locally) Lipschitz in its y-dependence, then so is vsca.

3.8.5 Decomposition of Terms on Outer Boundaries

In this section, the operators v
(ν)
out,(k,C) and a

(ν)
out,(k,C) defnined in (3.7.49) and (3.7.51),

respectively, are decomposed. The discretized nonlocal operators B
(ν)
(k,C) are not decom-

posed and are treated in Sec. 3.8.7 below.
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The decomposition of the v
(ν)
out,(k,C) is carried out first. Let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




vν,↑
out,(k,C) : υ −→ R,

vν,↑
out,(k,C)[y] :=

∑

j∈V [C]
v

(ν)
j,sca[(y, xk)] ·max

{
0,

∫

∂ω
(j)
k ∩∂p

v
(ν)
j,vec[xk] • n

ω
(j)
k

}

 ,

(3.8.32a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




vν,↓
out,(k,C) : υ −→ R,

vν,↓
out,(k,C)[y] := −

∑

j∈V [C]
v

(ν)
j,sca[(y, xk)] ·min

{
0,

∫

∂ω
(j)
k ∩∂p

v
(ν)
j,vec[xk] • n

ω
(j)
k

}

 .

(3.8.32b)

Lemma 3.8.15. Suppose υ = [mυ,∞[, and assume the conditions (inc), (np), and
(locLip) of Lem. 3.8.12. Then the following holds for each ν ∈ {0, . . . , n} and for each
(k, C) ∈ IΠ,D,¬Dir:

(a) v
(ν)
out,(k,C) = vν,↑

out,(k,C) − vν,↓
out,(k,C).

(b) vν,↑
out,(k,C) is increasing.

(c) vν,↓
out,(k,C) is minimal at mυ.

(d) vν,↑
out,(k,C)[mυ] = vν,↓

out,(k,C)[mυ] = 0.

(e) max
{
0, vν,↓

out,(k,C)[mυ]
}

= min
{
0, vν,↑

out,(k,C)[mυ]
}

= 0.

(f) vν,↓
out,(k,C) is

(
Lv,r[(C,V)] · λd−1,max[Π]

)
-Lipschitz on [mυ,mυ + r] for each r ∈ R+,

where the numbers Lv,r[(C,V)] and λd−1,max[Π] are defined in (3.8.30) and (3.8.31),
respectively.

Proof. (a) holds, as for each real number λ: λ = max{0, λ}+ min{0, λ}.
(b) and (c) follow, since vν,↑

out,(k,C) and vν,↓
out,(k,C) are increasing using hypothesis (inc)

together with max
{
0,

∫
∂ω

(j)
k ∩∂p

v
(ν)
j,vec[xk] • n

ω
(j)
k

} ≥ 0 and −min
{
0,

∫
∂ω

(j)
k ∩∂p

v
(ν)
j,vec[xk] •

n
ω

(j)
k

} ≥ 0.

Hypothesis (np) yields (d) and (e).

(f): vν,↓
out,(k,C) is

(
Lv,r[(C,V)] ·λd−1,max[Π]

)
-Lipschitz by hypothesis (locLip), the Cauchy-

Schwarz Inequality (Rem. C.2.2), and Rem. C.7.7(c). ¥
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Now the operators a
(ν)
out,(k,C) are decomposed. Assume υ = [mυ,∞[ as well as condition

(locLip) of Lem. 3.8.16 below. Let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↑
out,(k,C) : υ × υ −→ K,

aν,↑
out,(k,C)[(ỹ, y)] :=

∑

(j,ι)∈V [C]×Jj\{0}:
λd−1[∂ω

(j)
k ∩Γj,ι]>0

(
(aj,ι,ν

out )
ex.-im.[(

(ỹ, mυ), xk

)]

+ var+
[
(aj,ι,ν

out )
ex.-im.¹{ỹ}×υ×{xk}

]
[y]

)

· λd−1[∂ω
(j)
k ∩ Γj,ι]




,

(3.8.33a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↓
out,(k,C) : υ × υ −→ K,

aν,↓
out,(k,C)[(ỹ, y)] :=

∑

(j,ι)∈V [C]×Jj\{0}:
λd−1[∂ω

(j)
k ∩Γj,ι]>0

var−
[
(aj,ι,ν

out )
ex.-im.¹{ỹ}×υ×{xk}

]
[y]

· λd−1[∂ω
(j)
k ∩ Γj,ι]




.

(3.8.33b)

Lemma 3.8.16. Suppose υ = [mυ,∞[, and let Sout :=
(
(aj,ι

out)
ex.-im.)

(j,ι)∈J×(Jj\{0}) de-

note the family of real-valued dependency splittings. Moreover, assume the conditions
(np), (bnd), and (locLip) below:

(np)
∧

(j,ι)∈J×(Jj\{0})

∧
y∈υ

∧

(t,x)∈τ×Γj,ι

(aj,ι
out)

ex.-im.[(
(y, mυ), t, x

)] ≤ 0.

(bnd) Bout,mυ [(C,Sout)] := − inf
{

(aj,ι
out)

ex.-im.[(
(y,mυ), t, x

)]
:

(y, t, x) ∈ υ × Γj,ι, (j, ι) ∈ J × (Jj \ {0})
}

< ∞.

(3.8.34)

(locLip) Each (aj,ι
out)

ex.-im.
is locally Lipschitz with respect to its dependence on the second

argument, i.e.

∧

r∈R+
0

∨

Lout,r[(C,Sout)]∈R+
0

∧

(j,ι,y,t,x)
∈J×(Jj\{0})×υ×τ×Γj,ι

(
(aj,ι

out)
ex.-im.¹{y}×υ×{t}×{x}

∈ LipLout,r[(C,Sout)]

(
[mυ,mυ + r],R

)
)

.

Then the following holds for each y ∈ υ, for each ν ∈ {0, . . . , n}, and for each (k, C) ∈
IΠ,D,¬Dir:

(a) a
(ν)
out,(k,C) = aν,↑

out,(k,C) − aν,↓
out,(k,C).
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(b) The function aν,↑
out,(k,C)¹{y}×υ is increasing.

(c) aν,↓
out,(k,C)¹{y}×υ is minimal at mυ.

(d) aν,↑
out,(k,C)[(y,mυ)] ≤ aν,↓

out,(k,C)[(y, mυ)].

(e) If λd−1,max[Π] is the number defined in (3.8.31), then

max
{
0, aν,↓

out,(k,C)[(y, mυ)]
}−min

{
0, aν,↑

out,(k,C)[(y, mυ)]
}

≤ max
{
0, Bout,mυ [(C,Sout)]

} · λd−1,max[Π].

(f) The function aν,↓
out,(k,C)¹{y}×υ is

(
Lout,r[(C,Sout)]·λd−1,max[Π]

)
-Lipschitz on [mυ,mυ+

r] for each r ∈ R+.

Proof. (a) and (f) follow from hypothesis (locLip) and Rem. C.6.8(h). Due to Rem.
C.6.8(c), aν,↑

out,(k,C) ¹{y}×υ and aν,↓
out,(k,C) ¹{y}×υ are both increasing, proving (b) and (c).

Combining (a) with hypothesis (np) yields (d). Finally, (e) follows from Rem. C.6.8(a)
together with hypotheses (bnd) and (np). ¥

Example 3.8.17. The functions aj,ι
out arising from Exs 3.1.3(b),(c),(d),(e) are investi-

gated with respect to the hypotheses (np), (bnd), and (locLip) of Lem. 3.8.16.

Suppose υ = [mυ,∞[, let Γ be a (d − 1)-dimensional polyhedral subset of ∂p, and let
aj,ι

out ∈ C(τ × Γ,R).

It is first assumed that (aj,ι
out)

ex.-im.[(
(ỹ, y), t, x

)]
= aj,ι

out[(y, t, x)], i.e. there is no depen-
dency splitting. In that case, 3.8.16(bnd) is always satisfied, since τ and Γ are compact.

Ex. 3.1.3(b): 3.8.16(locLip) is trivially satisfied if aj,ι
out does not depend on y ∈ υ.

However, 3.8.16(np) can only be fulfilled if aj,ι
out is everywhere nonpositive.

Ex. 3.1.3(c): If aj,ι
out = ξ(y − uext[(t, x)]), ξ ∈ R+, uext ∈ C(τ × Γ, υ), then 3.8.16(np)

holds, as mυ − uext[(t, x)] ≤ 0. 3.8.16(locLip) holds, as aj,ι
out¹υ×{t}×{x} is ξ-Lipschitz.

Ex. 3.1.3(d): In this case, mυ = 0, as the unknown represents absolute temperature. If
aj,ι

out = σε[(y, t, x)]
(
y4 − T 4

room

)
, σ ∈ R+, ε ∈ C

(
υ × τ × Γ, [0, 1]

)
, then 3.8.16(np) holds,

as mυ ≤ Troom. By Rem. C.7.7(h), aj,ι
out¹υ×{t}×{x} is locally Lipschitz and 3.8.16(locLip)

holds, if ε is locally Lipschitz in its y-dependence, but even for constant ε 6= 0, the
function aout¹υ×{t}×{x} is not (globally) Lipschitz.

If Ex. 3.1.3(d) is considered with the dependency splitting

(aj,ι
out)

ex.-im.[(
(ỹ, y), t, x

)]
= σε[(ỹ, t, x)](y4 − T 4

room), (3.8.35)

then 3.8.16(bnd) and 3.8.16(np) still hold, as ε is [0, 1]-valued. Moreover, 3.8.16(locLip)
is now satisfied independently of the Lipschitzness of ε, as ε is bounded, and ε is now
independent of y.
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With respect to aj,ι
out, 3.1.3(e) is a special case of Ex. 3.1.3(d), letting (in abuse of the

notation) Troom = 0. Furthermore, the dependency splitting (3.8.35) is analogous to
the one used in Ex. 3.4.12.

3.8.6 Decomposition of Terms on Interfaces

In this section, the operators v
(ν)
con,(k,C) + v

(ν)
jump,(k,C), a

(ν)
flux,con,(k,C), a

(ν)
jump,1,¬Dir,(k,C), and

a
(ν)
flux,jump,2,¬Dir,(k,C) + a

(ν)
jump,2,¬Dir,(k,C) that were defnined in (3.7.54), (3.7.55), (3.7.57),

(3.7.59), (3.7.62), and (3.7.65), respectively, are decomposed. However, the operators

a
(ν)
jump,1,Dir,(k,C) and a

(ν)
flux,jump,2,Dir,(k,C) + a

(ν)
jump,2,Dir,(k,C) defined in (3.7.60), (3.7.63), and

(3.7.66) are not decomposed, as they themselves have all the properties of an ↑-operator
(cf. parts (b), (d), and (e) of Lems 3.8.21 and 3.8.23 below). Moreover, the discretized

nonlocal operators A
(ν)
con,(k,C) and A

(ν)
jump,(k,C) are not decomposed and are treated in Sec.

3.8.7 below.

The decomposition of the v
(ν)
con,(k,C) + v

(ν)
jump,(k,C) is carried out first. Let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




vν,↑
IF,(k,C) : υ −→ R,

vν,↑
IF,(k,C)[y] :=

∑

j∈V [C],
γ∈IF

v
(ν)
j,sca[(y, xk)] ·max

{
0,

∫

∂ω
(j)
k ∩γ

v
(ν)
j,vec[xk] • n

ω
(j)
k

}

 ,

(3.8.36a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




vν,↓
IF,(k,C) : υ −→ R,

vν,↓
IF,(k,C)[y] := −

∑

j∈V [C],
γ∈IF

v
(ν)
j,sca[(y, xk)] ·min

{
0,

∫

∂ω
(j)
k ∩γ

v
(ν)
j,vec[xk] • n

ω
(j)
k

}

 .

(3.8.36b)

Lemma 3.8.18. Suppose υ = [mυ,∞[, and assume the conditions (inc), (np), and
(locLip) of Lem. 3.8.12. Then the following holds for each ν ∈ {0, . . . , n} and for each
(k, C) ∈ IΠ,D,¬Dir:

(a) v
(ν)
con,(k,C) + v

(ν)
jump,(k,C) = vν,↑

IF,(k,C) − vν,↓
IF,(k,C).

(b) vν,↑
IF,(k,C) is increasing.

(c) vν,↓
IF,(k,C) is minimal at mυ.

(d) vν,↑
IF,(k,C)[mυ] = vν,↓

IF,(k,C)[mυ] = 0.

(e) max
{
0, vν,↓

IF,(k,C)[mυ]
}

= min
{
0, vν,↑

IF,(k,C)[mυ]
}

= 0.
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(f) vν,↓
IF,(k,C) is

(
Lv,r[(C, V)] · λd−1,max[Π]

)
-Lipschitz on [mυ,mυ + r] for each r ∈ R+,

where the numbers Lv,r[(C,V)] and λd−1,max[Π] are defined in (3.8.30) and (3.8.31),
respectively.

Proof. The proof is completely analogous to the proof of Lem. 3.8.15. ¥

Next, the decomposition of the a
(ν)
flux,con,(k,C) is performed. Let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↑
flux,con,(k,C) : υ × υ −→ K,

aν,↑
flux,con,(k,C)[(ỹ, y)] :=

∑
γ∈IFcon:

λd−1

h
γ∩Sj∈V [C] ∂regω

(j)
k

i
>0

(aγ,2,ν
flux )

ex.-im.[(
(ỹ, y), xk

)]

· λd−1


γ ∩

⋃

j∈V [C]
∂regω

(j)
k







,

(3.8.37a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↓
flux,con,(k,C) : υ × υ −→ K,

aν,↓
flux,con,(k,C)[(ỹ, y)] :=

∑
γ∈IFcon:

λd−1

h
γ∩Sj∈V [C] ∂regω

(j)
k

i
>0

(aγ,1,ν
flux )

ex.-im.[(
(ỹ, y), xk

)]

· λd−1


γ ∩

⋃

j∈V [C]
∂regω

(j)
k







.

(3.8.37b)

Lemma 3.8.19. Suppose υ = [mυ,∞[ and that the aγ,α
flux are real-valued, α ∈ {1, 2}.

Let Scon :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFcon
denote the family of real-valued dependency

splittings. Moreover, assume the conditions (np), (bnd), (inc), and (locLip) below:

(np)
∧

γ∈IFcon

∧
y∈υ

∧

(t,x)∈τ×γ

(
(aγ,2

flux)
ex.-im. − (aγ,1

flux)
ex.-im.)[(

(y,mυ), t, x
)] ≤ 0.

(bnd) Bcon,1,mυ [(C,Scon)] := sup
{

(aγ,1
flux)

ex.-im.[(
(y, mυ), t, x

)]
:

(y, t, x) ∈ υ × τ × γ, γ ∈ IFcon

}
< ∞, (3.8.38a)

Bcon,2,mυ [(C,Scon)] :=− inf
{

(aγ,2
flux)

ex.-im.[(
(y, mυ), t, x

)]
:

(y, t, x) ∈ υ × τ × γ, γ ∈ IFcon

}
< ∞. (3.8.38b)

(inc) The functions (aγ,1
flux)

ex.-im.¹{y}×υ×{t}×{x} and (aγ,2
flux)

ex.-im.¹{y}×υ×{t}×{x} are increas-
ing for each γ ∈ IFcon, for each y ∈ υ, and for each (t, x) ∈ τ × γ.
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(locLip) Each (aγ,1
flux)

ex.-im.
is locally Lipschitz with respect to its dependence on the sec-

ond argument, i.e.

∧

r∈R+
0

∨

Lflux,1,r[(C,Scon)]∈R+
0

∧

(γ,y,t,x)
∈IFcon×υ×τ×γ

(
(aγ,1

flux)
ex.-im.¹{y}×υ×{t}×{x}

∈ LipLflux,1,r[(C,Scon)]

(
[mυ,mυ + r],R

)
)

.

Then the following holds for each y ∈ υ, for each ν ∈ {0, . . . , n}, and for each (k, C) ∈
IΠ,D,¬Dir:

(a) a
(ν)
flux,con,(k,C) = aν,↑

flux,con,(k,C) − aν,↓
flux,con,(k,C).

(b) The function aν,↑
flux,con,(k,C)¹{y}×υ is increasing.

(c) aν,↓
flux,con,(k,C)¹{y}×υ is minimal at mυ.

(d) aν,↑
flux,con,(k,C)[(y, mυ)] ≤ aν,↓

flux,con,(k,C)[(y,mυ)].

(e) If λd−1,max[Π] is the number defined in (3.8.31), then

max
{
0, aν,↓

flux,con,(k,C)[(y, mυ)]
}−min

{
0, aν,↑

flux,con,(k,C)[(y, mυ)]
}

≤ (
max

{
0, Bcon,1,mυ [(C,Scon)]

}
+ max

{
0, Bcon,2,mυ [(C,Scon)]

}) · λd−1,max[Π].

(f) The function aν,↓
flux,con,(k,C) ¹{y}×υ is

(
Lflux,1,r[(C, Scon)] · λd−1,max[Π]

)
-Lipschitz on

[mυ,mυ + r] for each r ∈ R+.

Proof. (a) is clear, since (3.8.37a) and (3.8.37b) are merely an algebraic decomposition
of (3.7.57). (b) and (c) are equally clear from hypothesis (inc). Hypothesis (np) yields
(d), and hypothesis (bnd) yields (e). Finally, (f) follows from hypothesis (locLip). ¥

Example 3.8.20. Suppose γ ∈ IFcon is a continuous interface and υ = [mυ,∞[.

First, assume that there is no dependency splitting, i.e. (aγ,α
flux)

ex.-im.[((ỹ, y), t, x
)]

=
aγ,α

flux[(y, t, x)]. In that case, 3.8.19(bnd) is always satisfied, since τ and γ are compact.

Conditions (np), (inc), and (locLip) of Lem. 3.8.19 are trivially satisfied for aγ,1
flux =

aγ,2
flux = 0. In the last case considered in Ex. 3.7.32, where aγ,1

flux = 0 and aγ,2
flux[(y, t, x)] =

ξy, ξ ∈ [1,∞[, condition 3.8.19(np) holds for mυ ≤ 0, 3.8.19(inc) holds, as both aγ,1
flux

and aγ,2
flux are increasing in y; and 3.8.19(locLip) holds, since aγ,1

flux is 0-Lipschitz.

In the first case of Ex. 3.1.2(c), one has mυ = 0, aγ,1
flux = 0, aγ,2

flux[(y, t, x)] = σεt[(y, t, x)]y4.
Then 3.8.19(np) holds, as aγ,1

flux[(0, t, x)] = aγ,2
flux[(0, t, x)] = 0. 3.8.19(inc) holds trivially

for aγ,1
flux, but aγ,2

flux is only increasing in y if εt is sufficiently benign. 3.8.19(locLip) holds,
since aγ,1

flux is 0-Lipschitz.
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Finally, consider the first case of Ex. 3.1.2(c) with the dependency splitting introduced

in Ex. 3.8.17, i.e. with (aγ,2
flux)

ex.-im.[(
(ỹ, y), t, x

)]
= σεt[(ỹ, t, x)]y4. Then 3.8.19(np) and

3.8.19(locLip) hold as before. Now 3.8.19(inc) holds independently of εt, as εt is nonneg-

ative and independent of y. 3.8.19(bnd) also holds, since (aγ,2
flux)

ex.-im.[(
(ỹ, 0), t, x

)]
= 0.

—

For the decomposition of the a
(ν)
jump,1,¬Dir,(k,C), let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↑
jump,1,¬Dir,(k,C) : υ −→ K,

aν,↑
jump,1,¬Dir,(k,C)[y] :=

∑

γ∈Gjump,1[C]:(
k,C[(k,i2[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i1[γ])
k ∩γ

]
>0

aγ,1,ν
jump[(y, xk)] · λd−1

[
∂ω

(i1[γ])
k ∩ γ

]



,

(3.8.39a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↓
jump,1,¬Dir,(k,C) : υIΠ,D,¬Dir −→ K,

aν,↓
jump,1,¬Dir,(k,C)[U ] :=

∑

γ∈Gjump,1[C]:(
k,C[(k,i2[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i1[γ])
k ∩γ

]
>0

aγ,2,ν
jump

[
(U(

k,C[(k,i2[γ])]
), xk)

]

· λd−1

[
∂ω

(i1[γ])
k ∩ γ

]




.

(3.8.39b)

Lemma 3.8.21. Suppose υ = [mυ,∞[, that the aγ,α
jump, α ∈ {1, 2}, are real-valued and

that conditions (np), (inc), and (locLip) below all hold:

(np)
(
aγ,1

jump − aγ,2
jump

)
[(mυ, t, x)] ≤ 0 for each γ ∈ IFjump and each (t, x) ∈ τ × γ.

(inc) The functions aγ,α
jump¹υ×{t}×{x} are increasing for each α ∈ {1, 2}, each γ ∈ IFjump,

and each (t, x) ∈ τ × γ.

(locLip)
∧

r∈R+
0

∨
Ljump,2,r[C]∈R+

0

∧
(γ,t,x)

∈IFjump×τ×γ

aγ,2
jump ¹υ×{t}×{x}∈ LipLjump,2,r[C]

(
[mυ, mυ + r],R

)
,

i.e. each aγ,2
jump is locally Lipschitz with respect to its y-dependence.

Let m := (mυ, . . . , mυ). Then the following holds for each ν ∈ {0, . . . , n} and for each
(k, C) ∈ IΠ,D,¬Dir:

(a)
∧

U∈υ
IΠ,D,¬Dir

a
(ν)
jump,1,¬Dir,(k,C)[U ] = aν,↑

jump,1,¬Dir,(k,C)[U(k,C)]− aν,↓
jump,1,¬Dir,(k,C)[U ].

(b) aν,↑
jump,1,¬Dir,(k,C) and a

(ν)
jump,1,Dir,(k,C) are increasing.

(c) aν,↓
jump,1,¬Dir,(k,C) is minimal at m.
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(d) aν,↑
jump,1,¬Dir,(k,C)[mυ] ≤ aν,↓

jump,1,¬Dir,(k,C)[m] and a
(ν)
jump,1,Dir,(k,C)[mυ] ≤ 0.

(e) If λd−1,max[Π] is the number defined in (3.8.31), then

max
{
0, aν,↓

jump,1,¬Dir,(k,C)[m]
}−min

{
0, aν,↑

jump,1,¬Dir,(k,C)[mυ]
}

≤ Bjump,mυ [C] · λd−1,max[Π],

and

−min
{
0, a

(ν)
jump,1,Dir,(k,C)[mυ]

} ≤ Bjump,Dir,mυ [C] · λd−1,max[Π],

where

Bjump,mυ [C] := max
{∣∣aγ,1

jump[(mυ, t, x)]
∣∣ : (t, x) ∈ τ × γ, γ ∈ IFjump

}

+ max
{∣∣aγ,2

jump[(mυ, t, x)]
∣∣ : (t, x) ∈ τ × γ, γ ∈ IFjump

}
,

(3.8.40)

Bjump,Dir,mυ [C] := max
{∣∣aγ,1

jump[(y, t, x)]
∣∣ :

(y, t, x) ∈ [mυ, BDir[C]]× τ × γ, γ ∈ IFjump

}

+ max
{∣∣aγ,2

jump[(y, t, x)]
∣∣ :

(y, t, x) ∈ [mυ, BDir[C]]× τ × γ, γ ∈ IFjump

}
.

(3.8.41)

Using absolute values in (3.8.40) and (3.8.41), and using the domain [mυ, BDir[C]]
for y in both summands of (3.8.41), allows the use of the same bounds Bjump,mυ [C]
and Bjump,Dir,mυ [C] in Lem. 3.8.23(e) below.

(f) aν,↓
jump,1,¬Dir,(k,C) is

(
Ljump,2,r[C] · λd−1,max[Π]

)
-Lipschitz on [mυ, mυ + r]IΠ,D,¬Dir with

respect to the max-norm for each r ∈ R+.

Proof. It is noted that in a
(ν)
jump,1,Dir,(k,C), the summands involving the Dirichlet contri-

butions are constant.

(a) is clear, since (3.8.39a) and (3.8.39b) are merely an algebraic decomposition of
(3.7.59). (b) and (c) are immediate consequences of hypothesis (inc).

Hypothesis (np) directly implies the first part of (d). According to (3.7.60), the second
part of (d) can also be seen from hypothesis (np), since mυ ≤ ujDir[(k,i2[γ])],Dir[(tν , xk)],

and since aγ,2,ν
jump is increasing in y according to hypothesis (inc).

The compactness of γ and τ together with the continuity of aγ,1
jump and aγ,2

jump implies (e),
and hypothesis (locLip) together with Rem. C.7.7(g) yields (f). ¥
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Example 3.8.22. Suppose γ ∈ IFjump is a jump interface, υ = [mυ,∞[, and consider
the case of Ex. 3.1.2(b), i.e. aγ,1

jump[(y, t, x)] = aγ,2
jump[(y, t, x)] = ξy, ξ ∈ R+. Then the

hypotheses (np), (inc), and (locLip) of Lem. 3.8.21 are satisfied due to the following
obvious facts (a), (b), and (c).

(a)
(
aγ,1

jump − aγ,2
jump

)
[(mυ, t, x)] = 0.

(b) aγ,1
jump and aγ,2

jump are increasing.

(c) aγ,1
jump and aγ,2

jump are both ξ-Lipschitz.

—

Finally, a
(ν)
flux,jump,2,¬Dir,(k,C) + a

(ν)
jump,2,¬Dir,(k,C) is decomposed. Let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↑
jump,2,¬Dir,(k,C) : υ × υ −→ K,

aν,↑
jump,2,¬Dir,(k,C)[(ỹ, y)] :=

∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
(aγ,2,ν

flux )
ex.-im.[(

(ỹ, y), xk

)]
+ aγ,2,ν

jump[(y, xk)]

)

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]




,

(3.8.42a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




aν,↓
jump,2,¬Dir,(k,C) : υIΠ,D,¬Dir × υIΠ,D,¬Dir −→ K,

aν,↓
jump,2,¬Dir,(k,C)[(Ũ , U)]

:=
∑

γ∈Gjump,2[C]:(
k,C[(k,i1[γ])]

)
∈IΠ,D,¬Dir,

λd−1

[
∂ω

(i2[γ])
k ∩γ

]
>0

(
(aγ,1,ν

flux )
ex.-im.[(

(Ũ(
k,C[(k,i1[γ])]

), U(
k,C[(k,i1[γ])]

)), xk

)]

+ aγ,1,ν
jump

[
(U(

k,C[(k,i1[γ])]
), xk)

])

· λd−1

[
∂ω

(i2[γ])
k ∩ γ

]




.

(3.8.42b)

Lemma 3.8.23. Suppose υ = [mυ,∞[ and that the aγ,1
jump and aγ,2

jump are real-valued.

Let Sjump :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFjump
denote the family of real-valued dependency

splittings. Moreover, assume the conditions (np), (inc), (bnd), and (locLip) below:

(np) ∧
γ∈IFjump

∧
y∈υ

∧

(t,x)∈τ×γ

( (
(aγ,2

flux)
ex.-im. − (aγ,1

flux)
ex.-im.)[(

(y, mυ), t, x
)]

+
(
aγ,2

jump − aγ,1
jump

)
[(mυ, t, x)] ≤ 0

)
.

(bnd)
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Bflux,jump,1,mυ [(C, Sjump)] := sup
{

(aγ,1
flux)

ex.-im.[(
(y, mυ), t, x

)]
:

(y, t, x) ∈ υ × τ × γ, γ ∈ IFjump

}
< ∞,

(3.8.43a)

Bflux,jump,2,mυ [(C, Sjump)] :=− inf
{

(aγ,2
flux)

ex.-im.[(
(y, mυ), t, x

)]
:

(y, t, x) ∈ υ × τ × γ, γ ∈ IFjump

}
< ∞.

(3.8.43b)

(inc) The functions

(aγ,1
flux)

ex.-im.¹{y}×υ×{t}×{x} +aγ,1
jump¹υ×{t}×{x}

and
(aγ,2

flux)
ex.-im.¹{y}×υ×{t}×{x} +aγ,2

jump¹υ×{t}×{x}

are increasing for each γ ∈ IFjump, for each y ∈ υ, and for each (t, x) ∈ τ × γ.

(locLip)

∧

r∈R+
0

∨

Lflux,jump,r[(C,Sjump)]∈R+
0

∧

(γ,y,t,x)
∈IFjump×υ×τ×γ

(
(aγ,1

flux)
ex.-im.¹{y}×υ×{t}×{x} +aγ,1

jump¹υ×{t}×{x}

∈ LipLflux,jump,r[(C,Sjump)]

(
[mυ,mυ + r],R

)
)

.

Let m := (mυ, . . . ,mυ). Then the following holds for each y ∈ υ, each U ∈ υIΠ,D,¬Dir,
each ν ∈ {0, . . . , n}, and each (k, C) ∈ IΠ,D,¬Dir:

(a) ∧

(Ũ ,U)∈υ
IΠ,D,¬Dir×υ

IΠ,D,¬Dir

(
a

(ν)
flux,jump,2,¬Dir,(k,C)[U ] + a

(ν)
jump,2,¬Dir,(k,C)[(Ũ , U)]

= aν,↑
jump,2,¬Dir,(k,C)[(Ũ(k,C), U(k,C))]− aν,↓

jump,2,¬Dir,(k,C)[(Ũ , U)]

)
.

(b) The functions aν,↑
jump,2,¬Dir,(k,C)¹{y}×υ and a

(ν)
flux,jump,2,Dir,(k,C)¹{y}×υ +a

(ν)
jump,2,Dir,(k,C) are

increasing.

(c) aν,↓
jump,2,¬Dir,(k,C)¹{U}×υ

IΠ,D,¬Dir is minimal at m.

(d) aν,↑
jump,2,¬Dir,(k,C)[(U(k,C),mυ)] ≤ aν,↓

jump,2,¬Dir,(k,C)[(U,m)],

a
(ν)
flux,jump,2,Dir,(k,C)[(y, mυ)] + a

(ν)
jump,2,Dir,(k,C)[mυ] ≤ 0.

(e) If Bjump,mυ [C], Bjump,Dir,mυ [C], and λd−1,max[Π] are the numbers defined in (3.8.40),
(3.8.41), and (3.8.31), respectively, then

max
{
0, aν,↓

jump,2,¬Dir,(k,C)[(U,mυ)]
}−min

{
0, aν,↑

jump,2,¬Dir,(k,C)[(U(k,C),mυ)]
}

≤ (
max

{
0, Bflux,jump,1,mυ [(C,Sjump)]

}
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+ max
{
0, Bflux,jump,2,mυ [(C,Sjump)]

}
+ Bjump,mυ [C]

) · λd−1,max[Π].

and

−min
{
0, a

(ν)
flux,jump,2,Dir,(k,C)[(y,mυ)] + a

(ν)
jump,2,Dir,(k,C)[mυ]

}

≤ (
max

{
0, Bflux,Dir[C]

}

+ max
{
0, Bflux,jump,2,mυ [(C,Sjump)]

}
+ Bjump,Dir,mυ [C]

) · λd−1,max[Π],

where

Bflux,Dir[C] := max
{

(aγ,1
flux)

ex.-im.[(
(ỹ, y), t, x

)]
:

(
(ỹ, y), t, x

) ∈ [mυ, BDir[C]]2 × τ × γ, γ ∈ IFjump

}
.

(3.8.44)

(f) The function aν,↓
jump,2,¬Dir,(k,C) ¹{U}×υ

IΠ,D,¬Dir is
(
Lflux,jump,r[(C,Sjump)] · λd−1,max[Π]

)
-

Lipschitz on [mυ,mυ + r]IΠ,D,¬Dir with respect to the max-norm for each r ∈ R+.

Proof. It is noted that in a
(ν)
flux,jump,2,¬Dir,(k,C) + a

(ν)
jump,2,¬Dir,(k,C), the summands involving

the Dirichlet contributions are constant.

(a) is clear, since (3.8.42a) and (3.8.42b) are merely an algebraic decomposition of the
sum of (3.7.62) and (3.7.65). (b) and (c) are immediate consequences of hypothesis
(inc).

Hypothesis (np) directly implies the first inequality in (d). The second inequality in
(d) can be seen from (3.7.63), (3.7.66), and hypothesis (np), since

mυ ≤ ujDir[(k,i1[γ])],Dir[(tν , xk)],

and since each (aγ,1
flux)

ex.-im. ¹{y}×υ×{t}×{x} +aγ,1
jump ¹υ×{t}×{x} is increasing according to

hypothesis (inc).

Hypothesis (bnd) and the compactness of γ and τ together with the continuity of aγ,1
jump,

aγ,2
jump, and uj,Dir imply (e), and hypothesis (locLip) together with Rem. C.7.7(g) yields

(f). ¥

Example 3.8.24. As in Ex. 3.8.22, suppose γ ∈ IFjump is a jump interface, υ = [mυ,∞[,
and consider the case of Ex. 3.1.2(b), i.e. aγ,1

jump[(y, t, x)] = aγ,2
jump[(y, t, x)] = ξjumpy,

ξjump ∈ R+.

In the present example, this situation is combined with a consideration of the cases
in Ex. 3.8.20 in the context of a jump interface. The hypotheses of Lem. 3.8.23 are
investigated.

First, assume that there is no dependency splitting, i.e. (aγ,α
flux)

ex.-im.[((ỹ, y), t, x
)]

=
aγ,α

flux[(y, t, x)]. Then, analogous to Ex. 3.8.20, 3.8.23(bnd) follows from the compactness
of τ and γ.
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Conditions (np), (inc), and (locLip) of Lem. 3.8.23 are satisfied according to Ex. 3.8.22
if aγ,1

flux = aγ,2
flux = 0.

