Optical Transistor: From Optical Event Horizons to Rogue Waves

Ayhan Demircan Günter Steinmeyer¹ Shalva Amiranashvili²

¹ MBI, Max-Born-Str. 2A,12489 Berlin, ² WIAS, Mohrenstr. 39, 10117 Berlin

Abstract

We demonstrate that the properties for the concept of an optical event horizon are naturally given in the supercontinuum (SC) generation process when fundamental solitons (FS) interact with surrounding dispersive waves (DW). Under certain conditions this interaction leads to strongly accelerated solitons with extremely high peak powers. Using the underlying mechanism in a deterministic way makes an all-optical control of light pulses possible. This can be done in a very efficient and versatile manner with the opportunity to overcome the main limitations for realizing an optical transistor.

Emergence of a giant soliton

Non-envelope propagation model for ultrashort pulses with dispersion and Kerr nonlinearity provides the minimum set of optical effects necessary for the formation of rogue waves

\[i\partial_t \xi + |\beta(\omega)| \xi + \frac{3\omega^2}{8c^2} |\xi|^2 \xi = 0 \]

Pulse electric field \(E(z, t) = \text{Re}[\xi(z, t)] \).

SC generation by soliton fission

Isolation of the energy transfer between the DWs and the champion soliton

\(I_{1,2} \) are finite and proportional to the time-averaged photon flux and power, respectively:

\[I_1 = \sum_\omega n(\omega) |\xi_1|^2 \]

\[I_2 = \sum_\omega n(\omega) |\xi_2|^2 \]

Development of \(\lambda_0(z) \) (red line), pulse energy \(\propto I_2 \) (black line), and peak power \(P_0(z) \) (dashed line). Energy content of the dispersive wave (dotted line).

Key conditions for optical Event Horizon

Group velocity dispersion \(\beta_2 \) and relative group delay \(\beta_1 \) of fluoride glass.

Nonlinear refractive index change due to an intense soliton.

Frequency combinations for a soliton and a control pulse with nearly equal group velocities.

All-optical control with an Event Horizon

Manipulation of a strong soliton signal by a much weaker control pulse

Faster control pulse

Redshift of the signal; energy from signal to control pulse.

=> Switch Off

Manipulation of the soliton strongly depends on the induced frequency shift which can be adjusted by the control pulse parameter

Faster signal pulse

Blue shift of the signal, signal is compressed.

=> Switch On

Concept for an optical Transistor fulfilling all Miller criteria

Experimental verification

Wavelength switch induced for a FS and a DW with a power ratio 4:1

Variation of the time delay between a faster control pulse and a signal.

Strong blue shift for the control pulse and a small red shift for the signal.

Collaborations

Fedor Mitschke, Christoph Mahnke (University of Rostock)
Carsten Bree (WIAS, MBI, Berlin), Jens Bethge (MBI, Berlin)

Supported by: Sh. A. by the DFG Research Center MATHEON (project D14), C. M. and F. M. by DFG, and G. S. by the Academy of Finland (project grant 128844).

Publications