In the last case considered in Ex. 3.7.34, where aγ,1
flux = 0 and aγ,2

flux[(y, t, x)] = ξfluxy, ξflux ∈
[1,∞[, condition 3.8.23(np) holds for mυ ≤ 0, using Ex. 3.8.22(a). 3.8.23(inc) holds, as
all the functions aγ,1

jump, aγ,2
jump, aγ,1

flux, and aγ,2
flux are increasing in y. Since aγ,1

flux + aγ,1
jump is

ξjump-Lipschitz and aγ,2
flux + aγ,2

jump is (ξjump + ξflux)-Lipschitz, 3.8.23(locLip) also holds.

In the first case of Ex. 3.1.2(c), one has mυ = 0, aγ,1
flux = 0, aγ,2

flux[(y, t, x)] = σεt[(y, t, x)]y4.
Then 3.8.23(np) holds, combining Ex. 3.8.22(a) with aγ,1

flux[(0, t, x)] = aγ,2
flux[(0, t, x)] = 0.

Analogous to Ex. 3.8.20, 3.8.23(inc) always holds for aγ,1
flux + aγ,1

jump, but aγ,2
flux + aγ,2

jump is
only increasing in y if εt is sufficiently benign. 3.8.23(locLip) holds due to Ex. 3.8.22(c).

Finally, as in Ex. 3.8.20, consider the first case of Ex. 3.1.2(c) with the dependency

splitting introduced in Ex. 3.8.17, i.e. with (aγ,2
flux)

ex.-im.[(
(ỹ, y), t, x

)]
= σεt[(ỹ, t, x)]y4.

Then 3.8.23(np) and 3.8.23(locLip) hold as before, but 3.8.23(inc) now holds indepen-
dently of εt, as εt is nonnegative and independent of y. 3.8.23(bnd) also holds, since

(aγ,2
flux)

ex.-im.[(
(ỹ, 0), t, x

)]
= 0.

3.8.7 Nonlocal Operators

The discretized nonlocal operators B
(ν)
(k,C), A

(ν)
con,(k,C), and A

(ν)
jump,(k,C) are not decomposed,

as it is seen in Ex. 3.8.26 below that if the operators arise from nonlocal radiation terms
according to (3.7.91), (3.7.92), and (3.7.93) (which is the only concrete case considered
in this work), then they themselves have all the properties of a ↓-operator (s. Def. 3.8.25
below).

Definition 3.8.25. Given the finite volume discretization F of C, it is said that the
discretized nonlocal operators B

(ν)
(k,C), A

(ν)
con,(k,C), and A

(ν)
jump,(k,C) have the ↓-property iff

they satisfy the following conditions (i) – (iv) for each u ∈ υIΠ,D,¬Dir , each (k, C) ∈
IΠ,D,¬Dir, and each ν ∈ {0, . . . , n}. Let m := (mυ, . . . , mυ).

(i) B
(ν)
(k,C) ¹{u}×υ

IΠ,D,¬Dir , A
(ν)
con,(k,C) ¹{u}×υ

IΠ,D,¬Dir , and A
(ν)
jump,(k,C) ¹{u}×υ

IΠ,D,¬Dir are mini-
mal at m.

(ii) 0 ≤ B
(ν)
(k,C)[(u,m)], 0 ≤ A

(ν)
con,(k,C)[(u,m)], and 0 ≤ A

(ν)
jump,(k,C)[(u,m)].

(iii) There is a number Bnonloc[C] ∈ R+
0 that is independent of Π and independent of the

time discretization and such that B
(ν)
(k,C)[(u,m)] ≤ Bnonloc[C], A

(ν)
con,(k,C)[(u,m)] ≤

Bnonloc[C], and A
(ν)
jump,(k,C)[(u,m)] ≤ Bnonloc[C].

(iv) For each r ∈ R+, there is Lnonloc,r[(C, Π)] ∈ R+
0 that is independent of the time dis-

cretization and such that the functions B
(ν)
(k,C)¹{u}×υ

IΠ,D,¬Dir , A
(ν)
con,(k,C)¹{u}×υ

IΠ,D,¬Dir ,
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and A
(ν)
jump,(k,C) ¹{u}×υ

IΠ,D,¬Dir are Lnonloc,r[(C, Π)]-Lipschitz on [mυ,mυ + r]IΠ,D,¬Dir

with respect to the max-norm.

Example 3.8.26. As in Exs 3.7.27 and 3.7.36, the case is considered where B
(ν)
(k,C),

A
(ν)
con,(k,C), and A

(ν)
jump,(k,C) are defined by (3.7.91), (3.7.92), and (3.7.93), respectively, that

means the nonlocal operators arise as radiation operators according to the axisymmetric
cases of Exs 3.1.3(e) and 3.1.2(c).

It is verified that in this case, B
(ν)
(k,C), A

(ν)
con,(k,C), and A

(ν)
jump,(k,C) have the ↓-property

according to Def. 3.8.25.

As the unknown represents absolute temperature, one has mυ = 0. It is then immediate
from (3.7.81c) and (3.7.88) that B

(ν)
(k,C)[(u,m)] = A

(ν)
con,(k,C)[(u,m)] = A

(ν)
jump,(k,C)[(u,m)] =

0, which implies conditions (ii) and (iii) of Def. 3.8.25 with Bnonloc[C] = 0.

The vector Y is nonnegative by (3.7.81c), A−1 is nonnegative by Lem. 3.7.22(b), and
L̃ is nonnegative by (3.7.87). Then (3.7.88) shows that V is also nonnegative and so

are B
(ν)
(k,C), A

(ν)
con,(k,C), and A

(ν)
jump,(k,C), proving condition (i) of Def. 3.8.25.

Condition 3.8.25(iv): The function y 7→ λ · y4 is (4λr3)-Lipschitz on [0, r]. Thus, ac-

cording to (3.7.81c), the map
(
T

(ν)
solid,circ[xk]

)
κ∈Irad,Γ

7→ Y is (4σ max{lκ : κ ∈ Irad,Γ} ·r3)-

Lipschitz on [0, r]Irad,Γ by Rem. C.7.7(f). Combining this with (3.7.88), Def. and Rem.

C.2.3, and Rem. C.7.7(b), shows that the map
(
T

(ν)
solid,circ[xk]

)
κ∈Irad,Γ

7→ V is (4σ max{lκ :

κ ∈ Irad,Γ} · ‖L̃A−1‖ · r3)-Lipschitz on [0, r]Irad,Γ . Then, according to (3.7.91), (3.7.92),
and (3.7.93), and using that each Iωk

, k ∈ IΠ, can have at most two elements, each of

the functions B
(ν)
(k,C)¹{u}×υ

IΠ,D,¬Dir , A
(ν)
con,(k,C)¹{u}×υ

IΠ,D,¬Dir , and A
(ν)
jump,(k,C)¹{u}×υ

IΠ,D,¬Dir is

Lnonloc,r[(C, Π)]-Lipschitz for each u ∈ υIΠ,D,¬Dir , where

Lnonloc,r[(C, Π)] := 8σ max{lκ : κ ∈ Irad,Γ} · ‖L̃A−1‖ · r3. (3.8.45)

Since εcirc

[
(T

(ν−1)
solid,circ[xκ], xκ)

]
is always bounded by 1, Lnonloc,r[(C, Π)] does not depend

on the time discretization as required in Def. 3.8.25(iv). It does, however, depend on
the space discretization Π (a priori, e.g. Irad,Γ, max{lκ : κ ∈ Irad,Γ}, and ‖L̃A−1‖ all
depend on Π).

3.8.8 Decomposition of Source and Sink Terms

In this section, the operators f
(ν)
(k,C) defined in (3.7.119) are decomposed. Assume υ =

[mυ,∞[ and that for each j ∈ J , fj is real-valued and locally Lipschitz in the sense of
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condition (locLip) of Lem. 3.8.27 below. Let

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




fν,↑
(k,C) : υ −→ R,

fν,↑
(k,C)[y] :=

∑

j∈V [C]

(
− f

(ν)
j [(mυ, xk)]

+ var+
[
−f

(ν)
j ¹υ×{xk}

]
[y]

)
· λd[ω

(j)
k ]




,

(3.8.46a)

∧

ν∈{0,...,n},
(k,C)∈IΠ,D,¬Dir




fν,↓
(k,C) : υ −→ R,

fν,↓
(k,C)[y] :=

∑

j∈V [C]
var−

[
−f

(ν)
j ¹υ×{xk}

]
[y] · λd[ω

(j)
k ]


 . (3.8.46b)

Lemma 3.8.27. Suppose υ = [mυ,∞[, the fj are real-valued, and the conditions (np)
and (locLip) below both hold:

(np) −fj[(mυ, t, x)] ≤ 0 for each j ∈ J and for each (t, x) ∈ τ × pj.

(locLip)
∧

r∈R+
0

∨
Lf,r[C]∈R+

0

∧
(j,t,x)∈J×τ×pj

fj ¹υ×{t}×{x}∈ LipLf,r[C]

(
[mυ,mυ + r],R

)
, i.e. each

fj is locally Lipschitz with respect to its dependence on y ∈ υ.

Then the following holds for each ν ∈ {0, . . . , n} and for each (k, C) ∈ IΠ,D,¬Dir:

(a) −f
(ν)
(k,C) = fν,↑

(k,C) − fν,↓
(k,C).

(b) fν,↑
(k,C) is increasing.

(c) fν,↓
(k,C) is minimal at mυ.

(d) fν,↑
(k,C)[mυ] ≤ fν,↓

(k,C)[mυ].

(e) max
{
0, fν,↓

(k,C)[mυ]
}−min

{
0, fν,↑

(k,C)[mυ]
} ≤ Bf,mυ [C] · λd,max[Π], where

Bf,mυ [C] := max
{
fj[(mυ, t, x)] : (t, x) ∈ τ × pj, j ∈ J

}
, (3.8.47)

λd,max[Π] := max
{
λd[ωk] : k ∈ IΠ

}
. (3.8.48)

The number λd,max[Π] measures the maximal size of control volumes in terms of
Lebesgue measure.

(f) fν,↓
(k,C) is Lf,r[C] · λd,max[Π]-Lipschitz on [mυ,mυ + r] for each r ∈ R+.
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Proof. (a) and (f) follow from hypothesis (locLip) and Rem. C.6.8(h). Both fν,↑
(k,C) and

fν,↓
(k,C) are increasing due to Rem. C.6.8(c), proving (b) and (c). Combining (a) with

hypothesis (np) yields (d). Finally, (e) follows from Rem. C.6.8(a) together with hy-
pothesis (np). ¥

Example 3.8.28. Example 3.1.1(b) and the first case of Ex. 3.1.1(a) are investigated
with respect to the hypotheses (np) and (locLip) of Lem. 3.8.27.

Both conditions are trivially satisfied for the first case of Ex. 3.1.1(a) as fj = 0. It
remains to consider Ex. 3.1.1(b).

In this example, the unknown represents absolute temperature. Hence mυ = 0, and
condition 3.8.27(np) is completely natural from the physical point of view, as it states
that the system can not be cooled if its absolute temperature is zero. However, the
condition can still fail for some concrete model equation, which just means that the
model is not valid close to absolute temperature zero.

It is fj[(y, t, x)] = ρgas[(t, x)]g • vgas[(t, x)] in the first case of Ex. 3.1.1(b). Thus,
3.8.27(locLip) holds, as fj does not depend on y ∈ υ, and, assuming ρgas > 0, 3.8.27(np)
holds if and only if g • vgas[(t, x)] ≥ 0 for each (t, x).

In the second case of Ex. 3.1.1(b), fj[(y, t, x)] = f [βj ], where f [βj ] ≥ 0 is supposed to
represent a heat source due to induction heating, i.e. condition 3.8.27(np) is always sat-
isfied. However, investigating the regularity of f [βj ] according to the induction heating
model is not in the scope of this work.

In the third case of Ex. 3.1.1(b), it is

fj[(y, t, x)] = εgas[(y, t, x)] div (ρgas[(t, x)]vgas[(t, x)])− pgas[(t, x)] div vgas[(t, x)],

i.e., assuming εgas[(0, t, x)] = 0, 3.8.27(np) holds if and only if pgas[(t, x)] div vgas[(t, x)] ≤
0 for each (t, x). Moreover, fj is (locally) Lipschitz in its y-dependence if and only if
εgas is.

3.8.9 Statement and Proof of the Theorem

The central part of this section is the statement and the proof of Th. 3.8.35.

The hypotheses of Th. 3.8.35 need to include the hypotheses of Lems 3.8.10 – 3.8.12,
3.8.15, 3.8.16, 3.8.18, 3.8.19, 3.8.21, 3.8.23, and 3.8.27. This collection of lemmas is
thus named for the convenience of subsequent reference:

Notation 3.8.29. Lemmas 3.8.10 – 3.8.12, 3.8.15, 3.8.16, 3.8.18, 3.8.19, 3.8.21, 3.8.23,
and 3.8.27 are called Decomposition Lemmas.

The purpose of the following Defs 3.8.30 – 3.8.33 is the grouping of similar hypotheses
of the Decomposition Lemmas. Definition 3.8.30 comprehends the hypotheses of type
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(inc), where certain functions are required to be increasing. Moreover, Def. 3.8.30(i)
provides a growth property of the bj also needed in the proof of Th. 3.8.35. Definition
3.8.31 comprehends the hypotheses of type (np), where certain functions are required
to be nonpositive at y = mυ. Definition 3.8.32 comprehends the hypotheses of type
(bnd), where dependency splittings are assumed to satisfy a boundedness condition at
mυ. Finally, Def. 3.8.33 comprehends the hypotheses of type (locLip), where certain
functions are required to be (uniformly) locally Lipschitz in their dependence on y ∈ υ.

Definition 3.8.30. The evolution equation complex C is called increasing iff υ =
[mυ,∞[, each of the functions bj, aγ,α

flux, and aγ,α
jump, is real-valued, and the following

conditions (i) – (v) hold:

(i) There is Linv,b[C] ∈ R+ such that for each j ∈ J and each (t, x) ∈ τ × pj, the
function bj ¹υ×{t}×{x} is nonnegative, increasing, and inverse Linv,b[C]-Lipschitz.
Moreover, each bj¹{mυ}×τ×{x} is decreasing (in t ∈ τ).

(ii) There exists a family of scalar-vector-splittings V =
(
(vj,sca, vj,vec)

)
j∈J

such that

the function vj,sca¹υ×{t}×{x} is increasing for each (t, x) ∈ τ × pj, j ∈ J . Then each
such V is called inc-admissible.

(iii) The functions aγ,α
flux¹υ×{t}×{x} are increasing for each α ∈ {1, 2}, each γ ∈ IFcon, and

each (t, x) ∈ τ × γ. Then the family of real-valued dependency splittings Scon :=(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFcon
is called inc-admissible iff (aγ,α

flux)
ex.-im.¹{y}×υ×{t}×{x} are

increasing for each α ∈ {1, 2}, each γ ∈ IFcon, each y ∈ υ, and each (t, x) ∈ τ × γ.

(iv) The functions aγ,α
jump¹υ×{t}×{x} are increasing for each α ∈ {1, 2}, each γ ∈ IFjump,

and each (t, x) ∈ τ × γ.

(v) The functions aγ,α
flux ¹υ×{t}×{x} +aγ,α

jump ¹υ×{t}×{x} are increasing for each α ∈ {1, 2},
each γ ∈ IFjump, and each (t, x) ∈ τ×γ. Then the family of real-valued dependency

splittings Sjump :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFjump
is called inc-admissible iff the

functions (aγ,α
flux)

ex.-im. ¹{y}×υ×{t}×{x} +aγ,α
jump ¹υ×{t}×{x} are increasing for each α ∈

{1, 2}, each γ ∈ IFjump, each y ∈ υ, and each (t, x) ∈ τ × γ.

The finite volume discretization F of C is called increasing iff C is increasing, V, Scon,
and Sjump are inc-admissible.

Definition 3.8.31. The evolution equation complex C is called nonpositive at m :=
(mυ, . . . , mυ) iff υ = [mυ,∞[, each of the functions aj,ι

out, aγ,α
flux, aγ,α

jump, and fj is real-
valued, and the following conditions (i) – (vi) hold:

(i) There exists a family of scalar-vector-splittings V =
(
(vj,sca, vj,vec)

)
j∈J

such that

vj,sca[(mυ, t, x)] = 0 for each (t, x) ∈ τ × pj, j ∈ J . Then each such V is called
np-admissible.
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(ii) aj,ι
out[(mυ, t, x)] ≤ 0 for each (j, ι) ∈ J × (Jj \ {0}) and each (t, x) ∈ τ × Γj,ι. Then

the family of real-valued dependency splittings Sout =
(
(aj,ι

out)
ex.-im.)

(j,ι)∈J×(Jj\{0})
is called np-admissible iff

∧

(j,ι)∈J×(Jj\{0})

∧
y∈υ

∧

(t,x)∈τ×Γj,ι

(aj,ι
out)

ex.-im.[(
(y, mυ), t, x

)] ≤ 0.

(iii)
(
aγ,2

flux − aγ,1
flux

)
[(mυ, t, x)] ≤ 0 for each γ ∈ IFcon and each (t, x) ∈ τ × γ. Then the

family of real-valued dependency splittings Scon :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFcon
is

called np-admissible iff
∧

γ∈IFcon

∧
y∈υ

∧

(t,x)∈τ×γ

(
(aγ,2

flux)
ex.-im. − (aγ,1

flux)
ex.-im.)[(

(y, mυ), t, x
)] ≤ 0.

(iv)
(
aγ,1

jump − aγ,2
jump

)
[(mυ, t, x)] ≤ 0 for each γ ∈ IFjump and each (t, x) ∈ τ × γ.

(v)
(
aγ,2

flux − aγ,1
flux

)
[(mυ, t, x)] +

(
aγ,2

jump − aγ,1
jump

)
[(mυ, t, x)] ≤ 0 for each γ ∈ IFjump and

each (t, x) ∈ τ ×γ. Then the family of real-valued dependency splittings Sjump :=(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFjump
is called np-admissible iff

∧
γ∈IFjump

∧
y∈υ

∧

(t,x)∈τ×γ

((
(aγ,2

flux)
ex.-im. − (aγ,1

flux)
ex.-im.)[(

(y,mυ), t, x
)]

+
(
aγ,2

jump − aγ,1
jump

)
[(mυ, t, x)] ≤ 0

)
.

(vi) −fj[(mυ, t, x)] ≤ 0 for each j ∈ J and for each (t, x) ∈ τ × pj.

The finite volume discretization F of C is called nonpositive at m iff C is nonpositive at
m, and V, Sout, Scon, and Sjump are np-admissible.

Definition 3.8.32. Supposed υ = [mυ,∞[. Consider the families of real-valued depen-

dency splittings Sout =
(
(aj,ι

out)
ex.-im.)

(j,ι)∈J×(Jj\{0}), Scon :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFcon
,

and Sjump :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFjump
.

(a) Sout is called bounded at mυ iff Bout,mυ [(C, Sout)] < ∞, where Bout,mυ [(C, Sout)] is
the number defined in (3.8.34).

(b) Scon is called bounded at mυ iff Bcon,1,mυ [(C,Scon)] < ∞ and Bcon,2,mυ [(C,Scon)] <
∞, where Bcon,1,mυ [(C,Scon)] and Bcon,2,mυ [(C,Scon)] are the numbers defined in
(3.8.38).

(c) Sjump is called bounded at mυ iff Bflux,jump,1,mυ [(C, Sjump)] < ∞ and

Bflux,jump,2,mυ [(C, Sjump)] < ∞,

where Bflux,jump,1,mυ [(C, Sjump)] and Bflux,jump,2,mυ [(C,Sjump)] are the numbers de-
fined in (3.8.43).
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Definition 3.8.33. The evolution equation complex C is called locally Lipschitz iff
υ = [mυ,∞[, each of the functions kj, aj,ι

out, aj,ι
out, aγ,1

flux, aγ,2
jump, and fj is real-valued, and

the following conditions (i) – (vii) hold:

(i) There exists a family of scalar-vector-splittings V =
(
(vj,sca, vj,vec)

)
j∈J

such that
∧

r∈R+
0

∨

Lv,sca,r[(C,V)]∈R+
0

∧

(j,t,x)∈J×τ×pj

vj,sca¹υ×{t}×{x}∈ LipLv,sca,r[(C,V)]

(
[mυ,mυ +r],R

)
,

i.e. each vj,sca is locally Lipschitz with respect to its dependence on y ∈ υ. Then
each such V is called locLip-admissible.

(ii)
∧

r∈R+
0

∨
Lk,r[C]∈R+

0

∧
(j,t,x)∈J×τ×pj

kj¹υ×{t}×{x}∈ LipLk,r[C]

(
[mυ,mυ + r],R

)
, i.e. each kj is

locally Lipschitz with respect to its dependence on y ∈ υ.

(iii) Each aj,ι
out is locally Lipschitz with respect to its y-dependence, i.e.

∧

r∈R+
0

∨

Lout,r[C]∈R+
0

∧

(j,ι,t,x)
∈J×(Jj\{0})×τ×Γj,ι

aj,ι
out¹υ×{t}×{x}∈ LipLout,r[C]

(
[mυ,mυ + r],R

)
.

Then the family of real-valued dependency splittings

Sout =
(
(aj,ι

out)
ex.-im.)

(j,ι)∈J×(Jj\{0})

is called locLip-admissible iff each (aj,ι
out)

ex.-im.
is locally Lipschitz with respect to

its dependence on the second argument, i.e.

∧

r∈R+
0

∨

Lout,r[(C,Sout)]∈R+
0

∧

(j,ι,y,t,x)
∈J×(Jj\{0})×υ×τ×Γj,ι

(
(aj,ι

out)
ex.-im.¹{y}×υ×{t}×{x}

∈ LipLout,r[(C,Sout)]

(
[mυ, mυ + r],R

)
)

.

(iv) Each aγ,1
flux is locally Lipschitz with respect to its y-dependence, i.e.

∧

r∈R+
0

∨

Lflux,1,r[C]∈R+
0

∧

(γ,t,x)
∈IFcon×τ×γ

(
aγ,1

flux¹υ×{t}×{x}
∈ LipLflux,1,r[C]

(
[mυ,mυ + r],R

)
)

.

Then the family of real-valued dependency splittings

Scon :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFcon

is called locLip-admissible iff each (aγ,1
flux)

ex.-im.
is locally Lipschitz with respect to

its dependence on the second argument, i.e.

∧

r∈R+
0

∨

Lflux,1,r[(C,Scon)]∈R+
0

∧

(γ,y,t,x)
∈IFcon×υ×τ×γ

(
(aγ,1

flux)
ex.-im.¹{y}×υ×{t}×{x}

∈ LipLflux,1,r[(C,Scon)]

(
[mυ,mυ + r],R

)
)

.
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(v)
∧

r∈R+
0

∨
Ljump,2,r[C]∈R+

0

∧
(γ,t,x)

∈IFjump×τ×γ

aγ,2
jump ¹υ×{t}×{x}∈ LipLjump,2,r[C]

(
[mυ,mυ + r],R

)
, i.e.

each aγ,2
jump is locally Lipschitz with respect to its y-dependence.

(vi) Each aγ,1
flux ¹υ×{t}×{x} +aγ,1

jump ¹υ×{t}×{x} is locally Lipschitz with respect to its y-
dependence, i.e.

∧

r∈R+
0

∨

Lflux,jump,r[C]∈R+
0

∧

(γ,t,x)
∈IFjump×τ×γ

((
aγ,1

flux + aγ,1
jump

)
¹υ×{t}×{x}

∈ LipLflux,jump,r[C]

(
[mυ,mυ + r],R

)
)

.

Then the family of real-valued dependency splittings

Sjump :=
(
(aγ,α

flux)
ex.-im.)

(α,γ)∈{1,2}×IFjump

is called locLip-admissible iff

∧

r∈R+
0

∨

Lflux,jump,r[(C,Sjump)]∈R+
0

∧

(γ,y,t,x)
∈IFjump×υ×τ×γ

(
(aγ,1

flux)
ex.-im.¹{y}×υ×{t}×{x} +aγ,1

jump¹υ×{t}×{x}

∈ LipLflux,jump,r[(C,Sjump)]

(
[mυ,mυ + r],R

)
)

.

(vii)
∧

r∈R+
0

∨
Lf,r[C]∈R+

0

∧
(j,t,x)∈J×τ×pj

fj¹υ×{t}×{x}∈ LipLf,r[C]

(
[mυ,mυ + r],R

)
, i.e. each fj is

locally Lipschitz with respect to its dependence on y ∈ υ.

The finite volume discretization F of C is called locally Lipschitz iff C is locally Lipschitz
and V, Sout, Scon, and Sjump are locLip-admissible.

Remark 3.8.34. If F is increasing, nonpositive at m, and locally Lipschitz; and if
Sout, Scon, and Sjump are bounded at mυ, then all the hypotheses of the Decomposition
Lemmas are satisfied with the possible exception of Lem. 3.8.10(nn). However, Lem.
3.8.10(nn) is also satisfied if F is bounded from above (s. Def. 3.7.43(ii)).

—

If the hypotheses (i) – (iv) of the following Th. 3.8.35 are satisfied, then for each suf-
ficiently large M ∈]mυ,∞[, the finite volume discretization F has a unique solution

in
(
[mυ,M ]IΠ,D

){0,...,n}
(cf. Def. 3.7.42), provided that the fineness ∆ of the time dis-

cretization is sufficiently small, where, in general, ∆ needs to be chosen smaller if M is
chosen larger. The precise statement reads as follows:

Theorem 3.8.35. Let F be a finite volume discretization of the evolution equation
complex C according to Def. 3.7.41, υ = [mυ,∞[, m := (mυ, . . . , mυ).
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Assume conditions (i) – (iv) below. Let B↓,↑[(C, Π,V,Sout,Scon, Sjump)], Linv,b[C],
λd,min[Π], and BDir[C] be the values defined in (3.8.58), Def. 3.8.30(i), (3.8.55), and
(3.7.27), respectively. Then for each M ∈]mυ,∞[ satisfying

M > S : =
B↓,↑[(C, Π,V,Sout,Scon,Sjump)]

Linv,b[C] · λd,min[Π]
+ mυ, (3.8.49a)

M ≥ max
{

BDir[C], max
{‖u(0)

j ‖max : j ∈ J
}}

, (3.8.49b)

F has a unique solution

(
U (ν)

)
ν∈{0,...,n} = (u

(ν)
(k,C))(ν,(k,C))∈{0,...,n}×IΠ,D ∈

(
[mυ,M ]IΠ,D

){0,...,n}
,

provided that

∆ · LM−mυ [(C, Π, V, Sout,Scon,Sjump)] <
(
Linv,b[C] · λd,min[Π]

) · M − S

M −mυ

, (3.8.49c)

∆ ≤ 1, (3.8.49d)

where the number LM−mυ [(C, Π,V,Sout,Scon,Sjump)] is according to the definition in
(3.8.54) below.

(i) F is bounded from above.

(ii) F is increasing, nonpositive at m, and locally Lipschitz.

(iii) The families of dependency splittings Sout, Scon, and Sjump are bounded at mυ.

(iv) F is such that the discretized nonlocal operators B
(ν)
(k,C), A

(ν)
con,(k,C), and A

(ν)
jump,(k,C)

have the ↓-property.

Proof. If (k, C) ∈ IΠ,D,Dir, then for each ν ∈ {0, . . . , n}, u
(ν)
(k,C) is uniquely defined by Def.

3.7.42(ii), where u
(ν)
(k,C) is well-defined, since it is required in Def. 3.4.6(ii) that different

Dirichlet functions must agree on common continuous interfaces.

For non-Dirichlet indices, the solution (u(ν))ν∈{0,...,n} ∈ (υIΠD,¬Dir){0,...,n} is constructed
by induction on ν.

For ν = 0, the solution is uniquely defined by Def. 3.7.42(i), i.e. u
(0)
(k,C) := u

(0)
j [xk],

picking any j ∈ V [C]. This is well-defined by Def. 3.4.6(i),(iii).

Now assume ν > 0. By induction, there is a unique

(u(ν̃))ν̃∈{0,...,ν−1} ∈
(
[mυ,M ]IΠ,D,¬Dir

){0,...,ν−1}
,

satisfying Def. 3.7.42(iii) for each ν̃ ∈ {1, . . . , ν − 1}. One needs to show that there is
a unique u(ν) ∈ [mυ,M ]IΠ,D,¬Dir such that Def. 3.7.42(iii) holds for ν.
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Define

∧

(k,C)∈IΠ,D,¬Dir

H(ν)
(k,C) : υIΠ,D,¬Dir −→ R, H(ν)

(k,C)[u] := h
(ν)
(k,C)

[(
u(ν−1), u

)]
. (3.8.50)

Theorem 3.8.4 is applied to prove the existence and uniqueness of u(ν) ∈ [mυ,M ]IΠ,D,¬Dir

satisfying Def. 3.7.42(iii). The strategy is to find continuous functions h
(ν)
(k,C), g

(ν)
(k,C), g̃

(ν)
(k,C),

b
(ν)
(k,C), h̃

(ν)
(k,C), and numbers P

(ν)
(k,C) and ∆ν such that for each (k, C) ∈ IΠ,D,¬Dir:

∧

u∈υ
IΠ,D,¬Dir

H(ν)
(k,C)[u] = h

(ν)
(k,C)[u(k,C)]− g

(ν)
(k,C)[u], (3.8.51a)

g
(ν)
(k,C) =

P
(ν)
(k,C)
∆ν

+ g̃
(ν)
(k,C), (3.8.51b)

h
(ν)
(k,C) =

b
(ν)
(k,C)
∆ν

+ h̃
(ν)
(k,C), (3.8.51c)

and such that the hypotheses of Lem. 3.8.5 are satisfied. To that end, the decomposi-
tions of the discretization operators provided in Secs 3.8.3 – 3.8.8 are used to define for
each (k, C) ∈ IΠ,D,¬Dir:

h̃
(ν)
(k,C) : υ −→ R,

h̃
(ν)
(k,C) := vν,↑

int,¬Dir,(k,C) + v
(ν)
int,Dir,(k,C) + vν,↑

out,(k,C) + vν,↑
IF,(k,C) + kν,↑

¬Dir,(k,C) + kν,↑
Dir,(k,C)

+ aν,↑
out,(k,C)¹{u(ν−1)

(k,C) }×υ
+aν,↑

flux,con,(k,C)¹{u(ν−1)
(k,C) }×υ

+aν,↑
jump,1,¬Dir,(k,C) + a

(ν)
jump,1,Dir,(k,C)

+ aν,↑
jump,2,¬Dir,(k,C)¹{u(ν−1)

(k,C) }×υ
+a

(ν)
jump,2,Dir,(k,C)¹{u(ν−1)

(k,C) }×υ
+fν,↑

(k,C), (3.8.52a)

g̃
(ν)
(k,C) : υIΠ,D,¬Dir −→ R,

g̃
(ν)
(k,C)[u] := vν,↓

int,¬Dir,(k,C)[u] + vν,↓
out,(k,C)[u(k,C)] + vν,↓

IF,(k,C)[u(k,C)] + kν,↓
¬Dir,(k,C)[u] + kν,↓

Dir,(k,C)[u]

+ B
(ν)
(k,C)[(u

(ν−1), u)] + aν,↓
out,(k,C)[(u

(ν−1)
(k,C) , u(k,C))] + A

(ν)
con,(k,C)[(u

(ν−1), u)]

+ aν,↓
flux,con,(k,C)[(u

(ν−1)
(k,C) , u(k,C))] + aν,↓

jump,1,¬Dir,(k,C)[u] + A
(ν)
jump,(k,C)[(u

(ν−1), u)]

+ aν,↓
jump,2,¬Dir,(k,C)[(u

(ν−1), u)] + fν,↓
(k,C)[u(k,C)]. (3.8.52b)

Moreover, let

P
(ν)
(k,C) := b

(ν−1)
(k,C)

[
u

(ν−1)
(k,C)

]
, (3.8.52c)

∆ν := tν − tν−1, (3.8.52d)
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b
(ν)
(k,C) : υ −→ R+

0 , b
(ν)
(k,C) := b

(ν)
(k,C), (3.8.52e)

h
(ν)
(k,C) : υ −→ R, h

(ν)
(k,C)[y] :=

b
(ν)
(k,C)[y]

∆ν

+ h̃
(ν)
(k,C)[y], (3.8.52f)

g
(ν)
(k,C) : υIΠ,D,¬Dir −→ R, g

(ν)
(k,C)[u] :=

P
(ν)
(k,C)
∆ν

+ g̃
(ν)
(k,C)[u]. (3.8.52g)

It remains to verify (3.8.51a) and the hypotheses of Lem. 3.8.5, which is done in the
following. The conclusions of the Decomposition Lemmas (s. Def. 3.8.29) are used
below, where hypotheses (i), (ii), and (iii) of Th. 3.8.35 ensure that the hypotheses of
the Decomposition Lemmas are satisfied (s. Rem. 3.8.34).

(3.8.51a): To show h
(ν)
(k,C)

[(
u(ν−1), u

)]
= h

(ν)
(k,C)[u(k,C)]− g

(ν)
(k,C)[u], observe

b
(ν)
(k,C)[u(k,C)]− P

(ν)
(k,C)

∆ν

= h
(ν)
(k,C),(a)

[(
u(ν−1), u

)]

by (3.7.9), and

h̃
(ν)
(k,C)[u(k,C)]− g̃

(ν)
(k,C)[u] = h

(ν)
(k,C),(b)

[(
u(ν−1), u

)]
+ · · ·+ h

(ν)
(k,C),(n)[u], (3.8.53)

where (3.8.53) is precisely what was proved in parts (a) of the Decomposition Lemmas
(s. Def. 3.8.29).

It is ∆ν ∈ R+, since the sequence (tν)ν∈{0,...,n} is strictly increasing. The definition of

b
(ν)
(k,C) in (3.7.10) shows that P

(ν)
(k,C) ∈ R+

0 and that b
(ν)
(k,C) is nonnegative, since the bj are

nonnegative by hypothesis (ii).

That the h
(ν)
(k,C) and g

(ν)
(k,C) have the forms required in Lem. 3.8.5(i),(ii) is ensured by the

definitions in (3.8.52f) and (3.8.52g), respectively.

Lem. 3.8.5(iii): The b
(ν)
(k,C) are increasing using (3.7.10) and that the maps bj¹υ×{t}×{x},

(t, x) ∈ τ × pj, are increasing by hypothesis (ii). The h̃
(ν)
(k,C) are increasing, since all

its summands according to (3.8.52a) are increasing, as was proved in parts (b) of the
Decomposition Lemmas (s. Def. 3.8.29).

Lem. 3.8.5(iv): The g̃
(ν)
(k,C) are minimal at m, since all its summands according to

(3.8.52b) are minimal at m, as is granted by hypothesis (iv) for B
(ν)
(k,C), A

(ν)
con,(k,C), and

A
(ν)
jump,(k,C) (cf. Def. 3.8.25(i)), and was proved in parts (c) of the Decomposition Lemmas

(s. Def. 3.8.29) for all other summands.

Lem. 3.8.5(v): It suffices to show b
(ν)
(k,C)[mυ] ≤ P

(ν)
(k,C) and h̃

(ν)
(k,C)[mυ] ≤ g̃

(ν)
(k,C)[m]. It is

b
(ν)
(k,C)[mυ] = b

(ν)
(k,C)[mυ] ≤ b

(ν−1)
(k,C) [mυ] ≤ b

(ν−1)
(k,C)

[
u

(ν−1)
(k,C)

]
= P

(ν)
(k,C),
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since the bj ¹{mυ}×τ×{x}, x ∈ pj, are decreasing by hypothesis (ii), mυ ≤ u
(ν−1)
(k,C) , and

the bj ¹υ×{t}×{x}, (t, x) ∈ τ × pj, are increasing by hypothesis (ii). The remaining

estimate h̃
(ν)
(k,C)[mυ] ≤ g̃

(ν)
(k,C)[m] follows by summing the statements in parts (d) of the

Decomposition Lemmas (s. Def. 3.8.29) and combining the result with Def. 3.8.25(ii).

Lem. 3.8.5(vi): Each g̃
(ν)
(k,C) is Lr[(C, Π,V,Sout,Scon,Sjump)]-Lipschitz on [mυ,mυ +

r]IΠ,D,¬Dir for each r ∈ R+ and independently of (k, C) ∈ IΠ,D,¬Dir and ν ∈ {0, . . . , n},
where

Lr[(C, Π, V, Sout,Scon,Sjump)]

:= 3 · Lnonloc,r[(C, Π)] +
(
L↓k,r[C] + LDir,k,r[C]

) · dmax[Π] + Lf,r[C] · λd,max[Π]

+
(
3 · Lv,r[(C,V)] + Lout,r[(C,Sout)] + Lflux,1,r[(C,Scon)]

+ Ljump,2,r[C] + Lflux,jump,r[(C,Sjump)]
)
· λd−1,max[Π] : (3.8.54)

The Lipschitz constants for the summands of g̃
(ν)
(k,C) according to (3.8.52b) are given by

Def. 3.8.25(iv) for B
(ν)
(k,C), A

(ν)
con,(k,C), and A

(ν)
jump,(k,C), and were already proved in parts

(f) of the Decomposition Lemmas (s. Def. 3.8.29) for the remaining summands. Then

the Lipschitz constant of g̃
(ν)
(k,C) is given by the sum of the Lipschitz constants of its

summands (s. Rem. C.7.7(d)).

Lem. 3.8.5(vii): It follows from (3.7.10), hypothesis (ii), and 3.8.30(i) that each b
(ν)
(k,C),

(k, C) ∈ IΠ,D,¬Dir, is inverse (Linv,b[C] · λd,min[Π])-Lipschitz, where

λd,min[Π] := min
{
λd[ω

(j)
k ] : (k, j) ∈ IΠ × J

}
. (3.8.55)

It is noted that λd,min[Π] > 0, since each ω
(j)
k is a d-polytope (s. Sec. 3.5.3).

Corresponding to (3.8.11), let

S
(ν)
(k,C) :=

P
(ν)
(k,C) + max

{
0, g̃

(ν)
(k,C)[m]

}−min
{
0, h̃

(ν)
(k,C)[m]

}

Linv,b[C] · λd,min[Π]
+ mυ, (3.8.56a)

S(ν) := max
{
S

(ν)
(k,C) : (k, C) ∈ IΠ,D,¬Dir

}
. (3.8.56b)

The following Cl. 1 shows that the numbers S(ν) can be bounded independently of
ν ∈ {0, . . . , n}, i.e. independently of the time discretization.

Claim 1. It holds true that

S(ν) ≤ S =
B↓,↑[(C, Π,V,Sout,Scon, Sjump)]

Linv,b[C] · λd,min[Π]
+ mυ, (3.8.57)

where

B↓,↑[(C, Π,V,Sout, Scon,Sjump)]
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:= Bb,0[C] · λd[p] + Bs[(C, Π, V)] · (tf − t0) +
1

2

(
B↓

k,Dir[C] + B↑
k,Dir[C]

) · dmax[Π]

+
(

max
{
0, Bout,mυ [(C,Sout)]

}
+ max

{
0, Bcon,1,mυ [(C, Scon)]

}

+ max
{
0, Bcon,2,mυ [(C,Scon)]

}
+ 2 ·Bjump,mυ [C] + 2 ·Bjump,Dir,mυ [C]

+ max
{
0, Bflux,jump,1,mυ [(C, Sjump)]

}
+ 2 ·max

{
0, Bflux,jump,2,mυ [(C,Sjump)]

}

+ max
{
0, Bflux,Dir[C]

})
· λd−1,max[Π]

+ Bf,mυ [C] · λd,max[Π]. (3.8.58)

Proof. Hypotheses (i) and (ii) grant the hypotheses (i) and (ii) of Th. 3.7.50. Thus,
using (3.7.134a):

0 ≤ P
(ν)
(k,C) ≤ Nb,¬Dir ≤ Bb,0[C] · λd[p] + Bs[(C, Π, V)] · (tf − t0). (3.8.59)

The proof of (3.8.58) is concluded by remarking that the summands according to
(3.8.52a) and (3.8.52b) are bounded by Def. 3.8.25(iii) together with the estimates
proved in parts (e) of the Decomposition Lemmas (s. Def. 3.8.29). N

The only hypotheses of Lem. 3.8.5 that remain to be verified are (3.8.12), where (3.8.12a)
and (3.8.12c) are just hypotheses (3.8.49a) and (3.8.49d), respectively, taking into ac-
count ∆ν ≤ ∆. Finally, by hypothesis (3.8.49c):

∆ν · LM−mυ [(C, Π, V,Sout, Scon,Sjump)] ≤∆ · LM−mυ [(C, Π,V,Sout,Scon, Sjump)]

<
(
Linv,b[C] · λd,min[Π]

) · M − S

M −mυ

,

which yields (3.8.12b).

Now, due to the conclusion of Lem. 3.8.5, all hypotheses of Th. 3.8.4 are satisfied, and
the conclusion of Th. 3.8.4 provides a unique vector (u

(ν)
(k,C))(k,C)∈IΠ,D,¬Dir

∈ [mυ,M ]IΠ,D,¬Dir

satisfying Def. 3.7.42(iii). ¥
Remark 3.8.36. It is noted that

lim
M→∞

M − S

M −mυ

= 1. (3.8.60)

Thus, given 1 > δ > 0, one can impose the additional condition, to choose M sufficiently
large such that M−S

M−mυ
> δ, which is assumed within the current remark.

If the number LM−mυ [(C, Π,V,Sout, Scon,Sjump)], occurring in (3.8.49c) in Th. 3.8.35,
is independent of M (i.e. if Lr[(C, Π,V,Sout,Scon, Sjump)] defined in (3.8.54) is inde-
pendent of r), then ∆ just needs to satisfy (3.8.49d) and

∆ · LM−mυ [(C, Π,V, Sout,Scon,Sjump)] <
(
Linv,b[C] · λd,min[Π]

) · δ, (3.8.61)

i.e. ∆ can be chosen independently of M .
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3.8.10 Example: Coupled Transient Heat Equations

In the general situation of Th. 3.8.35, the dependence of the fineness ∆ of the discretiza-
tion of the time domain τ on the fineness h of the space discretization (cf. (3.5.2)) can
be very complicated. In general, λd,min, LM−mυ , and also the number M itself all de-
pend on the space discretization Π. Therefore, the purpose of the present section is
to consider situations, where the dependence of ∆ on h is computed explicitly. The
chosen setting is the situation of coupled transient heat equations, where one equation
is considered on a gas domain and another equation is considered on a solid domain (s.
Ex. 3.1.1(b)).

Domains

As usual, let τ = [t0, tf ] denote the time domain. Let p1 denote the domain of the gas
phase, and let p2 denote the domain of the solid material βj. For simplicity, it is further
assumed that the shape of the domains is such that they can be discretized into cubes
of equal size (s. Fig. 3.28). Thus, the polytope discretization Π = (ωk)k∈IΠ of p = p1∪p2

is supposed to be such that each ωk is a cube, each side having length h, where the
discretization points are chosen such that ‖xk−xl‖2 ≥ h whenever ∂regωk∩∂regωl 6= ∅. In
consequence, λ3[ωk] = h3 and λ2[∂ωk] = 6h2 for each k ∈ IΠ, λd,max[Π] = h3, dmax[Π] ≤
λ2[∂ωk]

h
= 6h. Furthermore, it is assumed that the ω

(j)
k are such that λ3[ω

(j)
k ] ≥ h3

8
(i.e.

λd,min[Π] ≥ h3

8
), λd−1,max[Π] ≤ 2 · λ2[∂ωk] = 12h2.

Γ2,3

p2

p1

discretization
points

Γ2,0

Γ2,1

Γ2,2

control
volumes

Figure 3.28: Section through the discretized cubic domain p = p1 ∪ p2.
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As the unknowns u1 and u2 are supposed to represent absolute temperature, their range
is υ = [mυ,∞[ with mυ = 0.

Input Functions of the Heat Equations

The situation of Ex. 3.1.1(b) is considered with c
[βj ]
sp , and f [βj ] being independent of the

unknown. For simplicity, let vgas = 0. Thus, letting u1 := Tgas and u2 := T [βj ], one

has b1[(u1, t, x)] = z(Ar)R
M(Ar) ρgas[x] u1, k1[(u1, t, x)] = κ(Ar)[(u1, t, x)], v1[(u1, t, x)] = 0, and

f1[(u1, t, x)] = 0, and b2[(u2, t, x)] := ρ[βj ][x] c
[βj ]
sp [x] u2, k2[(u2, t, x)] := κ[βj ][(u2, t, x)],

v2[(u2, t, x)] := 0, and f2[(u2, t, x)] := f [βj ][(t, x)].

The only reasonable choice for V then is V =
(
(0, 0)

)
j∈{1,2}.

It is assumed that ρgas, ρ[βj ], and c
[βj ]
sp are bounded away from zero, i.e. there is δmin ∈ R+

such that ρgas > δmin, ρ[βj ] > δmin, and c
[βj ]
sp > δmin. It is convenient for subsequent use,

to choose δmin sufficiently small, such that z(Ar)R
M(Ar) ≥ δmin.

Interface Conditions

It is presumed that γ := ∂regp1 ∩ ∂regp2 is a jump interface, where, as in Ex. 3.1.2(b),
aγ,1

jump[(u1, t, x)] := ξjumpu1, aγ,2
jump[(u2, t, x)] := ξjumpu2, ξjump ∈ R+. In particular, IFcon =

∅. The flux interface condition is supposed to have its most simple form, i.e. aγ,1
flux =

aγ,2
flux = Aγ = 0, and also (aγ,1

flux)
ex.-im.

= (aγ,2
flux)

ex.-im.
= (Aγ)

ex.-im. = 0.

Boundary Conditions

The boundary conditions of Ex. 3.1.3(a),(b),(c) are allowed in the current example,
where the boundary conditions of Ex. 3.1.3(d) is later added in Ex. 3.8.38 below. As
in Fig. 3.28, the case is considered where only p2 has outer boudaries. To permit the
prescription of the different boundary conditions on ∂p = ∂p2 ∩ ∂p, there is a partition
(Γ2,ι)ι∈{0,1,2,3} of ∂p (s. Fig. 3.28), such that u2,Dir = 0 on Γ2,0, a2,1

out is independent of u2

on Γ2,1, a2,2
out[(u2, t, x)] = ξout

(
u2 − uext[(t, x)]

)
, ξout ∈ R+, on Γ2,2, and B2,ι = 0 for each

ι ∈ {1, 2, 3}. The function a2,3
out on Γ2,3 is specified in Exs 3.8.37 and 3.8.38, respectively.

No dependency splitting is considered, i.e. (aj,ι
out)

ex.-im.[(
(ỹ, y), t, x

)]
= aj,ι

out[(y, t, x)] and

(B2,ι)
ex.-im. = 0 for each ι ∈ {1, 2, 3}.

Linear, Coupled Transient Heat Equations

Example 3.8.37. It is assumed that κ(Ar) and κ[βj ] are independent of the unknown,
i.e. k1[(u1, t, x)] = κ(Ar)[(t, x)] and k2[(u2, t, x)] := κ[βj ][(t, x)]. Moreover, let a2,3

out = 0.
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Calculation of Bs[(C, Π,V)]: One has BDir[C] = 0, Bv,Dir[(C,V)] = 0, Bv,sca,Dir[(C, V)] =
0. In the current situation, Lem. 3.7.25 applies with av2,ι

out[(ỹ, y, t, x)] = −a2,ι
out[(y, t, x)],

i.e. with Bout[C] = max
{

sup(−a2,ι
out) : ι ∈ {1, 2, 3}}. Moreover, Bcon[C] = 0 as

IFcon = ∅, and Lem. 3.7.33 applies with avjump,α[γ] = 0, α ∈ {1, 2}, Bjump[C] = 0,
and Bjump,Dir[C] = 0, since for α ∈ {1, 2}, sup(−aγ,α

jump) = 0 as well as aγ,α
jump[(0, t, x)] = 0.

Then, BIF[C] = 0 according to Rem. 3.7.35. Thus,

Bs[(C, Π,V)] = Bout[C] · λd−1[∂p] + Bf [C] · λd[p]. (3.8.62)

Calculation of B↓,↑[(C, Π,V,Sout,Scon,Sjump)]: Since BDir[C] = 0, one has B↑
k,Dir[C] =

B↓
k,Dir[C] = 0. Lemma 3.8.16 applies with Bout,mυ [(C, Sout)] = Bout[C] (see above).

From IFcon = ∅, one gets Bcon,1,mυ [(C,Scon)] = Bcon,2,mυ [(C,Scon)] = 0, and since
BDir[C] = 0 as well as aγ,α

jump[(0, t, x)] = 0, α ∈ {1, 2}, Lem. 3.8.21 applies with
Bjump,mυ [C] = Bjump,Dir,mυ [C] = 0. Lemma 3.8.23 applies with Bflux,jump,1,mυ [(C,Sjump)]
= Bflux,jump,2,mυ [(C,Sjump)] = Bflux,Dir[C] = 0. The uj-independence of the fj yields
Bf,mυ [C] = Bf [C]. Thus,

B↓,↑[(C, Π, V, Sout,Scon,Sjump)]

≤ Bb,0[C] · λd[p] +
(
Bout[C] · λd−1[∂p] + Bf [C] · λd[p]

) · (tf − t0)

+ 12Bout[C]h2 + Bf [C]h3.

(3.8.63)

Next, one can choose Linv,b[C] = δ2
min.

Then, according to (3.8.49a),

S ≤ 8 ·B↓,↑[(C, Π,V, Sout,Scon,Sjump)]

δ2
minh

3
. (3.8.64)

According to (3.8.49), one has to choose

M > max
{

S, max
{‖u(0)

j ‖max : j ∈ {1, 2}}
}

. (3.8.65)

Calculation of Lr[(C, Π,V,Sout, Scon,Sjump)], r ∈ R+: Since all nonlocal operators
vanish, Lnonloc,r[(C, Π)] = 0. Also, Lv,r[C] = 0 by the above definition of V, and
Lflux,1,r[(C, Scon)] = 0 since IFcon = ∅. Since the kj and fj are independent of the

solution, one can choose Lk,r[C] = Lf,r[C] = 0. In consequence, L↓k,r[C] = 5
2
· Bk,mυ [C],

LDir,k,r[C] = Bk,mυ [C]. As each a2,ι
out is either 0-Lipschitz or ξout-Lipschitz, one can choose

Lout,r[(C, Sout)] = ξout. As aγ,2
jump is ξjump-Lipschitz, one can choose Ljump,2,r[C] = ξjump.

As (aγ,1
flux)

ex.-im.
= 0 and aγ,1

jump is ξjump-Lipschitz, one can choose Lflux,jump,r[(C,Sjump)] =
ξjump. Thus,

Lr[(C, Π, V,Sout, Scon,Sjump)] ≤ 7

2
·Bk,mυ [C] · 6h +

(
ξout + 2ξjump

) · 12h2. (3.8.66)
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In particular, Lr[(C, Π,V, Sout,Scon,Sjump)] is independent of r (cf. Rem. 3.8.36).

Now, according to (3.8.49), ∆ can be chosen

∆ < min

{
1,

δ2
minh

3

21 ·Bk,mυ [C] · h +
(
ξout + 2ξjump

) · 12h2
·
(

1− S

M

)}
, (3.8.67)

showing that the fineness of the time discretization depends quadratically on the fineness
of the space discretization for h → 0.

Nonlinear, Coupled Transient Heat Equations

Example 3.8.38. The only difference between this example and Ex. 3.8.37 is the
consideration of nonlinearities in the kj and in the boundary conditions on Γ2,3.

One might want to choose k1 according to (A.2.2). However, the function in (A.2.2)
is not locally Lipschitz at T = 0, and thus not admissable.1 Therefore, it is set
k1[(u1, t, x)] := u1, and a proper nonlinearity is only considered in k2, where

k2[(u2, t, x)] := ake
bku2 (3.8.68)

with positive real numbers ak and bk. Then k2 has the form (A.3.5c). It is continuously
differentiable with respect to u2, and the derivative is

k′2[(u2, t, x)] := akbke
bku2 . (3.8.69)

Furthermore, let

a2,3
out[(u2, t, x)] = σ ε

(
u4

2 − T 4
room

)
, (3.8.70)

ε ∈]0, 1]. Then a2,3
out is continuously differentiable with respect to u2, and the derivative

is

(a2,3
out)

′[(u2, t, x)] = 4σ ε u3
2. (3.8.71)

Calculation of Bs[(C, Π,V)] and B↓,↑[(C, Π, V, Sout,Scon,Sjump)]: There is basically no
change in comparison with the calculations in Ex. 3.8.37, and, in particular, (3.8.62)
and (3.8.63) still hold: Since BDir = 0, the kj do not contribute to Bs[(C, Π, V)]. The
only change can occur in the value of Bout[C], as sup(−a2,3

out) = 0 in Ex. 3.8.37, and
0 < sup(−a2,3

out) ≤ σT 4
room in the present example.

One can still choose Linv,b[C] = δ2
min, and (3.8.64) remains valid as well as (3.8.65).

1As (A.2.2) was fitted according to data for T ≥ 290K anyway, one could consider a Lipschitz
continuous cutoff for small T . However, this was not done here, as, in practice, it was not necessary for
the simulations. Analogous remarks also apply with respect to some of the other material functions in
App. A.
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The main difference between Exs 3.8.37 and 3.8.38 lies in the calculation of the number
Lr[(C, Π,V,Sout,Scon, Sjump)], r ∈ R+. Even so, one still has

Lnonloc,r[(C, Π)] = Lv,r[C] = Lflux,1,r[(C,Scon)] = Lf,r[C] = 0,

Ljump,2,r[C] = Lflux,jump,r[(C,Sjump)] = ξjump.

According to Rem. C.7.7(i), k2¹υ×{t}×{x} is (akbke
bkr)-Lipschitz on [0, r], since k′2 is in-

creasing in u2. As k1¹υ×{t}×{x} is 1-Lipschitz, one can choose Lk,r[C] = max{1, akbke
bkr}.

Moreover, Bk,mυ [C] = ak, such that L↓k,r[C] = 5r max{1, akbke
bkr} + 5

2
ak, LDir,k,r[C] :=

r max{1, akbke
bkr} + ak. To choose Lout,r[(C,Sout)], it is observed that a2,1

out ¹υ×{t}×{x}
is 0-Lipschitz, a2,2

out ¹υ×{t}×{x} is ξout-Lipschitz, and a2,3
out ¹υ×{t}×{x} is (4σ ε r3)-Lipschitz

on [0, r] by Rem. C.7.7(i), since (a2,3
out)

′ is increasing in u2. Hence, one can choose
Lout,r[(C, Sout)] = max{ξout, 4σ ε r3}. Thus,

Lr[(C, Π, V, Sout,Scon,Sjump)] ≤
(
36 · r max{1, akbke

bkr}+ 21 · ak

)
h

+
(
max{ξout, 4σ ε r3}+ 2ξjump

) · 12h2.
(3.8.72)

Now M is chosen sufficiently large, such that 1− S
M
≥ 1

2
, max{1, akbke

bkM} = akbke
bkM ,

and max{ξout, 4σ ε M3} = 4σ ε M3. Then ∆ can be chosen

∆ < min

{
1,

δ2
minh

3

(
72 ·M akbkebkM + 42 · ak

)
h +

(
4σ εM3 + 2ξjump

) · 24h2

}
, (3.8.73)

showing that for fixed M , the fineness of the time discretization still depends quadrat-
ically on the fineness of the space discretization for h → 0. However, in the present
case, the exponential function in k2 yields an exponential dependence of ∆ on M .

3.9 Perspectives on Convergence

Given a number h ∈ R+, call a finite volume discretization F of C h-admissible iff its
space discretization Π has fineness less than h (cf. (3.5.2)) and F satisfies the hypotheses
of Th. 3.8.35. In particular, the fineness ∆ of the time discretization of F has to be
sufficiently fine. Let Sh denote the set of all h-admissible finite volume discretizations
of C, and let S :=

⋃
h∈R+ Sh.

Given F ∈ S, Th. 3.8.35 provides a solution UF to F:

UF = (uν,F
(k,C))(ν,(k,C))∈{0,...,nF}×IΠF,D .

According to Th. 3.7.50, one has a discrete L∞-L1 a priori bound Nall[UF] ≤ B[(C,V)],
where B[(C,V)] is independent of ΠF, assuming that there are no Dirichlet boundaries.
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A suitable interpolation of UF should yield an approximation uF of a solution to C.
For example, one can use constant interpolation in space and linear interpolation in
time: Given j ∈ J and x ∈ pj, there is a unique (k, C) ∈ IΠF,D such that x ∈ ω

(j)
k,F and

j ∈ V [C], C ∈ CoCmp[Gωk,F ]. For t ∈ [t
(F)
ν+1, t

(F)
ν ], let

uj,F[(t, x)] :=
uν+1,F

(k,C) − uν,F
(k,C)

t
(F)
ν+1 − t

(F)
ν

· (t− t(F)
ν ) + uν,F

(k,C). (3.9.1)

Then uF defined by uF ¹τ×pj
:= uj,F is an element of the evolution space L∞(τ, L1[p]),

where

‖uF‖L∞(τ,L1[p]) = max

{ ∑

j∈V [C],
(k,C)∈IΠF,D

|uν,F
(k,C)| · λd[ω

(j)
k,F] : ν ∈ {0, . . . , nF}

}

= Nall[UF] ≤ B[(C,V)].

(3.9.2)

Since τ is a compact interval, one also has uF ∈ La(τ, L1[p]) for each a ∈ [1,∞[. Thus,
for each a ∈ [1,∞[, there is a closed ball Ba in La(τ, L1[p]) such that {uF : F ∈ S} ⊆ Ba.

Given a sequence hi → 0, and finite volume discretizations Fhi
∈ Shi

with corresponding
solutions uFhi

, one would like to establish the existence of some u such that a subse-
quence of (uFhi

)i∈N converges to u in a suitable space. To use standard compactness
techniques, a suitable space is the dual of some (separable, reflexive) function space,
and La(τ, L1[p]) is not suitable in that respect. Thus, a canonical next step is to im-
prove (3.9.2) into an analogous result in, e.g., L∞(τ, L2[p]) (using additional hypotheses
where appropriate). Usually, one also needs further estimates for discrete gradients and
for time and space translates (see below). Finally, one needs to show that the limit u
is a solution to C, at least in a certain weak sense and, ideally, in the (strong) sense of
Def. 3.4.7.

In [MR01], the method outlined above is used to establish the convergence of a semi-
implicit finite volume scheme for the nonlinear evolution equation

∂tu− div
(
k
[|∇G ∗ u|]∇u

)
= f [u], (3.9.3)

where G is a C∞-function with compact support, and “∗” denotes convolution: A
discrete L∞-L2 estimate ([MR01, Lem. 3.1(i)]), estimates for the discrete gradients in
space ([MR01, Lem. 3.1(ii)]) and time ([MR01, Lem. 3.1(iii)]), and estimates for space
and time translates ([MR01, Lems 3.2 and 3.3]) are used to prove the existence of a
limit u for (h, ∆) → (0, 0) by applying the Fréchet-Kolmogorov Theorem [Bré83, Th.
IV.25] ([MR01, Lem. 3.5]). Subsequently, it is shown that the limit u constitutes a
weak solution ([MR01, Sec. 3.3]).



Chapter 4

Numerical Results

4.1 General Setting and Methods

Throughout this chapter, it is assumed that all components of the growth system are
cylindrically symmetric, and that all relevant physical quantities are cylindrically sym-
metric as well.

All numerical simulations presented in the following were performed for the growth sys-
tem displayed in Fig. 4.1, consisting of a container placed inside of 5 hollow rectangular-
shaped copper induction rings. The geometric proportions of the system are provided
in Sec. 4.2.2 and Fig. 4.2.

During each specific physical growth run, the SiC source powder graphitizes and sinters,
and chemical reactions inside the solid parts of the graphite crucible lead to changes
in its porosity and can cause nonsealing joints. Moreover, accumulation of Si in the
insulation felt is observed. It is not feasible to account for these changes at the current
stage of numerical simulations. Hence, all simulations presented in this chapter are
performed for an idealized growth apparatus, treating all solid materials as homogeneous
and pure. Typical material data are used where available. The material data that have
been used during the following numerical experiments are collected in App. A.

As described in Sec. 2.1.4, for simulations of the temperature distribution evolution, it
is reasonable to assume that the gas phase is made up solely of argon.

Making the aforementioned assumptions, neglecting any mechanical or chemical inter-
actions inside both solid and gas as well as radiative and convective contributions inside
the gas phase (cf. [KPSW01] for numerical simulations including convection), according
to (2.1.34c) and (2.2.1), heat transport in the growth apparatus is described by

z(Ar)R

M (Ar)

∂

∂t
(ρgasT )− div

(
κ(Ar)∇T

)
= 0 (gas phase), (4.1.1a)

ρ[βj ]c[βj ]
sp

∂T

∂t
− div

(
κ[βj ]∇T

)
= f [βj ] (solid component βj). (4.1.1b)

194
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•HTtop

•PTseed

•�Tsource

• TinSource

•�Tbottom

porous graphite

gas
SiC crystal

SiC powderinsu-
lation

blind hole
(for cooling of seed)

��
Γtop

Γbottom

copper
induction coil rings

Figure 4.1: Setup of growth apparatus according to [PAC+99, Fig. 2] indicating loca-
tions of temperatures monitored in the simulations, and also indicating the phantom
closures Γbottom and Γtop.

In (4.1.1), the temperatures Tgas and T [βj ] have been replaced by a single temperature
T , as in absence of data on transition coefficients ξj (cf. (2.3.2b′)), for the simulations
of this chapter, the temperature is presumed to be continuous throughout the whole
apparatus.

It is noted that the relaxation times of the pressure and of the temperature in the gas
phase always lie orders of magnitude below the corresponding relaxation times in the
solid components. Since the gas does not have a significant influence on the temperature
of the solid parts, each temporal snapshot of a transient simulation furnishes the quasi-
stationary temperature distribution in the gas phase determined by the temperature
distribution on the adjacent solid surfaces. In particular, for a given constant pressure
p(Ar), the time derivative in (4.1.1a) vanishes identically as can be seen from (2.1.33d).
Thus, the quasi-stationary temperature distribution in the gas phase does not depend
on the gas pressure. The same result was stated in [KP01, p. 10]; however the reasoning
therein is not completely correct as it is based on [KP01, (3.2)] that contains an error
in its time derivative. The time derivative in [KP01, (3.2)] should simply read 3

2
∂tp

(Ar)
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1 cm

8 mm4.2 cm

1 cm
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copper
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growth
container

Figure 4.2: Geometric proportions of induction coil rings.

as follows from (2.1.33d) and (4.1.1a).

The argument of the preceding paragraph suggests that (4.1.1b) could be coupled with
the stationary version of (4.1.1a), i.e. with

div
(
κ(Ar)∇T

)
= 0. (4.1.2)

However, for the regularity of the problem, it is advantageous to keep the time derivative
in the gas equation, which is also helpful within the present code implementation.
Hence, for the following simulations, (4.1.1a) is used with the constant density ρgas =
ρ(Ar) = 3.73 · 10−3 kg/m3 corresponding to T = 2575 K and p(Ar) = 2 · 103 Pa in an
ideal gas.

Apart from the continuity interface conditions (2.3.2a) and (2.3.2b) for the temperature,
interface conditions (2.3.1) are used for the heat flux. On interfaces adjacent to cavities
or adjacent to the semi-transparent SiC single crystal, the flux interface conditions
include radiative contributions according to the modeling in Sec. 2.4 (s. (2.4.38) and
(2.4.39)).

The nonlocal outer boundary condition (2.4.17) is used on outer boundaries bordering
the outer and lower blind hole, where black body phantom closures such as Γtop and
Γbottom in Fig. 4.1 are used as described at the end of Sec. 2.3. On all remaining outer
boundaries, the Stefan-Boltzmann emission condition (2.3.3) is used.
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Induction heating is modeled according to Sec. 2.5, in particular using cylindrical sym-
metry and the model assumptions of Sec. 2.5.1 as well as sinusoidal time dependence
according to Sec. 2.5.6. The average total power Ptotal is prescribed according to the
method in Sec. 2.5.7. The power is increased linearly during each simulation (s. Sec.
4.2.2). It was found in [KP01, Sec. 3.2] that a domain of radius 1.2 m and height 1.8
m having the configuration Fig. 4.1 (radius: 8.4 cm without coil, height: 25 cm) in its
center, is sufficiently large for accurate computations of heat sources.

A finite volume method as described in Ch. 3 is used for the discretizations arising
in the stationary computation of the magnetic scalar potential and in the transient
temperature simulations. An implicit Euler scheme provides the time discretization;
only emissivity terms are evaluated explicitly, i.e. using the temperature at the previous
time step. The nonlinear systems arising from the finite volume discretization of the
nonlinear heat transport problem are solved by Newton’s method.

The space domains are discretized into unstructured grids of triangles satisfying the
constrained Delaunay criterion. The triangles are used to construct control volumes as
Voronoi boxes (cf. the paragraphs after Def. 3.7.40 and App. C.4.3). A grid of 7247
triangles is used to discretize the growth apparatus without coil rings for the transient
temperature computations, and a grid of some 100000 triangles is used to discretize
the larger domain, where the magnetic scalar potential is computed. Even though the
grid is chosen extremely fine in the coil rings and rather coarse far from the rings, it is
my impression that the discretization could still be optimized to get the same accuracy
with considerably less triangles. However, for the time being, grid optimzation was not
pursued for the benefit of other tasks.

The standard time step control algorithm implemented in the program package pdelib
(see below) is employed. It tries to predict the maximal size of the solution change
during time step number ν + 1, linearly interpolating the maximal size of the solution
change that occurred during the ν-th time step. The size of the time step is chosen
such that the predicted maximal size of the solution change equals a prescribed value.
The time step is discarded and repeated with a smaller step size, if the actual solution
change is considerably larger than the predicted one.

The finite volume discretization of the nonlocal radiation terms according to Secs 3.7.7
and 3.7.8 involves the calculation of visibility and view factors according to (3.7.75)
and (2.4.23). Even for an axisymmetric configuration, in general, this is a complicated
task. The method used is based on [DNR+90] and described in [KPSW01, Sec. 4].

The software resulting from the implementation of the discrete scheme has been named
WIAS-HiTNIHS 1. It is based on the program package pdelib being developed at the
Weierstrass Institute of Applied Analysis and Stochastics (WIAS), Berlin (cf. [FKL01]),
and it uses the grid generator Triangle (cf. [She96]), the interpreted extension language

1High Temperature Numerical Induction Heating Simulator; pronounciation: ∼nice.
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Lua (cf. [IFF96]), the graphics software OpenGL (cf. [Shr99]), together with its X-
Windows based emulation Mesa, and the sparse matrix solver PARDISO (cf. [SGFS00]).

4.2 Compilation of Equations and Parameter Val-

ues Used in Simulations

4.2.1 Equations Used in Simulations

All equations are considered in an axisymmetric setting, i.e. in two space dimensions
using cylindrical coordinates. During the computation of the evolution of the unknown
temperature T , one has to take into account the heat sources due to induction heating.
The heat sources are computed via (4.2.1c), where the complex magnetic scalar potential
φcomplex

A,0 is determined using the method described in Sec. 2.5.7 for a prescribed average

total power Ptotal[t]. The φcomplex
A,0 are redetermined in each time step of the transient

problem for T , to account for temperature dependence of the electrical conductivity
and for changing coil positions.

The transient problem for T consists of the following system (4.2.1), where (2.1.34c)
yields (4.2.1a), (2.2.1) yields (4.2.1b), (2.5.31) and (2.5.33b) yield (4.2.1c), (2.3.2a) and
(2.3.2b) yield (4.2.1d), (2.3.1a) yields (4.2.1e), (2.4.39a) yields (4.2.1f), (2.4.39b) yields
(4.2.1g), (2.4.39c) yields (4.2.1h), (2.4.17) yields (4.2.1i), and (2.3.3) yields (4.2.1j).

Gas Domain

z(Ar)R

M (Ar)

∂

∂t

(
ρ(Ar)T

)− div
(
κ(Ar)∇T

)
= 0 in gas, (4.2.1a)

Solid Domains

ρ[βj ]c[βj ]
sp

∂T

∂t
− div

(
κ[βj ]∇T

)
= f [βj ] in each solid βj, (4.2.1b)

f [βj ] =
σ

[βj ]
c ω2φcomplex

A,0 φcomplex
A,0

2
in each solid βj, (4.2.1c)

Interface Conditions

T is continuous on each interface, (4.2.1d)
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( (
κ[βj1

]∇T [βj1
]
) • n[βj1

] =
(
κ[βj2

]∇T [βj2
]
) • n[βj1

]

on each interface between solids βj1 , βj2 if SiC-Crystal/∈ {βj1 , βj2}

)
, (4.2.1e)

(
q[SiC-Crystal] • n[SiC-Crystal] + εt ·

(Jt

[Rt[T ]
]− σT 4

)
= q[βj ] • n[SiC-Crystal]

on each interface between SiC-Crystal and solid βj

)
, (4.2.1f)




qgas • ngas + εr ·
(Jr

[Rr[T ]
]− σT 4

)

+ εt ·
(Jt

[Rt[T ]
]− σT 4

)
= q[βj ] • ngas

on each interface between solid βj and gas


 , (4.2.1g)

(
qgas • ngas + εr ·

(Jr

[Rr[T ]
]− σT 4

)
= q[SiC-Crystal] • ngas

on each interface between SiC-Crystal and gas

)
. (4.2.1h)

Outer Boundary Conditions

(
q[βj ] • n[βj ] + ε[βj ] · (J [R[T ]

]− σT 4
)

= 0

on each outer boundary of solid βj inside the blind holes

)
, (4.2.1i)

(
− (

κ[βj ]∇T
) • n[βj ] = σε[βj ]

(
T 4 − T 4

room

)

on each outer boundary of solid βj outside the blind holes

)
. (4.2.1j)

4.2.2 Parameters Used in Simulations

Material data and physical constants are not collected in this section, but in App. A.

The configuration in Fig. 4.1 is used in the simulations, assuming a radius of 8.4 cm
and a height of 25 cm for the apparatus without coil rings. The precise geometric
proportions of the coil rings are depicted in Fig. 4.2. While the horizontal gap between
container and coil is fixed at 4.2 cm in all the numerical experiments, the vertical coil
position is varied during the simulations in Sec. 4.3.

The angular frequency ω used for induction heating is calculated according to ω = 2πf ,
where f = 10 kHz. The average total power Ptotal is prescribed according to the method
in Sec. 2.5.7. A so-called ramp is used to prescribe Ptotal[t], increasing the power linearly
from 0 to Pmax, letting

Ptotal[t] :=

{
Pmax

tramp
· t for 0 ≤ t ≤ tramp,

Pmax for t ≥ tramp,
(4.2.2)

where tramp = 2 h and Pmax is varied as a control parameter.

Each simulation starts at Troom = 293 K.
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4.3 Transient Numerical Investigation of Control

Parameters Affecting the Temperature Evolu-

tion

4.3.1 Description of Numerical Experiments

In Sec. 4.3, results of numerical computations are presented and discussed, simulating
the temperature distribution evolution during the heating process of SiC growth by
PVT. The general setting is described in Sec. 4.1, the governing equations and the
fixed parameters are collected in Sec. 4.2, and the used material parameters can be
found in App. A.

The system is heated, starting at room temperature, using a ramp for the heating power
according to (4.2.2). The temperature distribution evolution is studied, varying Pmax

and the coil position. The investigation is similar to the one in [KP01, Sec. 3.3], except
that in [KP01] the heating voltage was prescribed and no ramp was used. Moreover,
some aspects are discussed that were not considered in [KP01], namely the relation
between the temperature differences Tsource − Tseed and Tbottom − Ttop (s. Fig. 4.6), and
the time lag between the heating of the body of the apparatus and the heating of the
source powder (s. Fig. 4.7).

Three series of numerical experiments are considered, referred to as C14
0 , C16

2 , and C18
4 ,

respectively, each series using a different vertical coil position. For C14
0 , the coil is

positioned between z = 0 and z = 14 cm, i.e. the lower rim of the bottom coil ring is
at z = 0, and the upper rim of the top coil ring is at z = 14 cm. The meaning of C16

2

and C18
4 is analogous. There are five experiments in each series, using different values

for Pmax, namely Pmax = 4.0 kW, 5.5 kW, 7.0 kW, 8.5 kW, and 10.0 kW. Subsequently,
a fourth series C18→14

4→0 is considered, using a moving induction coil.

Results for the time evolution and the final values of the temperature evolution at four
points of particular importance are depicted in Figs 4.3, 4.4, and 4.5, respectively. The
monitored points are located at the blind holes at the top and at the bottom of the
growth apparatus, and at the surface of the crystal seed and of the source powder,
respectively (labeled Ttop, Tbottom, Tseed, and Tsource in Fig. 4.1). The significance of
Ttop and Tbottom lies in the blind holes being the principal locations for temperature
measurements; Tseed and Tsource are of interest, since their difference is a key control
factor for the crystal’s growth rate and quality (cf. e.g. [Kon95], [SBP98]). Figure 4.6
compares Tsource − Tseed to the measurable quantity Tbottom − Ttop. In Fig. 4.7, the evo-
lution of the temperature inside the source (i.e. at the point labeled TinSource in Fig. 4.1)
is compared to the evolution of Tsource and Ttop. Results of the time evolution of the
global temperature field and the heat sources are shown in Fig. 4.8, and results of the
quasi-stationary temperature distributions at the crystal and its immediate surround-
ings are depicted in Fig. 4.9. The results are discussed in detail in the following Secs
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4.3.2, 4.3.3, and 4.3.4 .

4.3.2 Temperature Evolution at Points of Interest

The numerical results for the time evolution and the final values of Ttop, Tbottom, Tseed,
and Tsource are considered.

In [KP01], it was found that for each time t, the temperatures Ttop, Tbottom, Tseed, and
Tsource depend nearly linearly on the prescribed effective voltage Veff . It can be seen
in Figs 4.3 and 4.4 that for fixed t, the dependence of Ttop, Tbottom, and Tseed on Pmax

is not nearly linear, since the distance between the 4 kW and the 5.5 kW curves is
considerably bigger than the distance between the 7.5 kW and the 10 kW curves.

The exact relation between the prescribed power P and the resulting temperature T at
a given location in the growth apparatus is actually quite complicated. If the electrical
conductivity σc is constant, then it can be seen from (2.5.32) and (2.5.65) that the
relation between

√
P and the magnetic scalar potential φcomplex

A,0 is linear. However,

here σc depends nonlinearly on T (s. (A.3.2b)), and φcomplex
A,0 depends nonlinearly on

σc by (2.5.32c). Moreover, the coupling between φcomplex
A,0 and T through (4.2.1c) and

(4.2.1b) is quite intricate e.g. due to the nonlinear functions of thermal conductivity
(s. e.g. (A.3.2c) and (A.3.5c)) and the nonlinear boundary condition (4.2.1j). As a
deeper analysis of these relations is not the subject of this work, it is merely observed
that for the quasi-stationary state at t = 30 000 s, Ttop, Tbottom, and Tseed, as well as
Tsource − Tseed depend on Pmax approximately according to the power law T ∝ 4

√
Pmax

(s. Fig. 4.5).

Figures 4.3, 4.4, and 4.5 show furthermore that Ttop and Tseed increase significantly
between C14

0 (low coil position) and C18
4 (high coil position), whereas Tbottom decreases

slightly. This can be explained by the heat sources being shifted upwards and the source
powder’s insulating property which, though less prominent, is still effective even at high
temperatures (cf. Fig. 4.8(a) and (A.3.5c)), thereby hindering heat generated below the
source powder from reaching regions above the source powder and vice versa.

The shape of the curves in row (4) of Figs 4.3 and 4.4 depicting Tsource − Tseed is also
due to the insulating characteristic of the source powder and the gas phase, initially
keeping the powder’s surface below the temperature of the seed which the heat reaches
via conduction through the graphite. This causes the negative peak in the corresponding
graphs. At higher temperatures, radiative heat transfer becomes more effective both
in the gas phase and the porous source, resulting in the source growing warmer than
the seed, as is required for crystal growth. Moreover, it is seen in Fig. 4.5(4) that
at the quasi-stationary state, a lower coil position or a higher heating power result in
Tsource − Tseed being increased (in [KP01], it was stated incorrectly that a higher coil
position increases Tsource−Tseed). If the heat is generated below the source powder, then
it passes through the powder and then through the gas phase to reach the seed (s. Figs
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Figure 4.3: Time evolution of Ttop (row (1)), Tbottom (row (2)), Tseed (row (3)), and
Tsource−Tseed (row (4)) for the simulation series C14

0 (column (a)) and C16
2 (column (b)).
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Figure 4.4: Time evolution of Ttop (row (1)), Tbottom (row (2)), Tseed (row (3)), and
Tsource−Tseed (row (4)) for simulation series C18

4 (column (a)) and C18→14
4→0 (column (b)).
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Figure 4.5: Temperatures Ttop (in (1)), Tbottom (in (2)), Tseed (in (3)), and Tsource−Tseed

(in (4)) for the quasi-stationary state at t = 30 000 s for the simulation series C14
0 , C16

2 ,
and C18

4 depending on the 4-th root of the maximal heating power Pmax.

4.8(a) and 4.9). A higher power leading to a higher difference Tsource−Tseed thus means
that a higher temperature below the powder enhances the powder’s ability to transport
heat even more effectively than it enhances the corresponding ability of the gas phase.
For a higher coil position, more heat is generated in upper parts of the apparatus, where
it can reach the seed without passing through the powder, thus explaining Tsource−Tseed

being bigger for lower coil positions. Figure 4.5(4) indicates that Tsource − Tseed can be
tuned effectively by controling the heating power and the vertical coil position.

Now, the series of numerical experiments C18→14
4→0 is discussed, where the coil starts at the

position used for C18
4 , moves downwards at the rate 1.33 cm/h, and stops at the position

used for C14
0 . During these simulations, the grid for the heat source computations is

newly generated in each time step. The objective of the series C18→14
4→0 is to study how

a moving coil affects the temperature field evolution during the heating process. In
this work, there is no investigation of coil movements that follow the growing crystal
in the quasi-stationary temperature field, which are often used in growth experiments
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to compensate the influence of the growing crystal on the temperature distribution.
The rate of such coil movements is usually in the order of 1 mm/h, and the movement
starts after the apparatus is fully heated, i.e. after the simulations considered here have
reached their respective quasi-stationary final states.

As expected, the curves for the moving coil (Fig. 4.4(b)) initially coincide with the
corresponding curves of C18

4 (Fig. 4.4(a)) and coincide with the corresponding curves of
C14

0 (Fig. 4.3(a)) after the coil’s lowest position is reached at t = 3 h.

4.3.3 Phenomena Inaccessible to Direct Measurements

In this section, simulation results are discussed which give some insight into phenomena
that are inaccessible to direct measurements, but can be of considerable importance with
respect to the quality of the growth process and the resulting single crystals.

In physical growth experiments, the measured temperature difference Tbt := Tbottom −
Ttop is often used as an indicator for Tss := Tsource − Tseed which is not accessible to
direct measurements. The simulation results depicted in Fig. 4.6 show that one has to
use care when using this method, as it is not admissible in general. According to Fig.
4.6, Tbt is a good indicator for Tss only for the lowest coil position C14

0 and only in the
quasi-stationary state (right side of Figs 4.6(1) and 4.6(4)). For the higher coil positions
C16

2 and C18
4 , not even the signs of Tbt and Tss agree in the quasi-stationary state. Thus,

in practice, the validity of using Tbt as an indicator for Tss should be verified by some
other method (e.g. numerical simulation).

As described in Sec. 1.1, the growth system is usually kept at some 1200 K for a certain
time, to bake out contaminants from the source powder. It is seen in each situation
dipicted in Fig. 4.7 that in the initial heating phase, there is a time lack of up to
20 minutes between the temperature TinSource inside the source (s. Fig. 4.1), and both
Tsource and Ttop. Thus, depending on the configuration of the growth system, it can be
of paramount importance to take into account this time lack, in order to allow sufficient
time for the contaminant bake-out phase.

4.3.4 Evolution of Global Distribution of Temperature and of
Heat Sources

For the experiment C18→14
4→0 -7 kW, results concerning the time evolution of the global

temperature distribution and the heat sources are discussed. It can be seen in column
(a) of Fig. 4.8 that the minimal temperature Tmin is always established at the outside
of the outer insulation material, where the isotherms become very dense at higher
temperatures, producing the dark outer regions in Fig. 4.8 (2)(a) and (3)(a). The
maximal temperature Tmax is found in the graphite strip between source and insulation
in Fig. 4.8 (1)(a) and inside the labeled isotherms below the source in Fig. 4.8 (2)(a)
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Figure 4.6: For the numerical experiments C14
0 (in (1)), C16

2 (in (2)), C18
4 (in (3)), and

C18→14
4→0 (in (4)) (Pmax = 7 kW in all four cases), the graphs labeled by “1” show the

evolution of Tsource − Tseed, whereas the graphs labeled by “2” show the evolution of
Tbottom − Ttop.

and (3)(a). The change of the location of Tmax corresponds to the heat sources moving
downwards together with the induction coil according to Fig. 4.8(b).

Figure 4.8(a) also demonstrates how the insulating property of the gas phase and the
source powder changes with time, causing a large temperature gradient in the gas
phase in 4.8(1)(a) as well as a local minimum in the source. Due to radiative heat
transfer through the gas phase and through the pores of the source, the temperature in
the growth chamber is more homogeneous in 4.8(2)(a) and 4.8(3)(a), where the local
minimum in the source has vanished, even though some of the source’s insulating quality
persists.

Finally, Fig. 4.9 displays close-ups of the final temperature distributions in the crystal’s
immediate surroundings for Pmax = 7 kW and the three coil positions C14

0 , C16
2 , and

C18
4 . The picture in Fig. 4.9 (a) also constitutes a close-up of Fig. 4.8(3)(a), since the

stationary states are identical for the simulations C14
0 -7 kW and C18→14

4→0 -7 kW. The
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Figure 4.7: For the numerical experiments C14
0 , Pmax = 4 kW (in (1)), C14

0 , Pmax = 10
kW (in (2)), C18

4 , Pmax = 4 kW (in (3)), and C18
4 , Pmax = 10 kW (in (4)), the graphs

labeled by “1”, “2”, and “3” show the evolution of Tsource, TinSource, and Ttop, respectively.

lower temperatures found for C14
0 in Fig. 4.9(a), are once more explained by the powder

source forming a barrier for heat generated in the lower part of the apparatus. Moreover,
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Figure 4.8: Time evolution of heating process for numerical experiment C18→14
4→0 , Pmax =

7 kW (coil moving at -1.33 cm/h). Column (a): temperature evolution, difference
between neighboring isotherms is 20 K. Column (b): heat source evolution, difference
between isolevels is 10 kW/m3, darker regions indicate larger heat sources.
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Figure 4.9: Close-ups of the temperature distribution in the crystal, the gas phase, and
the crucible directly above the crystal for the quasi-stationary states at t = 30 000 s of
the numerical experiments C14

0 (in (a)), C16
2 (in (b)), and C18

4 (in (c)), where Pmax = 7
kW in all three cases. Temperature difference between neighboring isotherms is 5 K.

Fig. 4.9 shows that the final temperature gradient between source and seed is nearly
independent of the coil position and approximately constant along the r = 0 axis with
a slight increase at the seed.



Appendix A

Material Data

In order to guarantee the satisfactory performance of the numerical algorithms used in
the simulations , it was necessary to fit the individual segments of piecewise defined
functions together smoothly. For this reason, some of the following coefficients had to
be considered with a high accuracy which does not reflect the accuracy of the physical
values. Figure A.1 demonstrates that e.g. restricting to six relevant digits in (A.2.2b)
would result in discontinuities at T = 500 K and T = 600 K. Such discontinuities would
lead to a failure of Newton’s method which is used to solve the nonlinear systems of
equations arising during the numerical simulations.

A.1 General Physical Constants

Boltzmann Radiation Constant: σ = 5.6696 · 10−8 W
m2K4 .

Universal Gas Constant: R = 8.31441 J
mol K

.

A.1.1 Molecular Masses

M (Ar) = 39.948 · 10−3 kg
mol

, M (C) = 12.011 · 10−3 kg
mol

, M (H) = 1.0078 · 10−3 kg
mol

, M (Si) =

28.086 · 10−3 kg
mol

, M (Si2C) = 68.183 · 10−3 kg
mol

, M (SiC2) = 52.108 · 10−3 kg
mol

.

A.2 Gas Phase

A.2.1 Argon

Since Ar is single-atomic, z(Ar) = 1.5.

210



A.2. GAS PHASE 211

500 550 600 650

0.026

0.028

0.032

6

-

6

-

κ(Ar)[T ]
[

W
m K

]

κ(Ar)[T ]
[

W
m K

]

T [K]

T [K]500 550 600 650

0.026

0.028

0.032

Figure A.1: Plots of κ(Ar)[T ] over T according to (A.2.2), where in the upper plot the
accuracy of the coefficients is as in (A.2.2b), and in the lower plot the accuracy of the
coefficients is restricted to six relevant digits.

According to (2.1.4c) and the ideal gas law (2.1.31a), one has

ρ(Ar)[(T, p)] =
M (Ar)

R
· p

T
= 4.8047 · 10−3 K s2

m2
· p

T
. (A.2.1)

In the simulations the density at T = 2575 K and p(Ar) = 2 · 103 Pa is used, i.e.
ρ(Ar) = 3.73 · 10−3 kg/m3.

It remains to provide the thermal conductivity κ(Ar). According to [Lid95, S. 6-251],
the thermal conductivity of gases changes less than one percent if the pressure is varied
below normal pressure, i.e. below 105 Pa. Hence for the purpose of this work the
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thermal conductivity is considered to be independent of the pressure. For the reader’s
convenience, Tab. A.2.1 for κ(Ar) is reproduced from [Var75, p. 561].

T [K] κ
[
10−2 W

m·K
]

T [K] κ
[
10−2 W

m·K
]

T [K] κ
[
10−2 W

m·K
]

290 1.72 520 2.75 1150 4.76
300 1.77 540 2.83 1200 4.89
310 1.82 560 2.91 1250 5.02
320 1.86 580 2.99 1300 5.14
330 1.92 600 3.07 1350 5.26
340 1.96 650 3.24 1400 5.37
350 2.00 700 3.41 1500 5.60
360 2.05 750 3.58 1600 5.83
380 2.13 800 3.74 1700 6.05
400 2.22 850 3.91 1800 6.26
420 2.30 900 4.06 1900 6.47
440 2.39 950 4.22 2000 6.67
460 2.48 1000 4.36 2500 8.00
480 2.57 1050 4.50 3000 9.10
500 2.66 1100 4.63 3500 10.20

Table A.2.1: Thermal conductivity of Ar at 105 Pa according to [Var75, p. 561].

The values of Tab. A.2.1 have been used to fit κ(Ar) as written in (A.2.2) below. Figure
A.2 shows the agreement between the fitted function in (A.2.2) and the values from
Tab. A.2.1.

κ(Ar)[T ] =





1.83914 · 10−4 W
m K

(
T
K

)0.800404
for T ≤ 500 K,

f
(Ar)
κ

W
m K

(
T

100K

)5
+ e

(Ar)
κ

W
m K

(
T

100K

)4
+ d

(Ar)
κ

W
m K

(
T

100K

)3

+c
(Ar)
κ

W
m K

(
T

100K

)2
+ b

(Ar)
κ

W
m K

(
T

100K

)

+a
(Ar)
κ

W
m K

for 500 K ≤ T ≤ 600 K,

4.19440 · 10−4 W
m K

(
T
K

)0.671118
for T ≥ 600 K

(A.2.2a)
where

a(Ar)
κ = −7.1287382681160803, b(Ar)

κ = 6.610288591812101,

c(Ar)
κ = −2.440839830308151325, d(Ar)

κ = 0.4497633940115560911,

e(Ar)
κ = −0.0413251721439221090, f (Ar)

κ = 0.001514463800685296.

(A.2.2b)
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Figure A.2: Comparison of κ(Ar)[T ] according to Tab. A.2.1 and according to (A.2.2).

A.2.2 General Estimates

The purpose of this section is to justify the following estimates (A.2.3) and (A.2.4)
inside the gas mixture.

Estimates Involving Diffusion Velocities:

∧

ι∈{1,...,A}
max

{
ρ(αι)

∣∣∣
(
u(αι) ⊗ u(αι)

)
i,j

∣∣∣ : (i, j) ∈ {1, 2, 3}2
}
¿ p(αι), (A.2.3a)

∧

ι∈{1,...,A}

1

2

(
u(αι)

)2 ¿ ε(αι). (A.2.3b)

Estimates Involving the Local Mean Velocity of the Gas Phase:

max
{

ρgas

∣∣∣(vgas ⊗ vgas)i,j

∣∣∣ : (i, j) ∈ {1, 2, 3}2
}
¿ pgas, (A.2.4a)

1

2
(vgas)

2 ¿ εgas. (A.2.4b)

Using (B.1.1), (B.1.3), the ideal gas laws (2.1.31), and (2.1.4c), it suffices to show for
(A.2.3) that ∧

ι∈{1,...,A}

∧

(i,j)∈{1,2,3}2

∣∣∣u(αι)
i u

(αι)
j

∣∣∣ ¿ R

M (αι)
Tgas. (A.2.5a)

Using (B.1.1), (B.1.3), the ideal gas laws (2.1.32a) and (2.1.32b), and (2.1.5), it suffices
to show for (A.2.4) that

∧

(i,j)∈{1,2,3}2

∣∣∣(vgas)i (vgas)j

∣∣∣ ¿ min

{
R

M (αι)
Tgas : ι ∈ {1, . . . , A}

}
. (A.2.5b)

At the current stage of research the range of velocities occurring in PVT growth systems
is still the subject of debate. In [EGG+98, Sec. 3] gas speeds of a “few meters per
second” are mentioned. In [RMD+99, Fig. 2] simulated velocity fields are depicted
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showing speeds well below a few meters per second. In any case, the following estimates
should be rather conservative:

∧

ι∈{1,...,A}

∧

(i,j)∈{1,2,3}2

∣∣∣u(αι)
i u

(αι)
j

∣∣∣ ≤ 10
m2

s2
, (A.2.6a)

∧

(i,j)∈{1,2,3}2

∣∣∣(vgas)i (vgas)j

∣∣∣ ≤ 10
m2

s2
. (A.2.6b)

As Ar, Si, Si2C, and SiC2 are the predominant gas species, let α1 := Ar, α2 := Si,
α3 := Si2C, and α4 := SiC2, Igas := {1, 2, 3, 4}.
Then M (αι) < 0.1 kg

mol
for each ι ∈ Igas according to App. A.1.1. Combining this with

an assumed temperature range of 290 K ≤ Tgas ≤ 3000 K yields

∧

ι∈{1,...,A}
20 000

m2

s2
<

R

M (αι)
Tgas. (A.2.7)

Now (A.2.6) and (A.2.7) show that (A.2.5) (and hence also (A.2.3) and (A.2.4)) hold.

A.3 Solid Materials

The growth apparatus used to conduct the numerical experiments presented in Ch.
4 employs the following solid components: A porous graphite crucible referred to as
“Crucible”, graphite soft felt sheets for thermal insulation referred to as “Insulation”,
silicon carbide source powder referred to as “SiC-Powder”, and the silicon carbide single
crystal referred to as “SiC-Crystal” (see Fig. 4.1). Moreover, the copper (Cu) induction
coil is needed in the heat source computations, but is outside the domain where the
temperature field is simulated.

Each solid material β of the apparatus is specified by the following potentially temper-
ature dependent functions: mass density ρ[β][T ], thermal conductivity κ[β][T ], specific

heat c
[β]
sp [T ], emissivity ε[β][T ], and electrical conductivity σ

[β]
c [T ].

To compute the magnetic scalar potential in the Cu induction coil, the only material
parameters needed are ρ[Cu] and σ

[Cu]
c . No temperature dependence needs to be consid-

ered, as the induction coil is virtually kept at room temperature by an effective water
cooling system.

A.3.1 Copper

The material parameters for Cu at room temperature used for the induction coil are
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ρ[Cu] = 8930
kg

m3
, (A.3.1a)

σ[Cu]
c = (1.7 · 10−8 Ωm)−1 = 5.9 · 107 1

Ωm
. (A.3.1b)

The values for ρ[Cu] and σ
[Cu]
c are according to [Ben90].

A.3.2 Graphite Crucible

The material parameters for graphite used for the graphite crucible are

ρ[Crucible][T ] = 1750
kg

m3
, (A.3.2a)

σ[Crucible]
c [T ] =


28.9− 18.8 · exp


−

(
ln

[
T

1023 K

]

2.37

)2





−1

106

Ωm
, (A.3.2b)

κ[Crucible][T ] = 37.7158
W

m K
e−1.96095·10−4 T

K , (A.3.2c)

c[Crucible]
sp [T ] =

J
kg K

441.12
[

T
K

]−2.30676
+ 7.97093 · 10−4

[
T
K

]−6.65256·10−2 , (A.3.2d)

ε[Crucible][T ] =





0.67 for T ≤ 1200 K,

e
[Crucible]
ε

[
T
K

]4
+ d

[Crucible]
ε

[
T
K

]3
+ c

[Crucible]
ε

[
T
K

]2

+ b
[Crucible]
ε

[
T
K

]
+ a

[Crucible]
ε for 1200 K ≤ T ≤ 2200 K,

0.79 for T ≥ 2200 K

(A.3.2e)

where a
[Crucible]
ε = 46901

125
·10−2, b

[Crucible]
ε = −1859

25
·10−4, c

[Crucible]
ε = 19249

3
·10−9, d

[Crucible]
ε =

−701
3
· 10−11, e

[Crucible]
ε = 37

12
· 10−13.

The references for ρ[Crucible] and σ
[Crucible]
c are [MSS99a] and [Hus84], respectively. The

functions for κ[Crucible] and ε[Crucible] have been fitted using Tables A.1 and A.2, respec-
tively, which contain data as given by [MSS99a]. Since [Lid95, p. 10-297] states that
the range of emissivity of graphite is between 0.7 and 0.8 if 0 ≤ T ≤ 3600 K, it seems
reasonable to extrapolate Tab. A.2 by a constant function for low and high tempera-
tures. Figure A.3 relates the values of Tab. A.1 to (A.3.2c), and Fig. A.4 does likewise

for Tab. A.2 and (A.3.2e). The function for c
[Crucible]
sp has been fitted according to the

data in [BK73, p. 209], reproduced in Tab. A.3.2. Figure A.5 depicts the fitted function
(A.3.2d) together with the data of Tab. A.3.2.
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T [K] 1000 1200 1400 1600 1800 2000 2200

κ[Crucible]
[

W
m K

]
31.0 29.5 28.5 27.0 26.5 25.5 24.5

Table A.1: Thermal conductivity of graphite crucible according to [MSS99a].
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Figure A.3: Comparison between κ[Crucible][T ] according to Tab. A.1 and according to
(A.3.2c).

T [K] 1200 1400 1600 1800 2000 2200

ε 0.67 0.69 0.73 0.76 0.77 0.79

Table A.2: Emissivity of graphite crucible according to [MSS99a].

500 1000 1500 2000 2500 3000 3500
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0.74
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0.78

T [K]
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Figure A.4: Comparison between ε[Crucible][T ] according to Tab. A.1 and according to
(A.3.2e).

A.3.3 Graphite Felt Insulation

The material parameters for graphite felt used as thermal insulation are

ρ[Insulation][T ] = 170
kg

m3
, (A.3.3a)
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T [K] csp

[
J

kg K

]
T [K] csp

[
J

kg K

]
T [K] csp

[
J

kg K

]

298.15 709.3 1400.00 1954.4 2600.00 2089.3
300.00 716.2 1500.00 1977.1 2700.00 2095.2
400.00 993.9 1600.00 1995.5 2800.00 2100.9
500.00 1219.4 1700.00 2010.6 2900.00 2106.5
600.00 1407.0 1800.00 2023.2 3000.00 2112.0
700.00 1549.2 1900.00 2034.2 3100.00 2117.4
800.00 1652.3 2000.00 2044.4 3200.00 2122.8
900.00 1732.7 2100.00 2054.0 3300.00 2128.1
1000.00 1797.2 2200.00 2062.1 3400.00 2133.4
1100.00 1849.3 2300.00 2069.6 3500.00 2138.8
1200.00 1891.8 2400.00 2076.6 3600.00 2144.2
1300.00 1926.4 2500.00 2083.1 3700.00 2149.6

Table A.3.2: Specific heat of graphite according to [BK73, p. 209].
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Figure A.5: Comparison between c
[Crucible]
sp [T ] according to Tab. A.3.2 and according to

(A.3.2d).

σ[Insulation]
c [T ] =

245.7

1 + T
2500K

1

Ωm
, (A.3.3b)

κ[Insulation][T ] =





(
8.1759 · 10−2 + 2.48571 · 10−4 T

K

)
W

m K
for T ≤ 1473 K,

f
[Insulation]
κ

W
m K

(
T
K

)5
+ e

[Insulation]
κ

W
m K

(
T
K

)4

+ d
[Insulation]
κ

W
m K

(
T
K

)3
+ c

[Insulation]
κ

W
m K

(
T
K

)2

+ b
[Insulation]
κ

W
m K

· T
K

+ a
[Insulation]
κ

W
m K

for 1473 K ≤ T ≤ 1873 K,
(−0.74475 + 7.5 · 10−4 T

K

)
W

m K
for T ≥ 1873 K,

(A.3.3c)
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c[Insulation]
sp [T ] = 2100

J

kg K
, (A.3.3d)

ε[Insulation][T ] = 0.53 (A.3.3e)

where

a[Insulation]
κ = −609396292308373774083543

512
· 10−19, (A.3.4a)

b[Insulation]
κ =

355163131482778204191

1024
· 10−18, (A.3.4b)

c[Insulation]
κ = −204652204018369767

512
· 10−18, (A.3.4c)

d[Insulation]
κ =

116893623135279

512
· 10−18, (A.3.4d)

e[Insulation]
κ = −66155269623

1024
· 10−18, (A.3.4e)

f [Insulation]
κ =

37145151

512
· 10−19. (A.3.4f)

The quantities ρ[Insulation] and κ[Insulation] are provided by [MSS99a], where the function
for κ[Insulation] was fitted using the data in Tab. A.3. Figure A.6 displays (A.3.3c) in

comparison with Tab. A.3. The quantities σ
[Insulation]
c and c

[Insulation]
sp are according to

[R̊ab96] and [MSS99b], respectively. Since no data for the emissivity of graphite felt
were available, the value given for carbon filament in [Lid95, p. 10-297] was used.

T [K] 673 873 1073 1273 1473 1673 1873 2073 2273

κ
[

W
m K

]
0.25 0.3 0.35 0.39 0.45 0.5 0.67 0.82 0.95

Table A.3: Thermal conductivity of graphite felt according to [MSS99a].

A.3.4 SiC Source Powder

The material parameters for SiC source powder are

ρ[SiC-Powder][T ] = 1700
kg

m3
, (A.3.5a)

σ[SiC−Powder]
c [T ] = 100

1

Ωm
, (A.3.5b)
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Figure A.6: Comparison between κ[Insulation][T ] according to Tab. A.3 and according to
(A.3.3c).

κ[SiC-Powder][T ] = 6.83991 · 10−3 e
1.07296·10−3 T

K
W

m K
, (A.3.5c)

c[SiC-Powder]
sp [T ] = 1000

J

kg K
, (A.3.5d)

ε[SiC-Powder][T ] = 0.85. (A.3.5e)

The values in (A.3.5a) and (A.3.5d) are according to [MSS99b], whereas σ
[SiC−Powder]
c

is according to [R̊ab96]. The data for ε[SiC-Powder] provided by [TdW72, p. 793] vary
between 0.3 and 0.9, most data points displayed in the range between 0.8 and 0.9.
Thus (A.3.5e) seems to be a reasonable assumption. The dependence of the thermal
conductivity of SiC powder on its porosity, its particle sizes, its transmissivity and the
ambient gas pressure is described in [KRRS98]. The common features of the presented
results are that the range of the thermal conductivity lies between 5 · 10−3 W

m K
and

5 · 10−1 W
m K

and that the thermal conductivity usually increases with temperature. In
absence of precise data for the porosity and particle size of SiC powder used in actual
growth experiments, the simple approximation given in (A.3.5c) is used. It is noted
that the source graphitizes and sinters during a growth run, resulting in considerable
changes of emissivity, porosity and thermal conductivity, which are not reflected in the
data (A.3.5) and which were not accounted for in the simulations of Ch. 4.

A.3.5 SiC Single Crystal

The material parameters for the SiC single crystal are

ρ[SiC-Crystal][T ] = 3140
kg

m3
, (A.3.6a)

σ[SiC−Crystal]
c [T ] = 105 1

Ωm
, (A.3.6b)

κ[SiC-Crystal][T ] =
61100

T
K
− 115

W

m K
, (A.3.6c)
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c[SiC-Crystal]
sp [T ] =

J
kg K

39161
(

T
K

)−3.17377
+ 1.83598 · 10−3

(
T
K

)−0.117995 , (A.3.6d)

ε[SiC-Crystal][(T, λ)] = 0.85 on Ir. (A.3.6e)

The quantities ρ[SiC-Crystal] and κ[SiC-Crystal] are according to [NMH+97], while σ
[SiC−Crystal]
c

is according to [R̊ab96]. The function for c
[SiC−Crystal]
sp has been fitted using the data

in Tab. A.3.5 which are reproduced from [BK73, p. 1342]. The fit (A.3.6d) and the
data from Tab. A.3.5 are related in Fig. A.7. In absence of other data the constant
value from (A.3.5e) for the emissivity ε[SiC-Crystal](T, λ) in the reflective band Ir is used.
As mentioned in [BK90, p. 2833], the energy gap for the 6H polytype shifts from
3 eV (corresponding to Ir = [0, 413 nm]) at 300 K to some 2.5 eV (corresponding to
Ir = [0, 495 nm]) at 2400 K, indicating that the energy-band model of semi-transparency
is not completely accurate if the range of temperatures is large. In the simulations
of Ch. 4 it is assumed that the band of wavelengths interacting with the crystal is
Ir = [1 nm, 500 nm].

T [K] csp

[
J

kg K

]
T [K] csp

[
J

kg K

]
T [K] csp

[
J

kg K

]

298.15 672.8 1300.00 1266.6 2400.00 1363.6
300.00 675.7 1400.00 1279.6 2500.00 1369.9
400.00 838.9 1500.00 1291.1 2600.00 1376.1
500.00 963.8 1600.00 1301.5 2700.00 1382.2
600.00 1049.7 1700.00 1311.1 2800.00 1388.1
700.00 1109.9 1800.00 1319.8 2900.00 1393.9
800.00 1153.8 1900.00 1328.1 3000.00 1399.7
900.00 1187.0 2000.00 1335.8 3100.00 1405.3
1000.00 1213.0 2100.00 1343.2 3200.00 1410.9
1100.00 1234.1 2200.00 1350.2 3245.00 1413.4
1200.00 1251.7 2300.00 1357.0

Table A.3.5: Specific heat of SiC crystal according to [BK73, p. 1342].
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Figure A.7: Comparison between c
[SiC-Crystal]
sp [T ] according to Tab. A.3.5 and according

to (A.3.6d).



Appendix B

Formulas and Computations

B.1 Vectors, Tensors, and Differential Operators

The setting of this section is a finite dimensional real vector space V = RI , where I
is a finite index set. In the physical applications in Ch. 2, RI consists of the three-
dimensional domain of physical space coordinates.

In the present section vectors are elements of V , and tensors are elements of RI×I ∼=
Lin(V ,V). Vectors are denoted by u = (ui)i∈I , v = (vi)i∈I , and tensors are denoted by
A = (ai,j)(i,j)∈I×I , B = (bi,j)(i,j)∈I×I . The notation Av means that A is applied to v in
the sense of matrix multiplication, where v is considered as a column vector.

For the purposes of this work it is convenient to define the scalar product for three
situations, namely for two vectors, for two tensors, and for a vector and a tensor (see
Def. B.1.1). In the first two cases the result is a scalar, whereas in abuse of its name it
is a vector in the third case.

Definition B.1.1. Let u, v be vectors, and let A, B be tensors. The scalar product is
defined by

u•v :=
∑
i∈I

aibi, A•B :=
∑

(i,j)∈I×I

ai,jbi,j, u•A := A•u :=

(∑
j∈I

vjaj,i

)

i∈I

. (B.1.1)

The abbreviation u2 is used for u • u.

Remark B.1.2. The scalar product has the following elementary properties:

(a) Commutativity: u • v = v • u, A •B = B •A, u •A = A • u.

(b) Bilinearity: For scalars λ, µ, one has

(λu(1) + µu(2)) • v = λ(u(1) • v) + µ(u(2) • v), (B.1.2a)

222
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u • (λv(1) + µv(2)) = λ(u • v(1)) + µ(u • v(2)), (B.1.2b)

and analogously for the scalar product of two vectors and for the scalar product
of one vector and one tensor.

Definition B.1.3. The tensor product of two vectors u, v is defined by

u⊗ v := (uivj)(i,j)∈I×I . (B.1.3)

Remark B.1.4. The tensor product is bilinear, i.e. for scalars λ, µ, one has

(λu(1) + µu(2))⊗ v = λ(u(1) ⊗ v) + µ(u(2) ⊗ v), (B.1.4a)

u⊗ (λv(1) + µv(2)) = λ(u⊗ v(1)) + µ(u⊗ v(2)). (B.1.4b)

Remark B.1.5. For vectors u, v it holds that

(u⊗ u)v = (u • v)u. (B.1.5)

In Def. B.1.6 the differential operators ∇ and div are defined. The gradient of a scalar
is a vector, the gradient of a vector is a tensor, the divergence of a vector is a scalar,
and the divergence of a tensor is a vector.

Definition B.1.6. The gradient ∇ and the divergence div are defined as follows:

∇ : C1[V ] −→ C (V ,V) , ∇ f := (∂if)i∈I , (B.1.6a)

∇ : C1(V ,V) −→ C
(V , Lin(V ,V)

)
, ∇u := (∂iuj)(i,j)∈I×I , (B.1.6b)

div : C1 (V ,V) −→ C[V ], div u :=
∑
i∈I

∂ivi , (B.1.6c)

div : C1
(V , Lin(V ,V)

) −→ C(V ,V), div A :=

(∑
j∈I

∂jai,j

)

i∈I

. (B.1.6d)

Remark B.1.7. The gradient and the divergence are linear operators.

Remark B.1.8. Product rules for the gradient: If (f, g) ∈ (C1[V ])2, u ∈ C1(V ,V), and
v ∈ F(V ,V) then

∇(fg) = f ∇ g + g∇ f, (B.1.7a)

v • ∇(fu) = fv • ∇u + (v • ∇ f)u, (B.1.7b)

v • ∇(fu2) = u2(v • ∇ f) + 2u • (fv • ∇u). (B.1.7c)

Remark B.1.9. Product rules for the divergence: If f ∈ C1[V ] and u ∈ C1(V ,V), then

div(fu) = u • ∇ f + f div u. (B.1.8a)
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If u ∈ C1(V ,V) and A ∈ C1
(V , Lin(V ,V)

)
such that A[v] is symmetric for each v ∈ V ,

then

div(Au) = u • div A + A • ∇u. (B.1.8b)

If u ∈ C1(V ,V), v ∈ C1(V ,V), and w ∈ F(V ,V), then

div
(
v2u

)
= v2 div u + 2 · (u⊗ v) • ∇v, (B.1.8c)

div(u⊗ v) = (div v)u + v • ∇u, (B.1.8d)

w • div(v ⊗ u) = (v •w) div u + (u⊗w) • ∇v. (B.1.8e)

B.2 Balance and Field Equations

B.2.1 Some Identities

Lemma B.2.1. If (2.1.4) and (2.1.6) are satisfied, then the following identities hold
true:

A∑
ι=1

ρ(αι)u(αι) =
A∑

ι=1

ρ(αι)
(
v(αι) − vgas

)
= 0, (B.2.1)

A∑
ι=1

ρ(αι)
(
b(αι) • v(αι) + r(αι)

)
= ρgasbgas • vgas + ρgasrgas, (B.2.2)

∧

ι∈{1,...,A}

(
u(αι)

)2
=

(
v(αι)

)2 − 2 · v(αι) • vgas + (vgas)
2 , (B.2.3)

∧

ι∈{1,...,A}

(
u(αι) ⊗ u(αι)

= v(αι) ⊗ v(αι) − v(αι) ⊗ vgas − vgas ⊗ v(αι) + vgas ⊗ vgas

)
, (B.2.4)

A∑
ι=1

ρ(αι)
(
u(αι)

)2
u(αι) =

A∑
ι=1

ρ(αι)
(
v(αι)

)2
u(αι) − 2 ·

A∑
ι=1

ρ(αι)
(
v(αι) • vgas

)
u(αι),

(B.2.5)

A∑
ι=1

ρ(αι)
((

v(αι)
)2 − (

u(αι)
)2

)
= ρgas (vgas)

2 , (B.2.6)

A∑
ι=1

ρ(αι)
(
v(αι) ⊗ v(αι) − u(αι) ⊗ u(αι)

)
= ρgasvgas ⊗ vgas, (B.2.7)

A∑
ι=1

ρ(αι)

(
ε(αι) +

1

2

(
v(αι)

)2
)

= ρgas

(
εgas +

1

2
(vgas)

2

)
, (B.2.8)
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A∑
ι=1

(
ρ(αι)

(
ε(αι) +

1

2

(
v(αι)

)2
)

v(αι) + q(αι) −T(αι)v(αι)

)

= ρgas

(
εgas +

1

2
(vgas)

2

)
vgas + qgas −Tgasvgas,

(B.2.9)

∧

ι∈{1,...,A}
ρgas

∂c(αι)

∂t
+ c(αι)

∂ρgas

∂t
=

∂ρ(αι)

∂t
, (B.2.10)

∧

ι∈{1,...,A}
ρgasvgas • ∇ c(αι) + c(αι)vgas • ∇ ρgas = vgas • ∇ ρ(αι). (B.2.11)

Proof. (B.2.1): Use (2.1.4d) and (2.1.4b).

(B.2.2): Use (2.1.4d), Rem. B.1.2(b), (2.1.6b), and (2.1.6d).

(B.2.3): Use (2.1.4d) and Rem. B.1.2 (a), (b).

(B.2.4): Use (2.1.4d) and Rem. B.1.4.

(B.2.5): Multiply (B.2.3) by ρ(αι)u(αι), sum over ι, and use (B.2.1).

(B.2.6): Use (B.2.3), (B.2.1), Rem. B.1.2(b), and (2.1.4b).

(B.2.7): Use (B.2.4), (B.2.1), Rem. B.1.4, and (2.1.4b).

(B.2.8): Use (2.1.6c) and (B.2.6).

(B.2.9): Use (2.1.4d), (B.2.8), (2.1.6e), Rem. B.1.5, (B.2.5), (2.1.6a), and (B.2.1).

(B.2.10): Use (2.1.4c) and the product rule for ∂t.

(B.2.11): Use (2.1.4c) and (B.1.7c). ¥

B.2.2 The Balance Equations Imply the Field Equations

In preparation some identities are proved.

Lemma B.2.2. If the balance equations (2.1.3) and the global conservation laws (2.1.7)
hold, then the following identities are satisfied, where equations depending on ι hold for
each ι ∈ {1, . . . , A}:

∂(ρgasvgas)

∂t
+ div (ρgasvgas ⊗ vgas) = ρgas

∂vgas

∂t
+ ρgasvgas • ∇vgas. (B.2.12)

− ρ∗(αι)v(αι) + p∗ (αι) + ρ(αι)b(αι) + div T(αι) − c(αι) div Tgas − ρ(αι)bgas

= −v(αι) div
(
ρ(αι)v(αι)

)
+ ρ(αι)

∂v(αι)

∂t
+ div

(
ρ(αι)v(αι) ⊗ v(αι)

)

+ c(αι)vgas div (ρgasvgas)− ρ(αι)
∂vgas

∂t
− c(αι) div (ρgasvgas ⊗ vgas) .

(B.2.13)
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∂

∂t

(
1

2
ρgas (vgas)

2

)
− ∂(ρgasvgas)

∂t
• vgas =

1

2
(vgas)

2 div(ρgasvgas). (B.2.14)

div

(
1

2
ρgas (vgas)

2 vgas

)
− vgas • div (ρgasvgas ⊗ vgas) = −1

2
(vgas)

2 div(ρgasvgas).

(B.2.15)

ρgasrgas =ρgas
∂εgas

∂t
+ ρgasvgas • ∇ εgas + div qgas

− div(Tgasvgas) + vgas • div Tgas

+
∂

∂t

(
1

2
ρgas (vgas)

2

)
+ div

(
1

2
ρgas (vgas)

2 vgas

)

− ∂(ρgasvgas)

∂t
• vgas − vgas • div (ρgasvgas ⊗ vgas) .

(B.2.16)

div
(
ρgasc

(αι)u(αι)
)

=v(αι) • ∇ ρ(αι) + ρ(αι) div
(
v(αι) − vgas

)

− vgas •
(
c(αι)∇ ρgas + ρgas∇ c(αι)

)
.

(B.2.17)

ρ∗(αι) =ρgas
∂c(αι)

∂t
− c(αι)vgas • ∇ ρgas − ρ(αι) div vgas

+ v(αι) • ∇ ρ(αι) + ρ(αι) div v(αι).

(B.2.18)

Proof. As shown in Lem. 2.1.1, (2.1.3) and (2.1.7) imply (2.1.11), which are used below.

(B.2.12): Use the product rule for ∂t, (2.1.11a), and (B.1.8d) with u = vgas and v =
ρgasvgas.

(B.2.13): Use (2.1.3a), (2.1.3b), the product rule for ∂t, the linearity of ∂t and div,
(2.1.11b), (2.1.4c), and (2.1.11a).

(B.2.14): Use the product rule for ∂t and (2.1.11a).

(B.2.15): Follows from (B.1.8c) and (B.1.8e) by letting u := ρgasvgas and w := v := vgas.

(B.2.16): Use (2.1.3c), (2.1.11b), the linearity of ∂t and div, the product rule for ∂t,
(B.1.8a), and (2.1.11a).

(B.2.17): Use (2.1.4c), (2.1.4d), (B.1.8a), and (B.1.7c).

(B.2.18): Follows from (2.1.3a), (2.1.4c), the product rule for ∂t, (B.1.8a), and (2.1.11a).
¥

Lemma B.2.3. The balance equations (2.1.3) together with the global conservation laws
(2.1.7) imply the field equations (2.1.14).

Proof. (2.1.14a): Use Rem. B.1.7, Lem. 2.1.1, (2.1.11b), and (B.2.12).
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(2.1.14b): Use (B.2.13), (2.1.4c), (2.1.4d), the linearity of ∂t and ∇, and (B.1.8d) once
with u = v(αι), v = ρ(αι)v(αι) and once with u = vgas, v = ρgasvgas.

(2.1.14c): Use (B.2.16), (B.1.8c), (B.2.14), and (B.2.15).

(2.1.14d): Use Lem. 2.1.1, (2.1.11a) and (B.1.8a).

(2.1.14e): Use (B.2.17) and (B.2.18). ¥

B.2.3 The Field Equations Imply the Balance Equations

Lemma B.2.4. The field equations (2.1.14) together with (2.1.5) imply the balance
equations (2.1.3) and the global conservation laws (2.1.7).

Proof. (2.1.7a): Sum (2.1.14e) over ι and use (2.1.5).

(2.1.3a): Use (2.1.14e), (B.2.10), (B.2.11), (2.1.4d), (B.1.8a), and (2.1.14d).

(2.1.3b): Use (2.1.14b), (2.1.4c), (2.1.4d), the linearity of ∂t and ∇, (2.1.14a), and
(2.1.3a) to get

p∗ (αι) + ρ(αι)b(αι) =ρ(αι)
∂v(αι)

∂t
+ ρ(αι)v(αι) • ∇v(αι) − div T(αι)

+ v(αι)
∂ρ(αι)

∂t
+ v(αι) div

(
ρ(αι)v(αι)

)
.

(B.2.19)

Now (2.1.3b) follows from (B.2.19), the product fule for ∂t, the linearity of div, and
(B.1.8d) with u = v(αι) and v = ρ(αι)v(αι).

(2.1.7b): Use (2.1.3b), the linearity of div and ∂t, (2.1.6a), (2.1.6b), (2.1.14a), (2.1.4b),
the product rule for ∂t, and (B.2.7) to get

A∑
ι=1

p∗ (αι) = vgas
∂ρgas

∂t
+ div(ρgasvgas ⊗ vgas)− ρgasvgas • ∇vgas. (B.2.20)

Now (2.1.7b) follows from (B.2.20), (2.1.14d), (B.1.7b) with f = ρgas and u = v = vgas,
and (B.1.8d) with u = ρgasvgas and v = vgas.

(2.1.3c): Using the product rule for ∂t, (2.1.14d), (B.1.8a) with f = ρgasv
2
gas and u =

vgas, and (B.1.7c) with f = ρgas and u = v = vgas yields

1

2

∂
(
ρgasv

2
gas

)

∂t
+

1

2
div

(
ρgasv

2
gasvgas

)

= vgas •
(

ρgas
∂vgas

∂t

)
+ vgas • (ρgasvgas • ∇vgas) .

(B.2.21)
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Using (2.1.14c), the product rule for ∂t, (2.1.14d), (B.1.7a) with f = εgas and g = ρgas,
(B.1.8a) with f = ρgasεgas and u = vgas, (B.1.8b) with A = Tgas and u = vgas, and
(2.1.14a) yields

ρgasrgas =
∂(ρgasεgas)

∂t
+ div(ρgasεgasvgas) + div qgas

+ vgas •
(

ρgas
∂vgas

∂t

)
+ vgas • (ρgasvgas • ∇vgas)

− ρgasbgas • vgas − div(Tgasvgas).

(B.2.22)

Now (2.1.3c) is implied by (B.2.22), the linearity of ∂t and div, together with (B.2.21).
¥

B.2.4 Equations (2.1.11a), (2.1.11b), (2.1.3c) Are Equivalent to
Equations (2.1.14a), (2.1.14c), (2.1.14d)

Equations (2.1.11a) and (2.1.14d) are equivalent, which is immediate from (B.1.8a),
letting f = ρgas and u = vgas.

It was shown in App. B.2.2 that (2.1.11a) and (2.1.11b) imply (2.1.14a). It was also
shown in App. B.2.2 that (2.1.11a), (2.1.11b), and (2.1.3c) imply (2.1.14c).

That (2.1.14a) and (2.1.11a) imply (2.1.11b) is seen by using the product rule for ∂t,
and (B.1.8d) with u = vgas and v = ρgasvgas.

Finally, it was shown in App. B.2.3 that (2.1.14a), (2.1.14c), and (2.1.14d) imply
(2.1.3c).

B.2.5 Simplifications

Lemma B.2.5. The simplifications of Sec. 2.1.2 applied to the quantities (2.1.6) yield
(2.1.27).

Proof. (2.1.27a) and (2.1.27b) are identical to (2.1.19) and (2.1.24), respectively.

(2.1.27c) follows from (2.1.6c), (2.1.4c), and (2.1.26a).

(2.1.27d) is implied by (2.1.6d), (2.1.4c), (2.1.24), and (2.1.5).

(2.1.27e) follows using (2.1.6e), (2.1.4c), (2.1.26a), (2.1.17), and replacing the remaining
u(αι) by means of (2.1.15). ¥

Lemma B.2.6. The simplifications of Sec. 2.1.2 applied to the field equations (2.1.14)
(with (2.1.14a), (2.1.14c), and (2.1.14d) replaced by the equivalent equations (2.1.11a),
(2.1.11b), and (2.1.3c), cf. App. B.2.4) yield (2.1.28).
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Proof. (2.1.28a) is the same as (2.1.11a).

(2.1.28b) is inferred from (2.1.11b), (2.1.24), and (2.1.26c).

(2.1.28c) follows from (2.1.3c), (2.1.19), (2.1.24), and (2.1.26b).

(2.1.28d) results from replacing u(αι) in (2.1.14e) using (2.1.15). ¥

B.3 Cylindrical Coordinates

B.3.1 Definition and Elementary Properties

Definition B.3.1. Let Ω := R+
0 × [0, 2π] × R, and consider the following coordinate

transformation Tcyl:

Tcyl : Ω −→ R3, Tcyl[(r, ϑ, z)] := (r cos[ϑ], r sin[ϑ], z). (B.3.1)

If x ∈ R3 and x = Tcyl[(r, ϑ, z)], then (r, ϑ, z) are called cylindrical coordinates of x.
Moreover, one defines the coordinate-dependent standard basis {er, eϑ, ez} by

er[(r, ϑ, z)] := (cos[ϑ], sin[ϑ], 0), (B.3.2a)

eϑ[(r, ϑ, z)] := (− sin[ϑ], cos[ϑ], 0), (B.3.2b)

ez[(r, ϑ, z)] := (0, 0, 1). (B.3.2c)

—

Some important elementary properties of cylindrical coordinates are collected in Rem.
B.3.2.

Remark B.3.2. (a) Tcyl is onto.

(b) Tcyl is one-to-one on int[Ω], i.e. cylindrical coordinates are unique if r 6= 0 and
ϑ /∈ {0, 2π}.

(c) Tcyl¹int[Ω] is a diffeomorphism, i.e. both Tcyl¹int[Ω] and (Tcyl¹int[Ω])
−1 are differentiable.

For (r, ϑ, z) ∈ int[Ω] it is

T ′
cyl[(r, ϑ, z)] :=




cos[ϑ] −r sin[ϑ] 0
sin[ϑ] r cos[ϑ] 0

0 0 1


 , (B.3.3a)

(T ′
cyl)

−1[(r, ϑ, z)] :=




cos[ϑ] sin[ϑ] 0
− sin[ϑ]

r
cos[ϑ]

r
0

0 0 1


 . (B.3.3b)
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The Jacobian is

JTcyl
[(r, ϑ, z)] = det

[
T ′

cyl[(r, ϑ, z)]
]

= r. (B.3.4)

Remark B.3.3. Let O be an open subset of R3 and let f : O −→ K be differentiable.
Then by the chain rule it holds for each r := (r, ϑ, z) ∈ int[Ω] that

(
(∇ f) ◦ Tcyl

)
[r] =

(∇(f ◦ Tcyl)
)
[r] · (T ′

cyl)
−1[r]

=

(
∂(f ◦ Tcyl)

∂r
[r],

∂(f ◦ Tcyl)

∂ϑ
[r],

∂(f ◦ Tcyl)

∂z
[r]

)
·



cos[ϑ] sin[ϑ] 0
− sin[ϑ]

r
cos[ϑ]

r
0

0 0 1




=
∂(f ◦ Tcyl)

∂r
[r] · er[r] +

1

r

∂(f ◦ Tcyl)

∂ϑ
[r] · eϑ[r] +

∂(f ◦ Tcyl)

∂z
[r] · ez[r].

(B.3.5)

—

Remark B.3.3 is the precise justification for (B.3.6), where the composition with Tcyl is
supressed in the notation, as is usually done. Similar reasoning can be used to prove
(B.3.7) and (B.3.8).

B.3.2 Grad, Div, Curl in Cylindrical Coordinates

The gradient of a function f(r, ϑ, z) is given by

∇ f =
∂f

∂r
er +

1

r

∂f

∂ϑ
eϑ +

∂f

∂z
ez. (B.3.6)

The divergence and the curl of a vector field A = Arer + Aϑeϑ + Azez read

div A =
1

r

∂(rAr)

∂r
+

1

r

∂Aϑ

∂ϑ
+

∂Az

∂z
, (B.3.7)

curlA =

(
1

r

∂Az

∂ϑ
− ∂Aϑ

∂z

)
er +

(
∂Ar

∂z
− ∂Az

∂r

)
eϑ +

1

r

(
∂(rAϑ)

∂r
− ∂Ar

∂ϑ

)
ez. (B.3.8)

B.4 Existence of a Magnetic Scalar Potential

If (2.5.7) holds and Br and Bz are continuously differentiable, then there is a function
φA satisfying (2.5.9). This is the contents of the following Th. B.4.1, where B1 and B2

is written instead of Br and Bz, respectively, to avoid confusion with the variables r
and z. Since the vector potential A does not occur in Th. B.4.1, the notation φA is
simplified to φ.
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Theorem B.4.1. Given functions Bi ∈ C1(R+
0 × R,R), i ∈ {1, 2}, satisfying

∧

(r,z)∈R+
0 ×R

(∂1(rB1)) [(r, z)] + (r∂2B2)[(r, z)] = 0, (B.4.1)

there is a function φ ∈ C2(R+
0 × R,R) such that (B.4.2a) and (B.4.2b) both hold:

B1 = −∂2φ, (B.4.2a)

rB2 = ∂1(rφ). (B.4.2b)

Proof. Integrating (B.4.1) with respect to r yields

∧

(r,z)∈R+
0 ×R

rB1[(r, z)] +

∫ r

0

r̃ (∂2B2)[(r̃, z)] dr̃ = 0. (B.4.3)

Integrating (B.4.3) with respect to z yields

∧

(r,z)∈R+
0 ×R

∫ z

0

rB1[(r, z̃)] dz̃ +

∫ r

0

r̃B2[(r̃, z)] dr̃ −
∫ r

0

r̃B2[(r̃, 0)] dr̃ = 0. (B.4.4)

The hypothesis B2 ∈ C1(R+
0 × R,R) implies

lim
r↓0

1

r

∫ r

0

r̃B2[(r̃, 0)] dr̃ = 0. (B.4.5)

If one now defines

∧

(r,z)∈R+
0 ×R

φ[(r, z)] :=

{
− ∫ z

0
B1[(r, z̃)] dz̃ + 1

r

∫ r

0
r̃B2[(r̃, 0)] dr̃ if r > 0,

− ∫ z

0
B1[(0, z̃)] dz̃ if r = 0,

(B.4.6)

then (B.4.4) implies

∧

(r,z)∈R+
0 ×R

rφ[(r, z)] =

∫ r

0

r̃B2[(r̃, z)] dr̃ . (B.4.7)

Finally, differentiating (B.4.6) with respect to z gives (B.4.2a), and differentiating
(B.4.7) with respect to r gives (B.4.2b). ¥



Appendix C

Mathematical Background Material

C.1 Topology

C.1.1 Elementary Notions

Definition C.1.1. If X is a topological space, O being its topology, and A ⊆ X, then
OA := {A ∩O : O ∈ O} is called the relative topology on A with respect to O.

Definition C.1.2. If X is a topological space, O being its topology, and A ⊆ X, then
the closure of A (denoted clO[A]) is the intersection of all closed sets containing A. The
interior of A ⊆ X (denoted intO[A]) is the union of all open sets contained in A. The
(topological) boundary ∂OA of A is the set of all points x ∈ X such that each open set
containing x has a nonempty intersection with both A and X \ A. Often the topology
is understood and the subscript O is dropped. In that case A is used instead of cl[A].

Definition C.1.3. Let X be a topological space, and let F := (Xi)i∈I be a family of
subsets of X.

(a) F is called an open cover of X iff each Xi is open and X =
⋃

i∈IXi.

(b) F is called a partition of A ⊆ X iff A =
⋃

i∈IXi and int[Xi] ∩ int[Xi′ ] = ∅ for each
i 6= i′.

Definition C.1.4. A map f : X −→ Y between topological spaces X and Y is called
continuous iff f−1O is open in X for each open set O ⊆ Y . Moreover, f is called
piecewise continuous iff there is a partition (Xi)i∈I of X and a family of continuous
maps fi : Xi −→ Y , i ∈ I, such that fi ¹Xi

= f ¹Xi
for each i ∈ I. The set of

all continuous (respectively piecewise continuous) maps from X into Y is denoted by
C(X, Y ) (respectively Cpw(X, Y )).

232
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Definition C.1.5. A topological space X is called compact iff each open cover of X
has a finite open subcover.

Remark and Definition C.1.6. Let f be a continuous real-valued map on a compact
topological space C. Then f assumes its maximum and its minimum. Define the
max-norm

‖f‖max := max
{∣∣f [x]

∣∣ : x ∈ C
}
. (C.1.1)

Remark C.1.7. If X is a metric space, then X is compact if and only if each sequence
in X has a subsequence that converges in X.

Remark and Definition C.1.8. If V is a normed vector space, then the norm on
V gives rise to a topology on V . If V is finite-dimensional, then all norms on V are
equivalent, i.e. all norms on V define the same topology on V , called the norm topology.

Remark C.1.9. A subset A ⊆ V of a finite-dimensional normed vector space, endowed
with the norm topology O, is compact with respect to OA if and only if A is bounded
and O-closed.

C.1.2 Domain Invariance

Definition C.1.10. A bijective map between topological spaces is called a homeomor-
phism iff both the map and its inverse map are continuous.

—

The Domain Invariance Th. C.1.11 is a classical result of algebraic topology.

Domain Invariance Theorem C.1.11. Let A and B be subsets of Rd, d ∈ N, and
let f : A −→ B be a homeomorphism.

(a) If A is open, then B is open.

(b) f(int[A]) = int[B].

(c) f(A ∩ ∂A) = B ∩ ∂B.

Proof. (a): See for example [Oss92, Th. 5.6.15].

(b) and (c) are immediate consequences of (a) and the bijectiveness of f . ¥
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C.2 Norms

Definition C.2.1. Let d ∈ N and p ∈ [0,∞[. The maps

Np : Rd −→ R+
0 , Np

[
(xi)i∈{1,...,d}

]
=


 ∑

i∈{1,...,d}
|xi|p




1
p

, (C.2.1a)

N∞ : Rd −→ R+
0 , N∞

[
(xi)i∈{1,...,d}

]
= max

{|xi| : i ∈ {1, . . . , d}} (C.2.1b)

are called the lp-norm on Rd and the l∞-norm or max-norm on Rd. The notation ‖x‖p

is used instead of Np[x], and ‖x‖max is used instead of N∞[x].

Remark C.2.2. Cauchy-Schwarz Inequality: For each {x1, x2} ⊆ Rd, d ∈ N, it holds
that |x1 • x2| ≤ ‖x1‖2 · ‖x2‖2.

Definition and Remark C.2.3. Let d ∈ N, and let ‖ ‖ be a norm on Rd. Given a
linear map A : Rd −→ Rd, define the operator norm ‖A‖ of A by

‖A‖ := sup
{∥∥A[x]

∥∥ : x ∈ Rd, ‖x‖ = 1
}
. (C.2.2)

As a direct consequence of (C.2.2), one has

∧

(x,y)∈Rd×Rd

∥∥A[y]− A[x]
∥∥ ≤ ‖A‖ · ‖y − x‖, (C.2.3)

i.e. A is ‖A‖-Lipschitz (cf. App. C.7.2).

C.3 Matrix Theory

Definition C.3.1. Let I be a finite index set, and let A := (ai,j)(i,j)∈I×I be a real
square matrix.

(a) A is called nonnegative iff ai,j ≥ 0 for each (i, j) ∈ I × I.

(b) A is called diagonally dominant iff

∧
i∈I

∑

j∈I\{i}
|ai,j| ≤ ai,i. (C.3.1)

A is called strictly diagonally dominant iff the inequality in (C.3.1) is strict.

(c) A is called monotone iff given x ∈ RI , Ax ≥ 0 implies x ≥ 0.
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(d) A is called an M-matrix iff A is monotone and ai,j ≤ 0 for each {(i, j) ∈ I × I :
i 6= j}.

Lemma C.3.2. Let I be a finite index set, and let A := (ai,j)(i,j)∈I×I be a real square
matrix.

(a) A is monotone if and only if A is invertible and A−1 is nonnegative.

(b) Suppose ∧

(i,j)∈I2

ai,j ≤ 0 for i 6= j, ai,j > 0 for i = j. (C.3.2)

If A is strictly diagonally dominant, then A is an M-matrix.

Proof. (a): See [Axe94, Lem. 6.1]. (b): See [Axe94, Lem. 6.2]. ¥

C.4 Affine Geometry

C.4.1 Affine Subspaces

Definition C.4.1. A subset A of Rd, d ∈ N, is called an affine subspace of Rd iff there
is a linear subspace V of Rd and a0 ∈ Rd such that A = V + a0. Moreover, define the
dimension dimA := dimV .

Definition C.4.2. Given finitely many vectors (vi)i∈I , #I < ∞, in a real vector space
and real numbers (λi)i∈I , such that

∑
i∈I λi = 1, the vector

∑
i∈I λivi is called an

affine combination of the vectors vi, i ∈ I. The vectors vi, i ∈ I, are called affinely
independent iff for each pair of families of real numbers ((λi)i∈I , (µi)i∈I), it holds that∑

i∈I λivi =
∑

i∈I µivi and
∑

i∈I λi =
∑

i∈I µi = 1 imply λi = µi for each i ∈ I, i.e. iff
the coefficients of affine combinations of the vectors vi, i ∈ I, are unique.

Definition C.4.3. Let A ⊆ Rd, d ∈ N. The set aff[A] is defined as the set of all affine
combinations of finitely many elements of A, i.e.

aff[A] :=

{∑
i∈I

λivi : #I < ∞, vi ∈ A, λi ∈ R,
∑
i∈I

λi = 1

}
. (C.4.1)

The set aff[A] is called the affine hull of A.

Remark C.4.4. A ⊆ Rd is an affine subspace if and only if there is a nonempty finite
set of points V such that A = aff[V ].
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C.4.2 Polyhedral Sets

Following [Grü67] and [Zie98], polyhedral sets can be unbounded. Bounded polyhedral
sets are called polytopes.

Definition C.4.5. A subset A of a real vector space is called convex iff for each (v0, v1) ∈
A2 and for each λ ∈ [0, 1], it holds that λv0 + (1− λ)v1 ∈ A.

—

Intersections of convex sets are convex, giving rise to the following definition.

Definition C.4.6. If A is a subset of a real vector space, then conv[A] is the intersection
of all convex sets containing A and is called the convex hull of A.

Definition C.4.7. Given affinely independent vectors v0, . . . , vd, d ∈ N0, in a real
vector space V , the set σ := conv[{v0, . . . , vd}] is called a d-simplex in V . The elements
of V [σ] := {v0, . . . , vd} are called the vertices of σ. Let simd[V ] denote the set of all
d-simplices in V . Each d-simplex, d ∈ N0, is called a simplex and the set of all simplices
in V is denoted by sim[V ].

—

So a d-simplex is the convex hull of d + 1 affinely independent points.

Definition C.4.8. Given a real vector space V and σ ∈ sim[V ], the boundary of σ is
the set

∂σ :=
⋃

v∈V [σ]

conv [V [σ] \ {v}] . (C.4.2)

The set int[σ] := σ \ ∂σ is called the interior of σ.

—

For example in R2, that means in the plane, there are 0-simplices (points), 1-simplices
(line segments), and 2-simplices (triangles) as depicted in Fig. C.1. Figure C.1 also
displays the corresponding boundaries, where ∂σ0 = ∅.
Polytopes are finite unions of simplices. For the purposes of this work, it suffices to
consider polytopes that are made up of simplices of the same dimension. This leads to
the following Def. C.4.9.

Definition C.4.9. A subset p of a real vector space V is called a d-polytope, d ∈ N0,
iff there are finitely many d-simplices in V , denoted by σi, i ∈ I, #I < ∞, such that
p =

⋃
i∈I σi. The set of d-polytopes in V is denoted by ptd[V ]. A polytope is a set p that

is a d-polytope for some d ∈ N0. The set of all polytopes in V is denoted by pt[V ].
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v0

σ0 = conv
[{v0}

] v0

v1

σ1 = conv
[{v0, v1}

]

∂σ1

v0

v1

v2

σ2 = conv
[{v0, v1, v2}

]

∂σ2

Figure C.1: Simplices in R2 and corresponding boundaries.

Remark C.4.10. Let p1 and p2 be d-polytopes in a finite-dimensional real vector space
V , dim[V ] = d, d ∈ N. Let O denote the norm topology on V . If intO[p1 ∩ p2] 6= ∅, then
intO[p1 ∩ p2] is a d-polytope.

—

Here, with the exception of boundaries of simplices, only boundaries of polytopes in
finite-dimensional real vector spaces V , dim[V ] = d, d ∈ N, are considered, that have
the same dimension d as the ambient space. Restricting to this case allows the following
simple definition of polytope boundaries.

Definition C.4.11. The boundary of a d-polytope p ⊆ V in a finite-dimensional real
vector space V , dim[V ] = d, d ∈ N, is its topological boundary, where V is endowed
with the norm topology. It is denoted by ∂p. A point v ∈ ∂p is called regular iff there
is a (d− 1)-simplex σ ⊆ ∂p such that v ∈ int[σ]. Points in ∂p that are not regular are
called singular. Let ∂regp be the set of regular points in ∂p, and let ∂sinp be the set of
singular points in ∂p.

Remark C.4.12. Definition C.4.11 is consistent in the sense that, if one considers d-
simplices, d ∈ N, as polytopes according to Def. C.4.9, then the two boundary notions
given by Defs C.4.8 and C.4.11 coincide.

—

Figure C.2 shows six examples of polytopes in R2. Polytopes can be multiply connected
as p2 and p4, simply connected as p1 or not connected as p3, p5, and p6. The sets p1, p2,
and p3 are 2-polytopes, the sets p4 and p5 are 1-polytopes, and the set p6 is a 0-polytope.

Remark C.4.13. Let V be a d-dimensional real vector space and p ∈ ptd[V ], d ∈ N.
Suppose J is a finite index set, pj ∈ ptd[V ] for each j ∈ J , and (pj)j∈J is a partition of p
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p1 p2 p3

p4 = ∂p1 p5 p6

Figure C.2: Polytopes in R2.

with respect to the norm topology. Let (j1, j2) ∈ J2, j1 6= j2, and γ := ∂regpj1∩∂regpj2 6=
∅. If j ∈ J and ∂regpj ∩ γ 6= ∅, then j ∈ {j1, j2}. That means there are precisely two
polytopes adjacent to the interface γ.

Definition C.4.14. Let A be an affine subspace of Rd, d ∈ N, and let x ∈ Rd. Then,
x is called perpendicular to A iff x • (a1 − a2) = 0 for each (a1, a2) ∈ A2.

Notation C.4.15. Given two distinct points v and w in Rd, d ∈ N, let A⊥[(v, w)] :=
{x ∈ Rd : ‖v − x‖2 = ‖w − x‖2}.
Remark and Definition C.4.16. Given two distinct points v and w in Rd, d ∈ N,
A⊥[(v, w)] is an affine subspace and v − w is perpendicular to A⊥[(v, w)].

Remark and Definition C.4.17. Let p be a d-polytope in Rd, d ∈ N, and let x ∈ ∂regp.
Then there exists a unique vector np[x] ∈ Rd with the following properties (i) – (iii):

(i) ‖np[x]‖2 = 1.

(ii) If σ ⊆ ∂p is a (d− 1)-simplex such that x ∈ int[σ], then np[x] is perpendicular to
aff[σ].

(iii) There is ε0 ∈ R+ such that {x + ε np[x] : ε ∈]0, ε0[} ∩ p = ∅ and {x− ε np[x] : ε ∈
]0, ε0[} ⊆ p.

The map np : ∂regp −→ Rd (the vector np[x]) is called the outer unit normal vector of p
(at x). The map np is continuous, since it is only defined on the (usually disconnected)
set ∂regp.

—

Figure C.3 illustrates Defs C.4.11 and C.4.17.
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p1 ∂p1
∂regp1 with

normal vectors np1

∂sinp1

Figure C.3: Regular and singular boundary of the 2-polytope p1.

C.4.3 Voronöı Discretization

Definition C.4.18. Let p be a d-polytope in Rd, d ∈ N, and let V be a nonempty finite
subset of p. Then the induced Voronöı discretization of p, denoted by Π[V ] = (ωv)v∈V ,
consists of the so-called Voronöı boxes ωv, where

∧
v∈V

ωv :=
{
x ∈ p : ‖x− v‖2 < ‖x− w‖2 for each w ∈ V \ {v}}. (C.4.3)

The v ∈ V are called the discretization points of the Voronöı discretization (cf. Def.
3.7.40).

Remark C.4.19. Let p be a d-polytope in Rd, d ∈ N, let V be a nonempty finite
subset of p, and let Π[V ] = (ωv)v∈V be the induced Voronöı discretization of p. Then,
Π[V ] is a partition of p into d-polytopes such that v ∈ ωv for each v ∈ V . Moreover,
for each (v, w) ∈ V 2, v 6= w, one has that ∂ωv ∩ ∂ωw ⊆ A⊥[(v, w)], and, in particular,

w−v
‖w−v‖2 = nωv ¹∂regωv∩∂regωw .

Example C.4.20. Figure C.4 displays the Voronöı discretization induced by the set
V := {v1, . . . , v9}. It illustrates that one can not replace “<” in (C.4.3) by “≤” without
losing the property that the Voronöı boxes are always d-polytopes: If “≤” were used
in (C.4.3), then the isolated point x would be an element of ωx8 , assuming ‖v8− x‖2 =
‖v9 − x‖2.

C.5 Graph Theory

Definition C.5.1. A graph is a pair G = (V, E) consisting of a set of vertices V = V [G]
and a set of edges E = E[G] ⊆ (

V
2

)
, where

(
V
2

)
denotes the set of all subsets of V that

have precisely two elements. For each V0 ⊆ V , the set G ¹V0 := (V0, E ∩ (
V0

2

)
) is called

the induced subgraph of G on V0.

Definition C.5.2. Consider a graph G = (V, E). A one-to-one map p : {0, . . . , n} −→
V , n ∈ N0, such that either n = 0 or {p[ν], p[ν + 1]} ∈ E for each ν ∈ {0, . . . , n− 1}, is
called a path in G. If v = p[0] and v′ = p[n], then p is also called a vv′-path in G.
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ωv1

v8

ωv2

ωv4

ωv6 ωv7

v2

ωv5ωv3

v5

v7

v4v3

v1

v6

x
ωv8

ωv9

v9

Figure C.4: Voronöı discretization, s. Ex. C.4.20.

Definition C.5.3. Let G = (V, E) be a graph. The connected component in G of a
vertex v ∈ V is the set of all vertices v′ ∈ V such that there is a vv′-path in G. The
connected component in G of v ∈ V is denoted by CoCmpG[v] or by CoCmp[v] if the
graph G is understood.

Remark C.5.4. For each graph G = (V,E),

v ∼ v′ ⇔ v′ ∈ CoCmp[v] (C.5.1)

defines an equivalence relation on V .

Definition C.5.5. Let G = (V, E) be a graph. The induced subgraphs G ¹C on the
equivalence classes C ⊆ V of the equivalence relation defined in (C.5.1) are called the
connected components of G. The set of all connected components of G is denoted by
CoCmp[G].

C.6 Regularity Notions of Functions

C.6.1 Continuous Differentiability

In this work only real differentiability plays a role, even for functions between complex
spaces, i.e. the derivatives are not required to be C-linear, just R-linear. Hence, in the
current section only real subsets of real spaces are treated. The considerations apply
to complex spaces by identifying Cd with R2d.

Notation C.6.1. If (d, d′) ∈ N2, k ∈ N0, O ⊆ Rd, B ⊆ Rd′ , and O is open, then
the set of all functions f : O −→ B having continuous partial derivatives up to k-th
order, is called Ck(O, B). Moreover, C∞(O, B) :=

⋂
k∈NCk(O, B). If A = int[A] is an

arbitrary subset of Rd that is the closure of its interior, then Ck(A, B), k ∈ N0 ∪ {∞},
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denotes the set of all functions f : A −→ B such that the restriction f ¹int[A] is in
Ck(int[A], B), and all its partial derivatives extend to A continuously. The extensions
are then called partial derivatives of f , denoted by ∂i, i ∈ {1 . . . , d}. Let Ck[A] :=
Ck(A,R), C(A,B) := C0(A,B), and C[A] := C(A,R).

—

Requiring A = int[A] in Not. C.6.1 guarantees that partial derivatives are always unique.

Notation C.6.2. For d ∈ N and A = int[A] ⊆ Rd, let

∇ : C1[A] −→ C
(
A,Rd

)
, ∇ f := (∂if)i∈{1...,d} ,

div : C1
(
A,Rd

) −→ C[A], div(fi)i∈{1...,d} :=
∑

i∈{1...,d}
∂ifi.

(C.6.1)

Next, some notation for differentiating functions defined on time-space domains is pro-
vided. In this case, the gradient and the divergence act on the space variables only:

Notation C.6.3. Let Q = [t0, tf ] × Ω, Ω ⊆ Rd, be a time-space domain (cf. (3.1.2)).
For real-valued functions defined on Q, the symbol ∂t denotes the partial derivative
with respect to the time variable t ∈ [t0, tf ], and ∂xi

, i ∈ {1 . . . , d}, denotes the partial
derivative with respect to the i-th space variable xi, (xi)i∈{1...,d} ∈ Ω. Furthermore, for
functions f , fi, i ∈ {1 . . . , d}, defined on Q and having partial space derivatives, let

∇ f := (∂xi
f)i∈{1...,d} , div(fi)i∈{1...,d} :=

∑

i∈{1...,d}
∂xi

fi. (C.6.2)

C.6.2 Monotonicity

Definition C.6.4. Let A ⊆ R and f : A −→ R. Then f is called increasing iff
∧

(a,b)∈A2

a < b ⇒ f [a] ≤ f [b], (C.6.3)

and f is called strictly increasing iff the inequality in the conclusion of (C.6.3) is strict.

C.6.3 Variation

The topic of this section is the variation of real-valued functions on bounded and un-
bounded intervals.

Notation C.6.5. For each a ∈ R, let

Ia :=
{
[a, b] : b ∈ [a,∞[

} ∪ {
[a, b[: b ∈ [a,∞[

} ∪ {
[a,∞[

}
(C.6.4)

be the set of all intervals with minimum a.



242 APPENDIX C. MATHEMATICAL BACKGROUND MATERIAL

Definition C.6.6. Given a real interval I := [a, b], a discretization of I is a finite,
strictly increasing sequence (tν)ν∈{0,...,n}, n ∈ N, satisfying

t0 = a and tn = b. (C.6.5)

Definition C.6.7. Let a ∈ R and I ∈ Ia. For each function f : I −→ R, define the
functions

var[f ] : I −→ [0,∞],
var[f ][a] := 0,

∧

λ∈I\{a}




var[f ][λ] := sup





∑

ν∈{1,...,n}

∣∣f [tν ]− f [tν−1]
∣∣ :

(tν)ν∈{0,...,n} is a discretization of [a, λ]








,

(C.6.6a)

var+[f ] : I −→ [0,∞],
var+[f ][a] := 0,

∧

λ∈I\{a}




var+[f ][λ] := sup





∑

ν∈{1,...,n}
max

{
0, f [tν ]− f [tν−1]

}
:

(tν)ν∈{0,...,n} is a discretization of [a, λ]








,

(C.6.6b)

var−[f ] : I −→ [0,∞],
var−[f ][a] := 0,

∧

λ∈I\{a}




var−[f ][λ] := sup
{

−
ν∈{1,...,n}

∑
min

{
0, f [tν ]− f [tν−1]

}
:

(tν)ν∈{0,...,n} is a discretization of [a, λ]








.

(C.6.6c)

The function var[f ] is called the total variation function of f . Analogously, var+[f ] is
called the positive variation function of f , and var+[f ] is called the negative variation
function of f . The function f is called of bounded variation iff the total variation
function of f remains finite, i.e. sup

(
var[f ]

)
< ∞.

—

The following Rem. C.6.8 states some useful elementary properties of variation.

Remark C.6.8. Let a ∈ R and I ∈ Ia. For each function f : I −→ R, the following
holds:
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(a) var[f ][a] = var+[f ][a] = var−[f ][a] = 0.

(b) Each of the functions var[f ], var+[f ], and var−[f ] is nonnegative.

(c) Each of the functions var[f ], var+[f ], and var−[f ] is increasing.

(d) var[f ] = var+[f ] + var−[f ].

(e) If b ∈ I and var[f ][b] < ∞, then f = f [a] + var+[f ]− var−[f ] on [a, b].

(f) For each (λ, µ) ∈ I2 with λ < µ, it holds that

var[f ][µ] = var[f ][λ] + var
[
f ¹I∩[λ,∞[

]
[µ], (C.6.7a)

var+[f ][µ] = var+[f ][λ] + var+
[
f ¹I∩[λ,∞[

]
[µ], (C.6.7b)

var−[f ][µ] = var−[f ][λ] + var−
[
f ¹I∩[λ,∞[

]
[µ]. (C.6.7c)

(g) If L ∈ R+
0 and f is L-Lipschitz (cf. Def. C.7.4), then each of the functions var+[f ],

var−[f ], and var[f ] is L-Lipschitz. In particular, the functions all are of bounded
variation on each compact interval contained in I, and f = f [a]+var+[f ]−var−[f ].

(h) If f is locally Lipschitz (cf. Def. C.7.5), then each of the functions var+[f ], var−[f ],
and var[f ] is locally Lipschitz. In particular, the functions all are of bounded
variation on each compact interval contained in I, and f = f [a]+var+[f ]−var−[f ].

C.7 Some Subjects in Metric Spaces

C.7.1 Elementary Notation

Definition C.7.1. Given a finite index set I and metric spaces (Xk, dXk
), k ∈ I, set

X :=
∏

k∈I Xk. The function

d : X2 −→ R+
0 , d[(x, y)] := max

{
dXk

[(xk, yk)] : k ∈ I
}

(C.7.1)

is called the max-metric on X.

Notation C.7.2. Let (X, d) be a metric space, x ∈ X, and A ⊆ X. Define d(x,A) :=
inf

{
d[(x, a)] : a ∈ A}.

Definition C.7.3. If (X, d) is a metric space, x0 ∈ X, and r ∈ R+, then

Bd,r[x0] :=
{
x ∈ X : d[(x0, x)] < r

}
(C.7.2)

is called the (open) r-ball with center x0 and with respect to d. One also writes Br[x0]
if d is understood.
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C.7.2 Lipschitz Functions

Definition C.7.4. Let (X, dX) and (Y, dY ) be metric spaces, L ∈ R+
0 . A map f :

X −→ Y is called L-Lipschitz continuous or just L-Lipschitz iff

∧

(x1,x2)∈X2

dY

[
(f [x1], f [x2])

] ≤ L · dX

[
(x1, x2)

]
. (C.7.3)

Moreover, f is called Lipschitz continuous or Lipschitz iff f is L-Lipschitz for some
L ∈ R+

0 . The set of all L-Lipschitz functions from X into Y is denoted by LipL(X,Y ),
while Lip(X, Y ) is the set of all Lipschitz functions from X into Y .

Definition C.7.5. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X −→ Y is
called locally Lipschitz iff for each x ∈ X, there is an r ∈ R+ such that f is Lipschitz in
Br[x].

Remark C.7.6. Let (d, d′) ∈ N2, X ⊆ Rd, Y ⊆ Rd′ . A map f : X −→ Y is locally
Lipschitz if and only if f is Lipschitz on each compact subset of X.

—

The following Rem. C.7.7 collects some elementary properties of Lipschitz functions,
that are used in this work.

Remark C.7.7. (a) Let f : [m,M ] −→ R be L-Lipschitz, L ∈ R+
0 . Then f [M ] ≤

f [m] + L · (M −m).

(b) Compositions of Lipschitz functions are Lipschitz functions: If (X, dX), (Y, dY ),
(Z, dZ) are metric spaces, f ∈ LipLf

(X,Y ), g ∈ LipLg
(Y, Z), {Lf , Lg} ⊆ R+

0 , then
g ◦ f ∈ LipLf ·Lg

(X, Z).

(c) Scaled (locally) Lipschitz functions are (locally) Lipschitz functions: Let (X, dX)
be a metric space, and let (Y, ‖ ‖) be a normed vector space. If f ∈ LipL(X,Y ),
L ∈ R+

0 , λ ∈ R, then λ · f ∈ Lip|λ|·L(X, Y ).

(d) Sums of (locally) Lipschitz functions are (locally) Lipschitz functions: Let (X, dX)
be a metric space, and let (Y, ‖ ‖) be a normed vector space. If fk ∈ LipLk

(X,Y ),
Lk ∈ R+

0 , k ∈ I, #I < ∞, then
∑

k∈I fk ∈ LipL(X, Y ), where L :=
∑

k∈I Lk.

(e) The product of two real-valued bounded Lipschitz functions is a Lipschitz func-
tion: Let (X, dX) be a metric space, f ∈ LipLf

(X,R), g ∈ LipLg
(X,R), and

max
{‖f‖sup, ‖g‖sup

}
< ∞, then f ·g ∈ LipL(X,R), where L = ‖f‖supLg+‖g‖supLf .

In particular, if X is compact, then f · g is Lipschitz. Also, if f and g are locally
Lipschitz, then f · g is locally Lipschitz.
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(f) The cartesian product of (locally) Lipschitz maps is (locally) Lipschitz with respect
to the max-metric: Given a finite index set I and metric spaces (X, dX), (Y, dY ),
let XI and Y I be endowed with the respective max-metrics, denoted by dX,max

and dY,max, respectively. If fk ∈ LipL(X, Y ), L ∈ R+
0 , k ∈ I, then the map

f := (fk)k∈I : XI −→ Y I , is L-Lipschitz.

(g) The sum of (locally) Lipschitz maps depending on different variables is (locally)
Lipschitz with respect to the max-metric: Given a finite index set I, a metric
space (X, dX), and a normed vector space (Y, ‖ ‖), let XI be endowed with the
max-metric, denoted by dX,max. If fk ∈ LipLk

(X, Y ), Lk ∈ R+
0 , k ∈ I, then the

map f : XI −→ Y , f [x] :=
∑

k∈I fk[xk] is L-Lipschitz, where L :=
∑

k∈I Lk.

(h) The product of two real-valued bounded Lipschitz maps depending on different
variables is Lipschitz with respect to the max-metric: Given a finite index set I
and a metric space (X, dX), let XI be endowed with the max-metric, denoted by
dX,max. If f ∈ LipLf

(X,R), g ∈ LipLg
(X,R), and max

{‖f‖sup, ‖g‖sup

}
< ∞, then

for each (k, l) ∈ I2, the map fg : XI −→ Y , (fg)[x] := f [xk] · g[xl] is L-Lipschitz,
where L := ‖f‖supLg + ‖g‖supLf .

In particular, if X is compact, then fg is Lipschitz. Also, if f and g are locally
Lipschitz, then fg is locally Lipschitz.

(i) Suppose C is a convex subset of Rd, d ∈ N, and f ∈ C(C,R) is diffenrentiable
on int[C] such that all partial derivatives of f are bounded, i.e. such that there is
M ∈ R+

0 satisfying |∂if [x]| ≤ M for each i ∈ {1, . . . , d} and for each x ∈ int[C].

Then for any (x, y) ∈ (int[C])2, one can use the mean value theorem to get ξ ∈
conv[{x, y}] ⊆ C such that

f [y]− f [x] = ∇ f [ξ] • (y − x), (C.7.4)

and hence
|f [y]− f [x]| ≤ dM‖x− y‖max. (C.7.5)

If C contains boundary points, then (C.7.5) extends to these points by the conti-
nuity of f . Hence f is dM -Lipschitz continuous with respect to the max-norm.

In particular, if f is continuously differentiable, then f is locally Lipschitz with
respect to the max-norm.

Definition C.7.8. Let (X, dX) and (Y, dY ) be metric spaces. For each map f : X −→
Y , let

‖f‖Lip := sup

{
dY

[(
f [x1], f [x2]

)]

dX [(x1, x2)]
: (x1, x2) ∈ X2, x1 6= x2

}
. (C.7.6)

Remark C.7.9. A map f : X −→ Y between two metric spaces is Lipschitz if and
only if ‖f‖Lip < ∞. Moreover, for each f ∈ Lip(X, Y ), it holds that

‖f‖Lip = min
{
L ∈ R+

0 : f ∈ LipL(X,Y )
}
. (C.7.7)
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C.7.3 Inverse Lipschitz Functions

Definition C.7.10. Let (X, dX) and (Y, dY ) be metric spaces, Linv ∈ R+. A map
f : X −→ Y is called inverse Linv-Lipschitz iff

∧

(x1,x2)∈X2

dY

[
(f [x1], f [x2])

] ≥ Linv · dX

[
(x1, x2)

]
. (C.7.8)

Moreover, f is called inverse Lipschitz iff it is inverse Linv-Lipschitz for some Linv ∈
R+. The set of all inverse Linv-Lipschitz functions from X into Y is denoted by
InLipLinv

(X, Y ). Analogously, the set of all inverse Lipschitz functions from X into
Y is denoted by InLip(X, Y ).

Remark C.7.11. The name inverse Lipschitz is justified: Let (X, dX) and (Y, dY ) be
metric spaces. If the bijective map f : X −→ Y is inverse Linv-Lipschitz for some
Linv ∈ R+, then its inverse map f−1 is L−1

inv-Lipschitz.

—

As a caveat it is pointed out that in contrast to Lipschitz functions which are always
continuous, functions that are inverse Lipschitz can be discontinuous.

The following Rem. C.7.12 collects some elementary properties of increasing inverse
Lipschitz functions, that are used in this work.

Remark C.7.12. Let I be an interval, I ⊆ R, and let f : I −→ R be inverse Linv-
Lipschitz for some Linv ∈ R+. Moreover, suppose that f is increasing.

(a)
∧

(a,b)∈I2: a<b

f [b] ≥ Linv(b− a) + f [a] > f [a]. In particular, if sup I = ∞, then f is

unbounded from above.

(b) f is one-to-one, hence f is strictly increasing, and thus f−1 exists on f [I].

(c) f is continuous if and only if the range of f is an interval.

(d)
∧

λ∈R+

λf is inverse λLinv-Lipschitz.

(e) If g : I −→ R is increasing, then f + g is inverse Linv-Lipschitz.

C.7.4 Contracting Maps

Definition C.7.13. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X −→ Y is
called c-contracting or a c-contraction for c ∈ [0, 1[ iff f is c-Lipschitz, i.e.

∧

(x1,x2)∈X2

dY

[
(f [x1], f [x2])

] ≤ c · dX

[
(x1, x2)

]
. (C.7.9)

If (C.7.9) holds for some c ∈ [0, 1[, then f is called contracting or a contraction.
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Remark C.7.14. A map into a product space endowed with the max-metric is con-
tracting if all its component maps are contracting. More precisely, given a finite index
set I and metric spaces (X, dX), (Yk, dYk

), k ∈ I, set Y :=
∏

k∈I Yk, and let dY be the
max-metric on Y . If there are numbers ck ∈ [0, 1[ such that each fk is ck-contracting,
k ∈ I, then the map f : X −→ Y , x 7→ (

fk[x]
)

k∈I
, is max{ck : k ∈ I}-contracting.

Lemma C.7.15. Let (X, dX), (Y, dY ), and (Z, dZ) be metric spaces, and f : X −→ Y .
Suppose there are g ∈ LipL(X,Z), L ∈ R+

0 , h ∈ InLipLinv
(Y, Z), Linv ∈ R+, such that

g = h ◦ f . If Linv > L, then f is L
Linv

-Lipschitz, i.e. f is L
Linv

-contracting.

Proof. One calculates

∧

(x1,x2)∈X2

(
Linv · dY

[
(f [x1], f [x2])

] ≤ dZ

[
(h[f [x1]], h[f [x2]])

]

= dZ

[
(g[x1], g[x2])

] ≤ L · dX

[
(x1, x2)

]
)

. (C.7.10)

Dividing (C.7.10) by Linv establishes the case. ¥

C.8 Integration

C.8.1 Notation for Lebesgue Measure

Notation C.8.1. Let λd denote d-dimensional Lebesgue measure, d ∈ N. For singleton
sets {x}, also define λ0{x} := 1.

C.8.2 Integration Theorems

In Th. C.8.2 the Gauss-Green Integration Theorem is stated in a form that is suitable
for the needs of this work. Since the general notion of a manifold is not required
elsewhere in this text, a rigorous definition is omitted. Intuitively, the hypothesis made
on the boundary of the integration region in Th. C.8.2 says that the boundary can have
corners and (hyper)-edges of finite angles, and that, locally, small translations either
shift the boundary totally inside or totally outside of the integration region. For details,
it is referred to [Zei86, Sec. 6.2] and [Zei90, Sec. 18.2].

For the applications in Ch. 3, the closure of the set O in C.8.2 is acually always a
polytope.

Gauss-Green Integration Theorem C.8.2. If O is a bounded open connected non-
empty subset of Rd, d ∈ N, such that ∂O is an (d− 1)-dimensional Lipschitz manifold
and such that O lies locally on one side of ∂O, and if f ∈ C1(O,Rd′), d′ ∈ N, then

∫

O

div f =

∫

∂O

tr∂O f • nO, (C.8.1)
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where nO is the outward unit normal that is defined almost everywhere on ∂O. Exten-
sions: Equation (C.8.1) still holds if (a) O ∈ ptd[Rd], d ∈ N, or (b) div f only exists in
a weak sense, e.g. for f ∈ H(div, O), where H(div, O) is the space defined in [Bey98,
Def. 1.1.36], or (c) f has values in Cd′.

Proof. Confer e.g. [Neč67, p. 121]. Extension (a): Let (σi)i∈I , #I < ∞, be a finite
partition of p := O into d-simplices. Since C.8.2 applies to each σi, i ∈ I, and since
f • nσi

= −f • nσj
on ∂regnσi

∩ ∂regnσj
whenever (i, j) ∈ I2, i 6= j, a finite summation

establishes the case. Extension (b) for f ∈ H(div, O) follows from the continuously
differentiable case, as C∞(O,Rd′) is dense in H(div, O) (cf. [Bey98, Lem. 1.1.37]). Ex-
tension (c) follows by applying the real theorem to the real and imaginary parts of
f . ¥

Change of Variables Theorem C.8.3. Let O be an open subset of Rd, d ∈ N, and
let T : O −→ Rd a one-to-one map that is differentiable (in the classical sense). Let
T ′ : O −→ Lin(Rd,Rd) denote the derivative of T , and let JT : O −→ R, x 7→ det[T ′],
denote its Jacobian. If f : Rd −→ K is measurable, then (f ◦ T ) · |JT | is measurable,
and ∫

O

(f ◦ T ) · |JT | =
∫

TO

f. (C.8.2)

Proof. See [Rud87, Th. 7.26]. The complex case follows by applying the real theorem
to the real and imaginary parts of f . ¥

Fubini Theorem C.8.4. Let A ⊆ Rd, B ⊆ Rd′, (d, d′) ∈ N2, be measurable sets.
Suppose f ∈ L1(A × B,K). Then f ¹{a}×B∈ L1(B,K) for almost all a ∈ A, f ¹A×{b}∈
L1(A,K) for almost all b ∈ B. Moreover, an element of L1(A,K) is defined by a 7→∫

B
f ¹{a}×B almost everywhere, an element of L1(B,K) is defined by b 7→ ∫

A
f ¹A×{b}

almost everywhere, and it holds that

∫

A

(∫

B

f ¹{a}×B

)
=

∫

A×B

f =

∫

B

(∫

A

f ¹A×{b}

)
. (C.8.3)

Proof. See [Rud87, Th. 8.8(c)]. ¥
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Gazeuse. Ann. Chim. Sci. Mat. 23 (1998), 753–789 (French).

[Axe94] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cam-
bridge, UK, 1994.
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[Krö97] D. Kröner. Numerical Schemes for Conservation Laws. Advances in Numerical
Mathematics, Wiley Teubner, Chichester, UK, Stuttgart, Germany, 1997.

[Kri94] M. Krizek et al. (ed.). Finite element methods. 50 years of the Courant element.
Lect. Notes Pure Appl. Math., vol. 164, New York, NY, Marcel Dekker, Inc.,
1994.

[KRRS98] E.L. Kitanin, M.S. Ramm, V.V. Ris, and A.A. Schmidt. Heat transfer
through source powder in sublimation growth of SiC crystal. Mater. Sci. Eng. B
55 (1998), 174–183.



BIBLIOGRAPHY 253

[Lel55] J.A. Lely. Darstellung von Einkristallen von Siliciumcarbid und Beherrschung
von Art und Menge der eingebauten Verunreingungen. Ber. Deut. Keram. Ges.
32 (1955), 229–231 (German).

[Lid95] D.R. Lide. CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton,
USA, 1995.

[LT00] M. Laitinen and T. Tiihonen. Conductive-Radiative Heat Transfer in Grey
Materials. Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing. No. B 6/2000. University of Jyväskylä, Finland,
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List of Symbols

Apparently, it is practically unavoidable that occasionally a symbol occurs with different
meanings in different contexts. In the following list, each symbol is listed with all its meanings
occurring in the text. In case the symbol is defined in the text, the list provides a reference
to the page or to the formula with the respective definition.

Symbols that are not based on a letter are listed first, followed by letter-based symbols in
alphabetical order. For each letter, stylized letters are listed first, followed by Greek letters,
followed by Roman letters, where upper case letters are listed before lower case letters, e.g.
∂, ∆, δ, D, d. Moreover, the following order is used for fonts: blackboard bold, Fraktur,
calligraphic, bold, roman, e.g. D, D, D, D, D.

See f . . . for some function-related symbols.

Symbol Meaning Ref.

[. . . ] function argument p. x
(. . . ) grouped terms p. x
| | absolute value
‖ ‖ abstract norm
‖ ‖Lip Lipschitz norm (C.7.6)
‖ ‖max max-norm (C.1.1)
‖ ‖p lp-norm Def. C.2.1
‖ ‖sup ‖f‖sup := sup

{
f [a] : a in domain of f

}
:= equals by definition
∼= isomorphic
≈ approximately equal
¿ much less∧

x
φ[x] formula φ holds for each x p. x

∨
x

φ[x] there exists x such that formula φ holds for x p. x

∅ empty set
\ set-theoretic difference
∩ set-theoretic intersection
∪ set-theoretic union⋃

j∈J Aj union of sets Aj

∪̇ disjoint set-theoretic union

257
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Symbol Meaning Ref.

× cartesian product∏
j∈J Aj cartesian product of sets Aj

◦ composition of functions
• scalar product (B.1.1)
⊗ tensor product (B.1.3)
∇ gradient (B.1.6)∫
A integral over A
1 identity matrix
α absorptivity p. 25
α variable with domain {1, 2}
αι variable for gas phase constituents p. 10

A
(ν)
con,(k,C) discretized nonlocal interface operator p. 121

A
(ν)
con,k,solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.92)

A
(ν)
jump,(k,C) discretized nonlocal interface operator p. 121

A
(ν)
jump,k,solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.93)
A variable for affine subspaces p. 235

A⊥[(v, w)] A⊥[(v, w)] := {x ∈ Rd : ‖v − x‖2 = ‖w − x‖2} Not. C.4.15
Aγ nonlocal interface operator (3.4.10)
Aγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

(Aγ)ex.-im. dependency splitting of Aγ (3.4.22)
(Aγ)ex.-im. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

A variable for tensors and matrices p. 222
A matrix arising during radiation discretization p. 126
A magnetic vector potential (2.5.8)
A> transpose of matrix A
A number of gas phase constituents p. 10
A variable for a set
A closure of the set A p. 232

#A number of elements of the set A,
cardinality of A

AI set of functions from I into A, identical to
the cartesian product of #I copies of A

a
(ν)
flux,con,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.57)

a
ν,↑
flux,con,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.37a)

a
ν,↓
flux,con,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.37b)

a
(ν)
flux,jump,2,Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.63)

a
(ν)
flux,jump,2,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.62)

a
(ν)
jump,1,Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.60)

a
(ν)
jump,1,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.59)
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Symbol Meaning Ref.

a
ν,↑
jump,1,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.39a)

a
ν,↓
jump,1,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.39b)

a
(ν)
jump,2,Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.66)

a
(ν)
jump,2,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.65)

a
ν,↑
jump,2,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.42a)

a
ν,↓
jump,2,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.42b)

a
(ν)
out,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.51)

a
ν,↑
out,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.33a)

a
ν,↓
out,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.33b)

a variable for set elements
aγ,1

flux first given function in flux interface condition (3.4.9b)
aγ,2

flux second given function in flux
interface condition (3.4.9b)

a
γ,α

flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
(aγ,α

flux)
ex.-im. dependency splitting of aγ,α

flux (3.4.23)

(a
γ,α

flux)
ex.-im.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89
(aγ,α,ν

flux )ex.-im. time-discrete dependency splitting of aγ,α
flux (3.4.25)

(a
γ,α,ν

flux )
ex.-im.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89
ai,j components of the tensor A p. 222

aγ,1
jump first given function in jump interface condition (3.4.9a)

aγ,2
jump second given function in

jump interface condition (3.4.9a)
a

γ,α

jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
aγ,α,ν

jump time-discrete given functions in
jump interface condition (3.4.21)

a
γ,α,ν

jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89
aj,ι

out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.4.12b)
aj,ι

out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

(aj,ι
out)

ex.-im.
dependency splitting of aj,ι

out (3.4.30)

(aj,ι
out)

ex.-im.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

(aj,ι,ν
out )

ex.-im.
time-discrete dependency splitting of aj,ι

out (3.4.32)

(aj,ι,ν
out )

ex.-im.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

aff[A] affine hull of A (C.4.1)
avcon[γ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.108)

avjump,α[γ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.111)
avj,ι

out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.96)
β variable for solid materials
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Symbol Meaning Ref.

β′ variable for solid materials
βj variable for solid materials p. 20

B
(ν)
(k,C) discretized nonlocal boundary operator p. 121

B
(ν)
k,solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.91)
B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 122
Bj,ι nonlocal boundary operator (3.4.13)
Bj,ι . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

(Bj,ι)
ex.-im. dependency splitting of Bj,ι (3.4.29)

(Bj,ι)
ex.-im. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

B variable for tensors p. 222
B magnectic induction p. 32
B variable for a set

B↓,↑[(. . . )] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.58)
Bb,0[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.133)
Bcon[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.110)

Bcon,1,mυ [(C, Scon)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.38a)
Bcon,2,mυ [(C, Scon)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.38b)

BDir[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.27)
Bd,r[x0] open r-ball with center x0 and

with respect to metric d (C.7.2)
Bf [C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.121)

Bf,mυ [C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.47)
Bflux,Dir[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.44)

Bflux,jump,1,mυ [(C,Sjump)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.43a)
Bflux,jump,2,mυ [(C,Sjump)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.43b)

BIF[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. 3.7.28
Bjump[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.113)

Bjump,Dir[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.114)
Bjump,Dir,mυ [C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.41)
Bjump,mυ [C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.40)

Bk,Dir[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.28)
B↑

k,Dir[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.27b)
B↓

k,Dir[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.27a)
Bk,mυ [C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.24)
Bnonloc[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. 3.8.25
Bout[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 129

Bout,mυ [(C, Sout)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.34)
Br[x0] open r-ball with center x0 Def. C.7.3

Bs[(C, Π, V)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.125)
Bv,Dir[(C, V)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.45)

Bv,sca,Dir[(C,V)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.46)
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Symbol Meaning Ref.

b
(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.10)

b(αι) partial force density of constituent αι p. 11
bgas total force density of the gas mixture (2.1.6b)

b variable for set elements
b variable for function under the time derivative (3.3.2a)
bj function under the time derivative in the

j-th material (3.1.1)
bj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
bi,j components of the tensor B p. 222
b(ν) function b at discrete time tν (3.3.9a)
b
(ν)
(k,C) b

(ν)
(k,C) := b

(ν)
(k,C) (3.8.52e)

C the set of complex numbers
C evolution equation complex Def. 3.4.6
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
C variable for connected components of Gωk

C[(l, j)] C[(l, j)] = CoCmpGωl
[j] (3.7.13)

C[X] set of continuous functions from X into R Not. C.6.1
C(X,Y ) set of continuous functions from X into Y p. 232
Ck[A] set of functions from A into R having Not. C.6.1

continuous partial derivatives up to order k
Ck(A,B) set of functions from A into B having Not. C.6.1

continuous partial derivatives up to order k
Ck(A,B) set of functions from A into B having Not. C.6.1

continuous partial derivatives of all orders
Cpw(X,Y ) set of piecewise continuous functions

from X into Y p. 232
c(αι) concentration of constituent αι (2.1.4c)
c
[βj ]
sp specific heat of solid material βj p. 21

ccomplex variable for complex numbers
ccomplex complex conjugate of ccomplex

clO[A] closure of A with respect to topology O p. 232
CoCmp[G] connected components of graph G Def. C.5.5
CoCmpG [v] connected component in graph G of vertex v Def. C.5.3

conv[A] convex hull of set A Def. C.4.6
∂... partial derivative Not. C.6.3
∂A boundary of set A p. 232
∂σ boundary of simplex σ (C.4.8)

∂regp regular boundary of polytope p Def. C.4.11
∂sinp singular boundary of polytope p Def. C.4.11

d
dt material derivative (2.1.13)
∆ fineness of time discretization (3.3.7)
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Symbol Meaning Ref.

∆ν := tν − tν−1 (3.8.52d)
D domain complex Def. 3.4.5
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
D matrix arising during radiation discretization p. 126

D(αι) diffusion coefficient of constituent αι (2.1.21)
Dκ,λ components of matrix D (3.7.81e)
dm[x] integration with respect to measure m

and variable x
d dimension of space domain p. 46
d variable for finite dimensions
d variable for metrics p. 243

d(x,A) distance of x from set A in metric d Not. C.7.2
d′ dimension of q Def. 3.6.1
d′ variable for finite dimensions

dDir[Π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.29)
dmax[Π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.25)

det determinant
diamA diameter of set A (3.5.1)

dim dimension
div divergence (B.1.6)

ε[(T [x],x)] emissivity (2.4.2)
ε[(T [x],x, λ)] monochromatic emissivity p. 30

ε[β] emissivity of solid β p. 22
εcirc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 27
εr emissivity of reflective band (2.4.31a)
εt emissivity of transmittive band (2.4.31b)

ε(αι) partial internal energy of constituent αι p. 11
ε∗ (αι) partial energy source of constituent αι (2.1.9)
εgas total internal energy of the gas mixture (2.1.6c)
E radiation operator (2.4.13b)
Ecirc radiation operator (2.4.26b)
E electric field p. 32
E emitted radiation (2.4.3)

E[G] set of edges of graph G Def. C.5.1
Econ Econ := {e[γ] : γ ∈ IFcon} p. 60
EIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.4.4)

EIF[Π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.11)
Ejump Ejump := {e[γ] : γ ∈ IFjump} p. 60

Er reflective emitted radiation p. 29
Et transmittive emitted radiation p. 29
er radial cylindrical basis vector (B.3.2a)
eϑ angular cylindrical basis vector (B.3.2b)
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Symbol Meaning Ref.

ez vertical cylindrical basis vector (B.3.2c)
e 2.718. . .
e map, assigning the set of indices {j1, j2} to

each interface ∂regpj1 ∩ ∂regpj2 p. 60
φA magnetic scalar potential p. 34
φA,0 amplitude of sinusoidal magnetic

scalar potential (2.5.25c)
φcomplex

A complex magnetic scalar potential (2.5.26c)
φcomplex

A,0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.28c)
φcomplex

A,l,0 solution to (PDEl: φcomplex
A,0 ) p. 43

ϕ variable for real numbers
F finite volume discretization Def. 3.7.41

F(A,B) set of functions from A into B
F variable for a function
Fj flux kj [(uj , t, x)]∇uj p. 48

Fj,∂ω flux through the boundary of ω ⊆ pj (3.4.1)
F

(ν)
j,∂ω flux through the boundary of ω ⊆ pj at time tν (3.4.18)

f
(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.119)

f
ν,↑
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.46a)

f
ν,↓
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.46b)
f variable for a function
f variable for a source or sink function (3.3.2d)

fA fA := {f [a] : a ∈ A}
f ′ derivative of f

f−1 inverse function of f
f−1B f−1B := {a : f [a] ∈ B}
f¹A f restricted to set A

f [βj ] power density per volume in solid material βj p. 21
fcirc fcirc := f¹πcircA p. 27
fj source or sink function in the j-th material (3.1.1)
f

j
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

f (ν) function f at discrete time tν (3.3.9d)
f [ring] power density per volume in coil rings (2.5.34a)

Γ path p. 36
Γ solid surface p. 24
Γ Γ := prad ∩ p p. 122

Γbottom lower phantom closure p. 195
Γcon Γcon := Γ ∩⋃

γ∈IFcon
γ p. 128

Γj,ι non-Dirichlet boundary of type ι of
j-th space domain p. 50
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Γj,0 Dirichlet boundary of j-th space domain p. 63
Γj,Dir Dirichlet boundary of j-th space domain p. 50
Γjump Γjump := Γ ∩⋃

γ∈IFjump
γ p. 128

Γph black body phantom closure p. 122
Γsin singular part of surface Γ p. 24
Γreg regular part of surface Γ p. 24
Γt boundary of transmittive radiation region p. 29

Γt,reg regular part of Γt p. 29
Γtop upper phantom closure p. 195
γ variable for interfaces p. 48
γ variable for elements of IF p. 88

γ
(αι)
a stoichiometric coefficients of constituent αι p. 19

γβ,β′ solid-solid interface p. 22
γβ′,gas solid-gas interface p. 22
γγ1,γ2 interface between materials γ1 and γ2 p. 37

γj index for both solid materials and gas p. 37
γj1,j2 interface between materials j1 and j2 p. 48
G radiation operator (2.4.13a)
G variable for graphs Def. C.5.1
G¹V0 induced subgraph of G on vertex set V0¹V0 Def. C.5.1
Gcirc radiation operator (2.4.26a)
Gk Gk := Gωk

p. 83
Gω associated graph of ω Def. 3.5.3

Gjump,α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.5.20)
g gravimetric acceleration p. 17
g variable for a function
gi components of the vector g

g
(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.52g)

g̃
(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.52b)

H(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.50)
H magnectic field p. 32

Hb,v,k,f evolution operator (3.3.3)
Hbj ,vj ,kj ,fj evolution operator on j-th space domain p. 58
Hbj ,vj ,kj ,f

j
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

H
(ν)
b,v,k,f time-discrete evolution operator (3.3.8)

H
(ν)
bj ,vj ,kj ,f

j
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

h(ν) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.6)
h

(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.122)

h
(ν)
(k,C),(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.9)
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h
(ν)
(k,C),(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.39)

h
(ν)
(k,C),(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.48)

h
(ν)
(k,C),(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.53)

h
(ν)
(k,C),(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.15)

h
(ν)
(k,C),(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.67a)

h
(ν)
(k,C),(g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.50)

h
(ν)
(k,C),(h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.67b)

h
(ν)
(k,C),(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.56)

h
(ν)
(k,C),(j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.58)

h
(ν)
(k,C),(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.67c)

h
(ν)
(k,C),(l) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.61)

h
(ν)
(k,C),(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.64)

h
(ν)
(k,C),(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.118)

h
(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.52f)

h̃
(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.52a)
h(j) fineness of the partition Π(j) (3.5.2)
ι index for gas phase constituents p. 10
ι index for non-Dirichlet boundaries p. 50
Ia set of intervals with min a (C.6.4)
I index set
I variable for intervals

I(j) finite index set for partition Π(j) (3.5.15)
Ib,λ Planck function (2.4.32)
Igas finite index set for gas constituents p. 214
Ir reflective band of wavelengths p. 28

Irad finite index set for partition Πrad p. 123
Irad,Γ Irad,Γ := {κ ∈ Irad : ζκ ⊆ Γ} p. 124
Irad,ph Irad,ph := Irad \ Irad,Γ p. 131

IΠ finite index set for partition Π p. 78
IΠ,D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.2)

IΠ,D,Dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.4a)
IΠ,D,¬Dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.4a)

It reflective band of wavelengths p. 29
Iω Iω := {κ ∈ Irad : int[ζκ] ∩ ∂regω 6= ∅} p. 123

Iω,con Iω,con := {κ ∈ Irad : Γcon ∩ int[ζκ] ∩ ∂regω 6= ∅} p. 128
Iω,jump Iω,jump := {κ ∈ Irad : Γjump ∩ int[ζκ] ∩ ∂regω 6= ∅} p. 128

IF set of all interfaces (3.4.3)
IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
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IFcon set of continuous interfaces p. 60
IFjump set of jump interfaces p. 60
IFjump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

Im[ccomplex] imaginary part of ccomplex

InLip(X, Y ) set of all inverse Lipschitz
functions from X into Y Def. C.7.10

InLipLinv
(X, Y ) set of all inverse Linv-Lipschitz

functions from X into Y Def. C.7.10
i abstract indices or indices referring to

space coordinates
i imaginary unit Sec. 2.5.6

i1[γ] index of first subdomain at γ p. 61
i2[γ] index of second subdomain at γ p. 61
inf F infimum of function F Def. 3.7.17

insup[k] initial supremum of function k (3.8.17)
int[A] interior of set A p. 232
int[σ] interior of simplex σ p. 236
J integral irradiation operator (2.4.7)
Jr reflective irradiation operator (2.4.35a)
Jt transmittive irradiation operator (2.4.35b)
Jcirc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.4.22)
J irradiation (2.4.7)
J set of indices for abstract materials p. 46
Jf Jacobian of f : Jf := det[f ′]

Jgiven given total current (2.5.39)
Jgiven,0 amplitude of given total current (2.5.39)

Jj finite index set for non-Dirichlet boundaries p. 50
Jj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
Jj,0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.6.2)
J j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
Jk total current in k-th coil ring (2.5.35)

Jcomplex
k,0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.37)
Jl,k,ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.56)

Jcomplex
l,k,ref,0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.57)

Jr reflective irradiation p. 29
JT,p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.6.20)
JT,q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.6.20)
Jt transmittive irradiation p. 29
Jref reflected radiation (2.4.4)
Jref,r reflective reflected radiation p. 29
Jref,t transmittive reflected radiation p. 29
Jtotal total current (2.5.38a)
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Jcomplex
total,0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.38b)

j current density vector p. 32
j current density p. 32
j abstract indices

or indices referring to space coordinates,
solid materials or abstract materials

jcomplex complex current density (2.5.26b)
jcomplex
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.28b)

j0 amplitude of sinusoidal current density (2.5.25b)
jDir[(l, j)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Not. 3.7.3

κ index for boundary elements p. 123
κ(Ar) thermal conductivity of Ar (A.2.2)
κ[βj ] thermal conductivity of solid material βj p. 21
κgas thermal conductivity of the gas mixture p. 19
K K = R or C
K permeability p. 48

k
(ν)
¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.16)

k
ν,↑
¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.21a)

k
ν,↓
¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.21b)

k
(ν)
Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.17)

k
ν,↑
Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.22a)

k
ν,↓
Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.22b)

k index for induction coil rings p. 36
k index for control volumes p. 73
k abstract index
k variable for diffusion function (3.3.2c)
kj diffusion function in the j-th material (3.1.1)
kj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

k(ν) function k at discrete time tν (3.3.9c)
k̃

(ν)
j,x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.20)
Λ visibility factor (2.4.8)
Λa rates of chemical reactions or

phase transitions p. 19
Λcirc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.4.23)
Λκ,λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.75)
λ variable for real numbers
λ wavelength p. 30

λd−1,max[Π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.31)
λd d-dimensional Lebesgue measure Not. C.8.1

λd,max[Π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.48)
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λd,min[Π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.55)
L matrix arising during radiation discretization p. 126
L̃ matrix arising during radiation discretization p. 127
L variable for Lipschitz constants p. 244

LDir,k,r[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.28)
Lf,r[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem. 3.8.27

Lflux,1,r[(C, Scon)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem. 3.8.19
Lflux,jump,r[(C, Sjump)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem. 3.8.23

Linv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. C.7.10
Linv,b[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. 3.8.30

Lκ,λ components of matrix L (3.7.81f)
L̃κ,λ components of matrix L̃ (3.7.87)

Lk,r[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem. 3.8.10
L↓k,r[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.23)

LM−mυ [(. . . )] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.54)
Lnonloc,r[(C, Π)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. 3.8.25
Lout,r[(C, Sout)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lem. 3.8.16

Lr[(. . . )] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.54)
Lv,r[C] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.30)

Lin(V,V) set of linear maps from V into V
Lip(X, Y ) set of all Lipschitz functions from X into Y Def. C.7.4
LipL(X, Y ) set of all L-Lipschitz functions from X into Y Def. C.7.4

l index for induction coil rings p. 43
lDir[Π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.47)

lκ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.77)
µ variable for real numbers
µ magnetic permeability p. 32
M variable for maxima of intervals

M (αι) molecular mass of constituent αι p. 210
m m = (mυ, . . . ,mυ)
m variable for minima of intervals
mυ minimum of υ = [mυ,∞[
ν magnetic reluctivity p. 33
ν index for discrete time instances p. 56
νγ magnetic reluctivity in material γ p. 37
n number of time steps p. 56
N set of natural numbers 1, 2, . . .
N0 N0 = {0, 1, 2, . . . }
N number of solid materials Sec. 2.2
N number of induction coil rings p. 36

Nall discrete L1-norm (3.7.129c)
N

(ν)
all discrete L1-norm (3.7.128c)
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Nb,¬Dir discrete L∞-L1-norm composed with b
(ν)
j (3.7.127)

N
(ν)
b,¬Dir discrete L1-norm composed with b

(ν)
j (3.7.126)

NDir discrete L∞-L1-norm (3.7.129a)
N

(ν)
Dir discrete L1-norm (3.7.128a)

N¬Dir discrete L∞-L1-norm (3.7.129b)
N

(ν)
¬Dir discrete L1-norm (3.7.128b)
nA outer unit normal vector to set A
np outer unit normal vector to polytope p Def. C.4.17
n[β] outer unit normal vector to solid β p. 22
nγ outer unit normal vector to material γ p. 37
ngas outer unit normal vector to gas phase p. 22

nbj [k] set of indices of j-neighbors of ωk (3.7.12)
nbj,Dir[k] set of indices of Dirichlet j-neighbors of ωk (3.7.14)
nbj,¬Dir[k] set of indices of non-Dirichlet j-neighbors of ωk (3.7.14)

O variable for topologies
OA relative topology on A with respect to O p. 232
O variable for open sets
Π Π = (ωk)k∈IΠ p. 73

Π[V ] Voronöı discretization induced by point set V Def. C.4.18
Π(j) Π(j) = (ω(j)

k )k∈I(j) p. 73
Πrad Πrad := (ζκ)κ∈Irad p. 123
π π = 3.14 . . .

πcirc circular projection (2.4.20)
P[A] power set of A
Pk electrical power in k-th coil ring (2.5.46)
Pk average electrical power in k-th coil ring (2.5.47)

P
(ν)
(k,C) P

(ν)
(k,C) := b

(ν−1)
(k,C)

[
u

(ν−1)
(k,C)

]
(3.8.52c)

Ptotal total electrical power (2.5.48)
Ptotal total electrical power (2.5.49)

Ptotal,λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.52)
Ptotal,λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.53)

(PDE: φA) system for φA p. 39
(PDE: φcomplex

A,0 ) system for φcomplex
A,0 p. 39

(PDEl: φcomplex
A,0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 43

p∗ (αι) partial momentum source of constituent αι p. 11
p pressure
p polyhedral total space domain p. 58
p variable for nonnegative real numbers

p(αι) partial pressure of constituent αι p. 16
p(Ar) pressure of Ar 211



270 LIST OF SYMBOLS

Symbol Meaning Ref.

pgas pressure of the gas mixture (2.1.16)
pgas domain of gas phase p. 127
pj polyhedral space domain of the j-th material p. 46

prad circular projection of radiation region p. 122
psolid domain of solid materials p. 127
pt[V] set of all polytopes in V Def. C.4.9
ptd[V] set of d-polytopes in V Def. C.4.9
q(αι) partial heat flux of constituent αι p. 11
qgas total heat flux of the gas mixture (2.1.6e)
q[βj ] heat flux of solid material βj p. 21

q q =
∏

i∈{1,...,d′}[λi, µi] Def. 3.6.2
ρ(αι) partial mass density of constituent αι p. 11
ρ(Ar) mass density of Ar (A.2.1)
ρ∗(αι) partial mass source of constituent αι p. 11
ρgas mass density of the gas mixture (2.1.4a)
ρ[βj ] mass density of solid material βj p. 21
% reflectivity p. 24
%r reflective reflectivity (2.4.34a)
%t transmittive reflectivity (2.4.34b)
R the set of real numbers
R+

0 the set of nonnegative real numbers
R radiation operator (2.4.13c)
Rcirc radiation operator (2.4.26c)
R(ν)

circ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 124
Rr reflective radiation operator p. 31
Rt transmittive radiation operator p. 31
R radiosity (2.4.1)
R universal gas constant p. 210

Rcirc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 27
Rr reflective radiosity p. 29
Rt transmittive radiosity p. 29

Re[ccomplex] real part of ccomplex

r vector in cylindrical coordinates p. 230
r radial cylindrical coordinate p. 229

r(αι) partial radiation of constituent αι p. 11
rgas total radiation of the gas mixture (2.1.6d)
σ Boltzmann radiation constant p. 210
σ variable for simplices p. 236

σ
[β]
c electrical conductivity of solid material β p. 32

σ
[ring]
c electrical conductivity of coil ring
σc,k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.36)
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Scon family of dependency splittings Lem. 3.8.19
Sjump family of dependency splittings Lem. 3.8.23
Sout family of dependency splittings Lem. 3.8.16
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.49a)

S(ν) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.56b)
S

(ν)
(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.56a)

Ssolid variable for absolute temperature of
solid material

s(ν) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.8)
sim[V] set of all simplices in V Def. C.4.7
simd[V] set of all d-simplices in V Def. C.4.7
supF supremum of function F Def. 3.7.17

τ time domain (3.1.2)
θ saturation p. 48
ϑ angular cylindrical coordinate p. 229
T time discretization of

evolution equation complex (3.4.33)
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

T(αι) partial stress tensor of constituent αι p. 11
Tgas total stress tensor of the gas mixture (2.1.6a)
T absolute temperature
T coordinate transformation Def. 3.6.1
T̄ T̄ [A× q] = T ((A ∩O)× int[q]) (3.6.1)
T̃ matrix occurring in symmetry condition, related

to the derivative of coordinate transformation T (3.6.18a)
T [βj ] absolute temperature of solid material βj p. 21
Tcyl coordinate transformation for

cylindrical coordinates (B.3.1)
Tgas absolute temperature of the gas mixture p. 13

Tgas,circ absolute temperature on domain pgas p. 127
Troom room temperature p. 23
Tsolid absolute temperature of solid material p. 24

Tsolid,circ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 27
T

(ν)
solid,circ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 123

t time p. 11
t0 initial time (3.1.2)
tf final time (3.1.2)

tφA,0 time for phase shift (2.5.25c)
t̃i,i′ components of matrix T̃ (3.6.18a)
t
(αι)
i,j components of the partial stress tensor

of constituent αι p. 11
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tj,0 time for phase shift (2.5.25b)
tν discrete time instant p. 56

tV,k,0 time for phase shift (2.5.25a)
trA f trace of the equivalence class of

functions f on the set A
U domain of evolution operator p. 55
Uj domain of evolution operator on j-th

space domain p. 55
U (ν) reservoir set of time-discrete solutions at tν p. 57
U (ν)

j reservoir set of time-discrete solutions at tν
on j-th space domain p. 71

U (ν)
j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

U (ν) discrete solution vector at time tν p. 103
U

(ν)
k,gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.89)

U
(ν)
k,solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.89)
u u = (uj)j∈J p. 62

u¹{t} u¹{t}=
(
uj¹{t}×pj

)
j∈J

p. 62

u(ν) u(ν) = (u(ν)
j )j∈J (3.4.34)

u(ν) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89
u variable for vectors p. 222

u(αι) diffusion velocity of constituent αι (2.1.4d)
u2 u2 := u • u p. 222
u variable for unknown function
u capillary pressure p. 48
ui components of the vector u p. 222
uj unknown function in the j-th material (3.1.1)
u

(0)
j initial distribution in the j-th material (3.1.10)

u
(0)
j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
uj time-discrete unknown function in

the j-th material (3.4.34)
u

(ν)
j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89

uj,Dir Dirichlet function (3.4.12a)
uj,Dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88
u

(ν)
j,Dir time-discrete Dirichlet function (3.4.28)

u
(ν)
j,Dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 89
u(ν) unknown at discrete time tν p. 56
u

(ν)
(k,j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 102

u
(ν)
(k,C) (k, C)-component of discrete solution vector at

time tν p. 103
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Symbol Meaning Ref.

(u1, u2)sp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.6.4)
usp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.3.13)

ut.−sp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.3.6)
V variable for families of scalar-vector-splittings (3.7.31)
V variable for vector spaces
V vector arising during radiation discretization (3.7.88)
V finite set of points p. 235

V [C] vertex set of connected component C p. 81
V [σ] set of simplex vertices p. 236
V [β] voltage in material β p. 36
Vκ components of vector V (3.7.73)

V
[ring]
k voltage in k-th coil ring p. 36

V
[ring]
k,0 amplitude of sinusoidal voltage in

k-th coil ring (2.5.25a)
V

[ring],complex
k complex voltage in k-th coil ring (2.5.26a)

V [G] set of vertices of graph G Def. C.5.1
V

[ring],complex
k,0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.28a)

Vref reference voltage p. 43
Vtotal given total voltage (2.5.41)
Vtotal,0 amplitude of given total voltage (2.5.41)

V complex
total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5.44)
Vωk

Vωk
:=

{
j ∈ J : int [ωk ∩ pj ] 6= ∅} (3.5.17)

v
(ν)
con,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.54)

v
ν,↑
IF,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.36a)

v
ν,↓
IF,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.36b)

v
(ν)
int,Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.41)

v
(ν)
int,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.40)

v
ν,↑
int,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.29a)

v
ν,↓
int,¬Dir,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.29b)

v
(ν)
jump,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.55)

v
(ν)
out,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.49)

v
ν,↑
out,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.32a)

v
ν,↓
out,(k,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.8.32b)

v variable for vectors p. 222
v(αι) partial local mean velocity of particles

of constituent αι p. 11
vgas local mean velocity of all gas particles (2.1.4b)
v variable for convective function (3.3.2b)
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Symbol Meaning Ref.

v variable for elements of abstract vector spaces
v variable for vertices
vi components of the vector v p. 222
vj convective function in the j-th material (3.1.1)
vj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 88

v(ν) function v at discrete time tν (3.3.9b)
vsca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. 3.7.30
v

(ν)
j,sca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.33a)
vvec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Def. 3.7.30
v

(ν)
j,vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7.33b)

var[f ] total variation function of f (C.6.6a)
var[f ]+ positive variation function of f (C.6.6b)
var[f ]− negative variation function of f (C.6.6c)

w variable for vectors
w variable for elements of abstract vector spaces

w
(ν)
j upwind function for Π(j) and v

(ν)
j,vec p. 114

ξβ factor in interface conditions (2.3.2b′)
X vector arising during radiation discretization p. 126
X variable for topological spaces or metric spaces
Xκ components of vector X (3.7.81b)
x (physical) vector of space coordinates
x (abstract) vector of space coordinates
xκ discretization point of boundary element ζκ p. 123
xk discretization point of control volume ωk (3.7.1)
xp variable for elements of p (3.6.18a)
xq variable for elements of q (3.6.18a)
υ range of the unknown p. 53
Y vector arising during radiation discretization p. 126
Y variable for topological spaces or metric spaces
Yκ components of vector Y (3.7.81c)
y physical vector of space coordinates
y variable for elements of υ
ỹ variable for elements of υ
ζκ boundary element p. 123
Z variable for metric spaces
z vertical cylindrical coordinate p. 229

z(Ar) configuration number of Ar p. 210
Ω space domain
Ω Ω := O × int[q] Def. 3.6.2

Ω[β] domain of material β p. 35
Ω[β]

appCon domain of conducting material β in
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Symbol Meaning Ref.

growth apparatus p. 36
Ωj space domain of the j-th material (3.1.2)

Ω[ring]
k domain of k-th coil ring p. 36
ω angular frequency p. 37
ω view factor (2.4.9)
ωk control volume p. 78
ω

(j)
k control volume in domain pj (3.5.14)
ωv Voronöı box (C.4.3)



Index

a priori estimate, see estimate, a priori
absolute temperature, see temperature, abso-

lute
absorbed radiation, see radiation, absorbed
absorptivity, 25
acceleration

gravimetric, 17
affine combination, 235
affine geometry, 235
affine hull, 235
affine subspace, 94, 235

dimension, 235
affinely independent, 235
alternating current, see current, alternating
angle of incidence, 23
angular frequency, see frequency, angular
Ar, 2, 3, 7, 10, 19, 20, 194, 210, 214
argon, see Ar
associated graph, see control volume, associ-

ated graph
axisymmetric, see symmetry, cylindrical

bakeout phase during PVT, see PVT, bakeout
phase

balance equation, 11, 13, 225–227
hyperbolic, 47
partial, 10, 14

energy, 10, 14
mass, 10, 11
momentum, 10, 12

total, 14
energy, 7, 12, 14, 47
energy, simplified, 18
mass, 7, 14
mass, simplified, 18
momentum, 7, 14
momentum, simplified, 18

ball, 150, 243
Banach Fixed Point Theorem, 150
band

reflective, see wavelength, reflective band

transmittive, see wavelength, transmittive
band

band approximation model, see model, band
approximation

bilinearity of scalar product, see scalar product,
bilinearity

bilinearity of tensor product, see tensor prod-
uct, bilinearity

black body, 23
phantom closure, 23, 122, 195
Planck’s law, 29

blind hole, 2, 5
lower, 23, 122–124
upper, 23, 122

bnd-admissible, see scalar-vector-splitting, bnd-
admissible

Boltzmann radiation constant, see constant, Boltz-
mann radiation

boundary, 23, 25, 26, 29, 37, 39, 50, 58, 63, 72,
87, 89, 103, 111, 117, 124, 129, 232,
247

condition, see condition, boundary
Dirichlet, 63, 65, 86, 111, 135, 143, 145,

147, 148
element, 123
integral, 72, 94

decomposition, see decomposition, bound-
ary integrals

non-Dirichlet, 63, 65, 77
polytope, 237

regular, 237
singular, 237

regular, 24, 29, 53
simplex, 236
singular, 24
topological, 232, 237

bounded
from above, 116, 138

for a finite volume discretization, 144
for an evolution equation complex, 144
for discretization operators on bound-

aries, 129, 132, 144

276
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for discretization operators on interfaces,
132, 137, 144

from below, 116, 135, 163
bounded variation, 242

capillary pressure, see pressure, capillary
cartesian coordinates, see coordinates, carte-

sian
Cauchy-Schwarz Inequality, 116, 163, 164, 234
cavity, 23–26, 29

open, 23, 26
chain rule, 94, 97, 230
change of variables, 86, 87, 94, 100, 124
Change of Variables Theorem, 90, 91, 94, 248
chemical interactions, 21
chemical reaction, 10

rate, see rate, chemical reaction
chemical vapor deposition, see CVD
circular projection, see projection, circular
closure

black body phantom, see black body, phan-
tom closure

of a set, 232, 240
commutativity of scalar product, see scalar prod-

uct, commutativity
compact

metric space, 233, 244, 245
subset of finite-dimensional space, 233
topological space, 233

compatibility condition, see condition, compat-
ibility

concentration of gas constituent, see gas phase,
constituent, concentration

condition
boundary, 7, 8, 21–23, 26, 38, 50, 53, 55,

58, 63, 65, 66, 70, 72, 77, 103, 130
Dirichlet, 50, 63, 66
Dirichlet, time discretization, 69, 72
emission, 51
for magnetic scalar potential, 37
Neumann, 50
non-Dirichlet, 50, 63, 66
non-Dirichlet, time discretization, 70, 72
nonlocal, 56
nonlocal radiation, 51
of third kind, 22, 51
time discretization, 69, 72
zero Dirichlet, 50
zero flux, 50

compatibility, 65
Coulomb, 34

initial, 21, 51, 56, 58, 63, 65, 67
interface, 8, 21, 26, 38, 48, 55, 57, 60, 65,

66, 72, 78, 80, 83, 89
continuity, 48, 60, 65
continuity, time discretization, 67, 72
flux, 61, 62, 66, 83
flux, time discretization, 69, 72
for magnetic scalar potential, 37, 50
in terms of absolute temperature, 22
in terms of heat flux, 22, 49
in terms of temperature, 49
jump, 48, 61, 62, 65, 83
jump, time discretization, 67, 72
nonlinear, 48
nonlocal, 48, 56
nonlocal radiation, 49
solid-gas, 22, 23, 31
solid-solid, 22, 23, 31
temperature continuity, 22
time discretization, 67, 72

symmetry, 86, 96, 98, 101
conducting material, see material, conducting
conductivity

electrical, 32, 38
solid material, see material, solid, elec-

trical conductivity
thermal, 112

gas phase, see gas phase, thermal con-
ductivity

of Ar, 212
solid material, see material, solid, ther-

mal conductivity
connected component, see graph, connected com-

ponent
conservation

energy
global, 14
radiation, 25, 125, 131
radiation (axisymmetric), 28

mass
global, 13

momentum
global, 13

conservation laws
global, 13, 14, 225–227

constant
Boltzmann radiation, 22, 210
physical, 210
universal gas, 19, 210

constituent, see gas phase, constituent
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contaminants during PVT, see PVT, contami-
nants

continuity interface condition, see condition, in-
terface, continuity

continuous function, 48, 54, 55, 62, 64, 65, 98,
124, 137, 152, 154, 156, 171, 174, 184,
232, 233, 238, 246

piecewise, 62, 232
continuous mixture theory, 10
continuous partial derivative, see derivative, par-

tial, continuous
contracting function, 150, 152, 153, 246
contraction, see contracting function
control volume, 8, 58, 73, 78, 81, 101–104, 111,

116, 121–124, 128, 138, 159, 162, 177
j-neighbor, 106
associated graph, 81, 83, 89
nontangent to interfaces, 78, 79, 81–83, 89,

118, 139
convection, 55, 134, 194
convergence, 8, 9, 111, 122, 145
convex hull, 236
convex set, 236, 245
cooling, see induction coil, water cooling
coordinate transformation, 87, 91, 92, 229
coordinates

cartesian, 86
cylindrical, 26, 32, 86–89, 92, 101, 229

curl, 230
definition, 229
divergence, 230
gradient, 230
properties, 229
standard basis, 32, 229

physical space, 222
copper, 214
copper induction coil, see induction coil
corner, 24
Coulomb condition, see condition, Coulomb
crucible, 2, 32

graphite, 2, 6, 20, 194, 215
porous graphite, 2, 214

crystal
SiC seed, see SiC, single crystal, seed

crystal growth, 10
curl

in cylindrical coordinates, 230
current

alternating, 32
eddy, 32

induction heating, see induction heating,
current

sinusoidal, 41
surface, 37

current density, see density, current
CVD, 2
cylindrical coordinates, see coordinates, cylin-

drical
cylindrical symmetry, see symmetry, cylindrical

decomposition
boundary integrals, 74, 89

Decomposition Lemmas, 178, 182, 185–187
decreasing function, 179
defects during PVT, see PVT, defects
degassing during PVT, see PVT, degassing
density

current, 32, 35
complex, 39
sinusoidal, 37
vector, 32

force
partial, 11, 17
total, see gas phase, force density

mass, 111, 147, 163
partial, 11
solid material, see material, solid, mass

density
total, see gas phase, mass density

power
solid material, see material, solid, power

density
dependency splitting, 68, 71, 98, 121, 123, 130,

131, 134, 136, 165–170, 172, 174, 175,
179

bounded at mυ, 180, 182, 183
inc-admissible family, 179
locLip-admissible, 181, 182
nonlocal boundary operator, see operator,

nonlocal boundary, dependency split-
ting

nonlocal interface operator, see operator,
nonlocal interface, dependency split-
ting

np-admissible, 180
dependent part, 96, 98, 99
derivative, 16, 17

material, 15
partial

continuous, 240
space, 35, 241
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time, 35, 56, 241
diagonally dominant matrix, see matrix, diag-

onally dominant
diameter of a set, 73
diffeomorphism, 87, 229
differentiable

continuously, 230, 245
differential operator, see operator, differential
diffuse-gray radiation, see radiation, diffuse-gray
diffuse-gray radiation model, see model, diffuse-

gray radiation
diffuseness, 25
diffusion, 55, 100

matrix-valued, 100
diffusion coefficient, 7, 16
diffusion velocity, see gas phase, constituent,

diffusion velocity
diffusion velocity estimate, see estimate diffu-

sion velocity
dimension of affine subspace, see affine sub-

space, dimension
Dirichlet boundary, see boundary, Dirichlet
Dirichlet boundary condition, see condition, bound-

ary, Dirichlet
Dirichlet function, 63, 65, 101, 143, 183
discrete times, see time, discrete
discretization, 26, 34

finite volume, 8, 9, 45, 53, 72, 86
in space, 8, 54, 67, 86, 148, 176

domain complex, see domain complex,
space discretization

matrix, 43
nonlocal operator, see operator, nonlo-

cal, space discretization
nonlocal radiation operator, see opera-

tor, nonlocal radiation, space discretiza-
tion

polytope, 73, 111, 116, 122, 138
in time, 8, 54, 66, 73, 86, 148, 149, 175,

186
evolution equation, see evolution equa-

tion, time discretization
evolution equation complex, see evolu-

tion equation complex, time discretiza-
tion

evolution operator, see operator, evolu-
tion, implicit time discretization

explicit, 56, 66–68
fineness, 56, 182
heat transfer problem, 38
implicit, 56, 66–68

scalar-vector-splitting, see scalar-vector-
splitting, time discretization

of interval, 242
stationary problem, 45
strategy, 101
Voronöı, see Voronöı discretization

discretization point, 101, 102, 103, 111, 123,
138, 143, 159

Voronöı, see Voronöı discretization, discretiza-
tion point

displacement current, 32, 33
dispt-(i), 102
dispt-(ii), 102
dispt-(iii), 103
divergence, 223, 241

in cylindrical coordinates, 230
of a tensor, 223
of a vector, 223

divergence form, 34
divergence term, 74, 89
domain

polytope, 8, 86
space, 8, 46, 49, 50, 53, 57–61, 64, 65, 72,

73, 81, 86, 87, 122, 143
gas phase, 127
solid material, 127
total, 58, 78, 79, 88, 127

time, 53, 56, 58, 64, 66
time-space, 46, 53, 241

domain complex, 59, 64, 66, 73, 88, 103, 122
space discretization, 138

Domain Invariance Theorem, 92, 233

eddy current, see current, eddy
edge, 61, 81

of graph, see graph, edge, see graph, edge
electric field, 32
electrical conductivity, see conductivity, electri-

cal
elliptic partial differential equation, see partial

differential equation, elliptic
emission condition, see condition, boundary, emis-

sion
emissivity

solid material, see material, solid, emissiv-
ity

emittance, 23
emitted radiation, see radiation, emitted
energy

exchange, 10
internal, 55, 138
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partial, 11
total, see gas phase, internal energy

partial balance equations, see balance equa-
tion, partial, energy

energy conservation
global, see conservation, energy, global

energy gap in SiC, see SiC, energy gap
energy source, see souce, energy
estimate

a priori
discrete, 105
discrete L∞-L1, 9, 145, 147
discrete L∞-L2, 9

diffusion velocity, 213
local mean velocity of the gas phase, 213

evolution equation, 8, 53, 56–58, 66, 72, 100,
122

continuous setting, 53
finite volume discretization, see evolution

equation complex, finite volume dis-
cretization

solution, 9
implicit Euler scheme, 57
operator form, 55
solution, 58

time-discrete, 56, 99
time discretization, 56, 66, 72, 74, 89

integral formulation, 73
evolution equation complex, 57, 64, 66, 73, 88,

100, 113
bounded from above, 144
finite volume discretization, 86, 112, 139,

145, 175
bounded from above, 144, 147, 148, 182,

183
increasing, 179, 182, 183
locally Lipschitz, 182, 183
nonpositive at m, 180, 182, 183
solution, 65, 143, 147
solution, existence, 112, 149, 183
solution, uniqueness, 149, 183

increasing, 179
locally Lipschitz, 181
nonpositive at m, 179
solution, 65, 143

space-discrete, 103, 105
time-discrete, 71, 73, 102, 103

time discretization, 71, 89, 139
evolution operator, see operator, evolution
exchange

mass, 16

momentum, 16
exchange of energy, see energy, exchange
existence of discrete solutions, see evolution equa-

tion complex, finite volume discretiza-
tion, solution, existence

existence of fixed points, see fixed point, exis-
tence

explicit discretization, see discretization, in time,
explicit

Fick’s Law, 16, 17
field equations, 15, 225–228
fineness

of partition, 73
fineness of time discretization, see discretiza-

tion, in time, fineness
finite volume discretization, see discretization,

finite volume
finite volume method, 8, 34, 45
first subdomain, 61
fit

of c
[Crucible]
sp , 215

of c
[SiC−Crystal]
sp , 220

of ε[Crucible], 215
of functions

piecewise, 210
smooth, 210

of κ(Ar), 212
of κ[Crucible], 215
of κ[Insulation], 218
of ρ[Insulation], 218

fixed point
existence, 150
uniqueness, 150

fluid dynamics
linearization assumption, 17

fluid transport in porous media, see porous me-
dia, fluid transport

flux, 48, 58, 59
across interfaces, 78
convection

interior, 112
diffusion

interior, 106
heat, 22, 83

due to irradiation, 23
due to radiosity, 23
normal, 22
partial, 11
solid material, see material, solid, heat

flux
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total, see gas phase, heat flux
interface condition, see condition, interface,

flux
interior, 102
normal, 102
through the boundary, 60, 61, 67

force density, see density, force
Fourier’s Law, 19
frequency

angular, 37
induction heating, see induction heating,

frequency
Fubini Theorem, 99, 248
function, x

gas constant, see constant, universal gas
gas mixture, see gas phase
gas phase, 3, 7, 10, 13, 15, 19, 20, 22, 23, 31,

37, 47, 83, 194, 210, 213
absolute temperature, 13, 19, 20
composition, 3
constituent, 7, 10, 11, 14, 17, 19, 21, 214

concentration, 5, 13
diffusion velocity, 13, 16, 17
viscosity, 16

domain, 127
force density, 13
heat equation, 21
heat flux, 13, 19
internal energy, 13
local mean velocity, 12, 17

estimate, 213
range during PVT, 213

mass density, 12
mass transport, 5
normal vector, 22, 25
predominant species, 3, 10, 19
pressure, 5, 16
radiation, 13
simplifications, 10, 15, 228

one constituent only, 19
species, 10

quantities inside, 11
stress tensor, 13, 16
thermal conductivity, 19, 211

gas phase model, see model, gas phase
gas region, 10
Gauss-Green Integration Theorem, 72, 74, 89,

247
global conservation laws, see conservation laws,

global

global energy conservation, see conservation,
energy, global

global mass conservation, see conservation, mass,
global

global momentum conservation, see conserva-
tion, momentum, global

gradient, 223, 241
in cylindrical coordinates, 230
in normal direction, 108
of a scalar, 223
of a vector, 223
product rules, 223
temperature, see temperature, gradient

Gram determinant, 94
graph, 61, 81, 239

associated, see control volume, associated
graph

connected component, 81, 83, 103, 128, 143,
240

edge, 61, 239
path, 239
vertex, 61, 81, 239

graphite crucible, see crucible, graphite
graphite felt insulation, see insulation, graphite

felt
graphitization

SiC powder, see SiC, powder, graphitiza-
tion

gravimetric acceleration, 11, see acceleration,
gravimetric

growth apparatus, 10
growth rate during PVT, see PVT, growth rate

heat conduction
solid material, see material, solid, heat con-

duction
heat equation, 66

existence theory, 9
gas phase, see gas phase, heat equation
nonlinear, 8
solid materials, see material, solid, heat

equation
stationary, 47
transient, 47, 55

heat flux, see flux, heat
interface condition, see condition, interface,

in terms of heat flux
heat sink, 55
heat source, 32, 38, 55, 138, 178

numerical simulation, see numerical simu-
lation, heat source
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heat transfer, 7, 10, 20, 22, 194
model, see model, heat transfer
via conduction, 21
via radiation, 20, 21, 29, 121, 122

heating during PVT, see PVT, heating
heating power, see induction heating, power
homeomorphism, 233
hyperbolic balance equation, see balance equa-

tion, hyperbolic

ideal gas
material laws, see material laws, ideal gas

ideal gas law, 211, 213
iff, x
implicit discretization, see discretization, in time,

implicit
implicit Euler scheme, 57
inc-admissible

family of dependency splittings, 179
scalar-vector-splitting, 179

increasing evolution equation complex, see evo-
lution equation complex, increasing

increasing finite volume discretization, see evo-
lution equation complex, finite volume
discretization, increasing

increasing function, 146–148, 152, 154–156, 158–
164, 166–170, 172–175, 177–179, 185,
186, 241, 246

strictly, 241, 246
induced subgraph, 239
induction coil, 7, 32, 36, 40, 214

heat conduction, 21
moving, 38
position, 5
rings, 32, 36, 40–43, 196
topology, 33
total current, 33
turn, 33, 36
voltage, 33, 36
water cooling, 214

induction heating, 2, 21, 138
current, 32, 36, 40, 41, 44
frequency, 32
power, 5, 32, 36, 40, 42, 44

coil ring, 42
coil ring, average, 42
total, 42
total, average, 42

voltage, 32, 36, 40, 41, 44
inert gas, 2

pressure, 5

initial condition, see condition, initial
initial distribution, 63, 65, 71, 101, 143, 147,

149
initial supremum, 156
initial temperature distribution, see tempera-

ture, distribution, initial
initial time, see time, initial
Institute of Crystal Growth (IKZ), Berlin, 1
insulation, 2, 6

graphite felt, 214
graphite felt, 3, 20, 194, 216

Si accumulation, 21
graphite foam, 3

integral formulation
change of variables, 89
of time-discrete evolution equations, 73

integral operator, see operator, integral
interchange

mass, 10
momentum, 10

interface, 39, 50, 54, 60, 62, 69, 78, 82, 102, 111,
116, 118, 122, 128, 132, 134, 159, 238

continuous, 61, 65–67, 80–83, 103, 104, 107,
118, 119, 133, 134, 169, 183

jump, 54, 61, 62, 65, 67, 80–83, 86, 103,
104, 107, 118, 119, 133, 135, 143, 172,
174

solid-gas, 24, 31, 37
solid-solid, 24, 29, 31, 37

interface condition, see condition, interface, 53
interface layer, 22
interior, 63, 232, 240

simplex, 236
intermediate value theorem, 156
internal energy, see energy, internal
invariance of domain, see Domain Invariance

Theorem
inverse Lipschitz function, 146–148, 150, 154,

155, 179, 186, 246, 247
invertible operator, see operator, invertible
irradiation, 22, 23, 24, 30

reflective, 29
transmittive, 29

Jacobian, 94, 230, 248
Joule effect, 32
jump interface, see interface, jump
jump interface condition, see condition, inter-

face, jump

Kirchhoff’s law, 25, 30
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Lebesgue measure, 74, 177, 247
Lely method

modified, 2
original, 2

linear operator, see operator, linear
linearization assumption of fluid dynamics, 17
Lipschitz function, 150, 152, 154, 156, 157, 159–

164, 166, 168, 169, 171, 172, 174–177,
186, 234, 244, 245, 246

cartesian product, 245
composition, 244
locally, 154, 156–158, 162, 163, 165, 166,

169, 170, 176–179, 181, 182, 244
product, 244, 245
scaled, 244
sum, 186, 244, 245

local mean velocity, see velocity, local mean
locally Lipschitz

evolution equation complex, see evolution
equation complex, locally Lipschitz

finite volume discretization, see evolution
equation complex, finite volume dis-
cretization, locally Lipschitz

function, see Lipschitz function, locally
locLip-admissible

dependency splitting, 181, 182
scalar-vector-splitting, 181

Lua, 198

M-matrix, see matrix, M-
magnetic field, 32

continuity, 33
oscillating, 32

magnetic induction, 32
magnetic permeability, 32
magnetic potential, see potential, magnetic
magnetic reluctivity, 33
map, x
mass

partial balance equations, see balance equa-
tion, partial, mass

mass conservation
global, see conservation, mass, global

mass density, see density, mass
mass exchange, see exchange, mass
mass interchange, see interchange, mass
mass source, see souce, mass
mass, molecular, see molecular mass
material

conducting, 21, 32, 33, 35, 36
insulating, 33, 35, 39

semi-transparent, 21–23, 26, 28, 31
solid, 6, 20, 22–24, 26, 29, 32, 37, 49, 50,

83, 123, 194, 214
absolute temperature, 21, 24
domain, 127
electrical conductivity, 214
emissivity, 8, 22, 24, 29, 67, 68, 70, 214
heat conduction, 20
heat equation, 21
heat flux, 21
mass density, 21, 214
monochromatic emissivity, 30
normal vector, 22, 24
power density, 21, 138
specific heat, 21, 214
surface, 22–24, 26, 28
temperature continuity, 22, 24, 127
thermal conductivity, 21, 29, 214

material data, 6, 7, 38, 194, 210
material derivative, see derivative, material
material laws, 10, 14, 18

ideal gas, 19
material thickness, 29
matrix

diagonally dominant, 234
strictly, 126, 127, 234

M-, 126, 127, 235
monotone, 234
multiplication, 222
nonnegative, 126, 127, 234
square, 234, 235
unit, 16

max-metric, 243, 247
max-norm, 151, 152, 159, 162, 171, 174, 176,

233, 234
Maxwell’s equations, 7, 32, 33
mean velocity, see velocity, local mean
mechanical interactions, 21
Mesa, 198
metric space, 150, 151, 233, 243–247
micropipes, see PVT, defects, micropipes
mixture, 10
mixture theory, see continuous mixture theory
model, 10, 21

band approximation, 23, 28, 220
diffuse-gray radiation, 23, 122

axisymmetric, 26
semi-transparency, 28

gas phase, 10
heat transfer, 21

time discretization, 38
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induction heating, 32, 178
assumptions, 32
sinusoidal, 21, 37, 38
stationary, 7, 33, 38
transient, 7, 33, 38

net radiation method, 24
stationary, 5
transient, 5, 10

modified Lely method, see Lely method, modi-
fied

molecular mass, 19, 210
molecule

double-atomic, 19
multi-atomic, 19
single-atomic, 19, 210

momentum
partial balance equations, see balance equa-

tion, partial, momentum
momentum conservation

global, see conservation, momentum, global
momentum exchange, see exchange, momen-

tum
momentum interchange, see interchange, mo-

mentum
momentum source, see souce, momentum
monochromatic emissivity, see material, solid,

monochromatic emissivity
monotone matrix, see matrix, monotone
motion, 10

negative variation function, see variation func-
tion, negative

net radiation method, 24
Neumann condition, see condition, boundary,

Neumann
new variables, see variables, new
Newton’s method, 67, 210
non-Dirichlet boundary, see boundary, non-Dirichlet
non-Dirichlet boundary condition, see condi-

tion, boundary, non-Dirichlet
nonlinear interface condition, see condition, in-

terface, nonlinear
nonlinear system of equations, see system of

equations, nonlinear
nonlocal boundary condition, see condition, bound-

ary, nonlocal
nonlocal boundary operator, see operator, non-

local boundary
nonlocal interface condition, see condition, in-

terface, nonlocal

nonlocal interface operator, see operator, non-
local interface

nonlocal operator, see operator, nonlocal
nonlocal space dependence, see space depen-

dence, nonlocal
nontangent to interfaces, see control volume,

nontangent to interfaces
norm topology, 63, 233, 237, 238
normal pressure, see pressure, normal
normal vector

gas phase, see gas phase, normal vector
polytope, see polytope, normal vector
solid material, see material, solid, normal

vector
np-admissible

dependency splitting, 180
scalar-vector-splitting, 179

null set, 24
numerical simulation, 3, 5–7, 26, 33, 43, 54, 68,

86, 87, 101, 194, 195, 210, 211, 214,
220

heat source, 214
heat transfer

transient, 5, 38
stationary, 5, 8
temperature distribution, 194, 214
transient, 5, 23

Ohm’s law, 33
old variables, see variables, old
opaque media, 24, 31
opaqueness, 25
open cavity, see cavity, open
open cover, 232
open radiation region, see radiation, region, open
OpenGL, 198
operator, x

↓, 149, 175
↑, 149, 161, 167
differential, 223
discretization, 139, 143, 144, 184
evolution, 55, 58, 64, 86

implicit time discretization, 56, 71
integral, 25, 30
invertible, 26, 28
linear, 223
nonlocal, 49, 175, 176
↓-property, 175, 183
space discretization, 121

nonlocal boundary, 63, 65, 66, 98, 121, 122,
129, 131
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dependency splitting, 70
space discretization, 121

nonlocal interface, 62, 65–67, 98, 121, 122,
133, 136

dependency splitting, 68
space discretization, 121

nonlocal radiation, 66, 122, 129, 131, 136
space discretization, 122, 128

norm, 234
space discretization, 105

oscillating magnetic field, see magnetic field,
oscillating

outer boundary condition, see condition, bound-
ary

PARDISO, 198
partial balance equations, see balance equation,

partial
partial differential equation, 8

elliptic, 47
evolution equation, see evolution equation
heat equation, see heat equation
hyperbolic balance equation, see balance

equation, hyperbolic
nonlinear, 46
Richards equation, see Richards equation
stationary, 46
stationary heat equation, see heat equa-

tion, stationary
transient, 46, 51
transient heat equation, see heat equation,

transient
partial energy source, see source, energy, par-

tial
partial force density, see density, force, partial
partial heat flux, see flux, heat, partial
partial internal energy, see energy, internal, par-

tial
partial local mean velocity, see velocity, local

mean, partial
partial mass density, see density, mass, partial
partial mass source, see source, mass, partial
partial momentum source, see source, momen-

tum, partial
partial pressure, see pressure, partial
partial radiation, see radiation, partial
partial stress tensor, see tensor, stress, partial
partition, 58, 63, 64, 72, 73, 75–79, 81, 88, 89,

101, 102, 106, 107, 123, 130, 134, 135,
138, 147, 148, 232, 237, 239

fineness, see fineness, of partition

path, 36
path in graph, 239
pdelib, 197
penetration depth, 29
permeability, see magnetic permeability, 48
perpendicular, 238
phantom closure, see black body, phantom clo-

sure
phase transition

rate, see rate, phase transition
physical constant, see constant, physical
physical vapor transport, see PVT
piecewise continuous, see continuous function,

piecewise
Planck’s law, 29, 30
plasma, 10
polyhedral set, 46, 53, 58, 87, 130, 166, 236
polytope, 53, 55, 59, 63, 64, 67, 72, 73, 78–82,

86–88, 92, 94, 96, 97, 122, 138, 186,
236, 239

boundary, see boundary, polytope
discretization, see discretization, in space,

polytope
domain, see domain, polytope
normal vector, 108, 117, 238

polytype of SiC, see SiC, polytype
porosity, 21

of graphite crucible, 194
of SiC powder, 6, 219

porous graphite, see crucible, porous graphite
porous media, 6

fluid transport, 48
positive variation function, see variation func-

tion, positive
potential

magnetic (scalar), 34, 214, 230
continuity, 37, 39
in conductors, 35
in insulators, 35
interface and boundary conditions, 37
sinusoidal, 37

magnetic (vector), 34
continuity, 37

powder
SiC, see SiC, powder

power
induction heating, see induction heating,

power
power density, see material, solid, power den-

sity
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predominant species, see gas phase, predomi-
nant species

pressure, 3
capillary, 48
normal, 2, 211
partial, 4, 16
total, see gas phase, pressure

product rule
for ∂t, 228
for ∂t, 225–228
gradient, see gradient, product rules

projection
circular, 27, 40, 122, 123, 125, 131

PVT, 2, 5, 6, 10, 16, 19, 20, 32
bakeout phase, 3, 5
contaminants, 3
control parameters

external, 5
internal, 5

defects, 4
dislocations, 4
impurities, 4
micropipes, 4
unwanted polytypes, 4
vacancies, 4

degassing, 3
geometric setup, 2, 6

single chamber, 3
two chamber, 4

growth rate, 4
heating, 3

q-independent, 96, 98, 99

radiation, 6, 22–25, 28, 29, 31, 47, 49, 58, 123,
175, 176

absorbed, 25
black body, 29
diffuse-gray, 23
emitted, 24, 25

reflective, 29
transmittive, 29

energy conservation, see conservation, en-
ergy, radiation

partial, 11
reflected, 24

reflective, 29
transmittive, 29

region, 29, 49, 50, 122
open, 26

total, see gas phase, radiation

radiation constant, see constant, Boltzmann ra-
diation

radiative interaction, 23, 122
radiosity, 22, 23, 24, 25, 30

reflective, 29
transmittive, 29

range
local mean velocity during PVT, 213

range of the unknown, see unknown function,
range

rate
chemical reaction, 19
phase transition, 19

reaction-diffusion equations, 7, 18, 20
reflected radiation, see radiation, reflected
reflection, 23

specular, 23
reflective band, see wavelength, reflective band
reflectivity, 24
region

radiation, 124
regular boundary, see boundary, regular

polytope, see boundary, polytope, regular
regularity of input functions, 54
regularity of the unknown, see unknown func-

tion, regularity
relative topology, see topology, relative
reluctivity, see magnetic reluctivity
resistance heating, 2
RF-heating, see induction heating
Richards equation, 48
room temperature, 21, 23, 214
rotation, 27

saturation, 48
scalar, 223
scalar product

bilinearity, 222
commutativity, 222
of two tensors, 222
of two vectors, 222
of vector and tensor, 222

scalar-vector-splitting, 112, 113, 116, 117, 139,
144, 161–163, 179

bnd-admissible, 144
inc-admissible, 179
locLip-admissible, 181
np-admissible, 179
time discretization, 113

scaling, 41, 42
second subdomain, 61
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seed crystal
SiC, see SiC, single crystal, seed

semi-transparency, 23, 28, 31, 220
semi-transparent material, see material, semi-

transparent
Si, 3, 4, 10, 19, 21, 194, 214
Si2C, 3, 4, 10, 19, 214
SiC

boule, 1
defect density, 4
impurities, 5
size, 4

bulk single crystal growth, 1, 5, 10, 16
growth rate, 2

crystallization, 2, 3, 6
energy gap, 220
growth of thin layers, 2
polytype, 4

4H, 4
6H, 3, 220

powder, 2–4, 6, 8, 20, 194, 214, 218
ambient gas pressure, 219
graphitization, 21, 219
particle size, 219
porosity, 219
sintering, 21, 219
sublimation, 3, 6
transmissivity, 219

single crystal, 2, 5, 6, 10, 23, 31, 214, 219
application, 1
seed, 2–5, 20
semi-transparency, 28, 31
surface, 23

source, see SiC, powder
sublimation, 2

SiC2, 3, 4, 10, 19, 214
simplex, 236, 237

boundary, see boundary, simplex
interior, see interior, simplex
vertex, 236

simplifications in the gas phase, see gas phase,
simplifications

simulation, see numerical simulation
single crystal, 10
single-atomic molecule, see molecule, single-atomic
singular boundary, see boundary, singular

polytope, see boundary, polytope, singular
sink

heat, see heat sink
sink function, 55, 137
sintering

SiC powder, see SiC, powder, sintering
sinusoidal, 21, 32, 33, 37, 38
sinusoidal current, see current, sinusoidal
sinusoidal voltage, see voltage, sinusoidal
solid material, see material, solid
solution

evolution equation, see evolution equation,
solution

evolution equation complex, see evolution
equation complex, solution

strong, see strong solution
weak, see weak solution

source
energy

partial, 11
partial, defining equations, 14

gas, 138
heat, see heat source
mass

partial, 11, 18
momentum

partial, 11
SiC, see SiC, powder

source function, 55, 137
space dependence

nonlocal volumetric, 47
space domain, see domain, space
species, see gas phase, species
specific heat

solid material, see material, solid, specific
heat

spectral optical thickness, 29
spectrum, 28
SSM, 2
stationary heat equation, see heat equation, sta-

tionary
stationary partial differential equation, see par-

tial differential equation, stationary
stationary problem, 45
Stefan-Boltzmann law, 22–24
stoichiometric coefficient, 19
stress tensor, see tensor, stress
strictly increasing, see increasing function, strictly
strong solution, 74
subgraph, see induced subgraph
sublimation sandwich method, see SSM
surface

SiC single crystal, see SiC, single crystal,
surface

solid, see material, solid, surface
surface current, see current, surface
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symmetry
condition, see condition, symmetry
cylindrical, 7, 26, 27, 31, 32, 35, 40, 86, 87,

122, 131, 136, 176, 194
conservation of radiation energy, 28

system of equations
linear, 44, 126
nonlinear, 67, 210
partial differential, 38, 40

temperature, 2, 3, 5–7, 22, 38, 49, 67, 68, 70,
83, 127, 130, 195, 214, 215, 219, 220

absolute, 111, 147, 163, 166, 176, 178
gas phase, see gas phase, absolute tem-

perature
interface condition, see condition, inter-

face, in terms of absolute temperature
solid material, see material, solid, abso-

lute temperature
at SiC powder, 5
at SiC seed, 5
continuity between solids, see material, solid,

temperature continuity
difference

source-seed, 2, 5
distribution, 5

evolution of, 5, 7, 20
initial, 23
numerical simulation, see numerical sim-

ulation, temperature distribution
gradient, 22
jump, 22, 24
room, 123
single, 10

tensor, 222, 223
stress

partial, 11, 16
total, see gas phase, stress tensor

tensor product
bilinearity, 223
of two vectors, 223

tensorial quantities, 11
thermal conductivity, see conductivity, thermal
thermal stress, 5, 6
thermomechanical process, 10
third kind boundary condition, see condition,

boundary, of third kind
time, 10, 11, 21, 22, 32, 33, 36–38, 40, 54, 56,

62, 67, 97, 103, 105, 112, 123
discrete, 56, 67, 103, 123, 143
final, 53

initial, 23, 53, 58, 143
time step, 38, 103, 105, 106, 149
time-dependent, see transient
time-space domain, see domain, time-space
topological space, 232, 233
topology, 232, 233

relative, 63–65, 74, 75, 77, 88, 106, 232
total force density, see gas phase, force density
total heat flux, see gas phase, heat flux
total internal energy, see gas phase, internal en-

ergy
total mass density, see gas phase, mass density
total pressure, see gas phase, pressure
total radiation, see gas phase, radiation
total space domain, see domain, space, total
total stress tensor, see gas phase, stress tensor
total variation function, see variation function,

total
trace, 59
transient heat equation, see heat equation, tran-

sient
transient model, see model, transient
transient numerical simulation, see numerical

simulation, transient
transient partial differential equation, see par-

tial differential equation, transient
transmittive band, see wavelength, transmit-

tive band
Triangle, 197

uniqueness of discrete solutions, see evolution
equation complex, finite volume dis-
cretization, solution, uniqueness

uniqueness of fixed points, see fixed point, unique-
ness

unit matrix, see matrix, unit
universal gas constant, see constant, universal

gas
unknown function, 46, 48, 53, 58, 60, 62, 99,

111, 121, 127, 130, 138, 147, 163, 166,
176, 178

range, 53, 58, 64, 110, 144
regularity, 54

upper bound, 105, 109, 115, 116
boundary terms, 129
interface terms, 132

upwind function, 114, 116
symmetry condition, 114

variables
new, 87, 89, 91, 94, 95
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old, 87, 89
variation, 156

bounded, 242
variation function

negative, 242
positive, 242
total, 242

vector, 222, 223
vector field, 230
vector space

finite dimensional real, 222
vectorial quantities, 11
velocity

diffusion, see gas phase, constituent, diffu-
sion velocity

local mean
gas phase, see gas phase, local mean ve-

locity
partial, 11

vertex
of graph, see graph, vertex, see graph, ver-

tex
of simplex, see simplex, vertex

view factor, 25, 26
viscosity of gas constituent, see gas phase, con-

stituent, viscosity
visibility factor, 25, 26
voltage

along path, 36
growth apparatus, 36
induction heating, see induction heating,

voltage
sinusoidal, 41

volume integral, 72, 91
Voronöı box, 239
Voronöı discretization, 239

discretization point, 239

wavelength, 23, 29, 30
reflective band, 28, 136, 220
transmittive band, 28, 136

weak solution, 74
WIAS-HiTNIHS, 197

X-Windows, 198

zero flux condition, see condition, boundary,
zero flux


