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Abstract

We consider some class of singularly perturbed nonlinear parabolic prob-

lems in the case when a solution with an interior layer changes into a solution

having only boundary layers. Analytical results on this phenomenon are com-

pared with numerical studies of some examples.

1 Introduction

We consider the scalar singularly perturbed parabolic di�erential equation

"
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@
2
u

@x2
�

@u

@t

!
= f(u; x; t); x 2 (0; 1); t > 0; (1.1)

where " is a small parameter, with the initial condition

u(x; 0; ") = u
0(x; "); 0 � x � 1; (1.2)

and the boundary conditions of Neumann's type

@u

dx
(0; t; ") =

@u

@x
(1; t; ") = 0; t > 0: (1.3)

It is well known that the boundary value problem (1.1), (1.3) in general has solu-

tions exhibiting for small " boundary layers (i.e., there are small regions near the

boundaries x = 0 and x = 1, where the solutions rapidly change) and/or interior

layers (i.e., there are small regions in the interval 0 < x < 1, where the solutions

rapidly change). We call solutions of (1.1), (1.3), which have only boundary layers

as pure boundary layer solutions, solutions possessing an interior layer are said to

be contrast structures (see, e.g. [1]).

The case that the type of the solution changes with increasing time has been con-

sidered for the �rst time in [2]. Such solutions has been called alternating contrast

structures. The paper [2] contains numerical investigations of alternating contrast

structures and some analytical interpretations. The �rst rigorous results about al-

ternating contrast structures can be found in [3].

The focus of this paper is, after some numerical motivation, on the analytical inves-

tigation of the initial-boundary value problem (1.1){(1.3) with periodic right hand

side in the case that a solution with an interior layer exists which moves to the

boundary x = 1 or x = 0 and changes its type to a pure boundary layer solution

when the interior layer arrives at the boundary.
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2 Formulation of the problem

We consider the initial-boundary value problem (1.1){(1.3) under the following as-

sumptions:

(A0) f : R�R�R! R and u
0 : [0; 1]� [0; "0]! R are suÆciently smooth, where

"0 is some small positive number.

(A1) There is a positive number T such that

f(u; x; t) = f(u; x; t+ T ); (u; x; t) 2 R� R�R:

(A2) The degenerate equation

f(u; x; t) = 0

has in R �R� R exactly three roots u = 'i(x; t); i = 0; 1; 2; satisfying

(i) 'i : R� R! R is suÆciently smooth and T -periodic in t for i = 0; 1; 2.

(ii) '1(x; t) < '0(x; t) < '2(x; t) (x; t) 2 R� R.

(iii) @f

@u
('i(x; t); x; t) > 0 i = 1; 2; and (x; t) 2 R� R.

Now we introduce the T -periodic function x0(t) as an isolated solution of the equa-

tion

I(x; t) = 0;

where

I(x; t) :=

Z '2(x;t)

'1(x;t)
f(u; x; t) du; (2.1)

and
@I

@x
(x0(t); t) 6= 0 8t 2 [0; T ]:

The function x0(t) plays an important role in studying contrast structures as solu-

tions of the initial-boundary value problem (1.1){(1.3). As a contrast structure of

step-type we denote a solution u(x; t; ") of (1.1){(1.3), which stays for small " near

'1(x; t) ('2(x; t)) for x < x0(t) and near '2(x; t) ('1(x; t)) for x > x0(t). Thus, the

solution u(x; t; ") changes rapidly near x0(t) from '1(x; t) to '2(x; t) (from '2(x; t)

to '1(x; t)), that is, there is an interior layer in a neighborhood of x0(t), and the

point x0(t) itself is called a transition point. It is known [4] that if x0(t) satis�es

0 < x0(t) < 1 8t 2 [0; T ]; (2.2)

then under the assumptions (A1) � (A2) there is an asymptotically stable periodic

contrast structure of the boundary value problem (1.1), (1.3), where the transition

point x0(t) moves periodically in the interval (0; 1). Hence, if we assume that the
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initial function u0(x; ") has a step form whose transition point ~x0 is suÆciently close

to x0(0), then the solution of the initial-boundary value problem (1.1){(1.3) tends

to a periodic contrast structure.

In case that the inequality (2.2) is not ful�lled, that is, x0(t) passes either the

boundary x = 1 or x = 0, then the results obtained under the condition (2.2)

in general will fail. Some numerical investigations and formal analytical treatment

described e.g. in [2] suggest that if the condition (2.2) is violated, then new processes

with di�erent time-scales arise during some transition period and a change of the

type of contrast structures.

In this paper we will investigate the initial-boundary value problem (1.1){(1.3) under

the assumptions (A0){(A2), but in contrast to (2.2) we suppose that x0(t) crosses at

some moment the boundary. Especially, we will study the transition of a solution

u(t; x; ") of (1.1){(1.3) from a contrast structure of step type to a solution, which

has only boundary layers. In the next section we present some numerical studies

to our initial-boundary value problem (1.1){(1.3) which show this change and the

occurence of transition processes with di�erent time-scales.

3 Numerical studies

For numerical investigations we consider the following right hand side of (1.1)

f(u; x; t) := [u� '1(x)] [u� '2(x)] [u� '0(x; t)]; (3.1)

'0(x; t) := �0:5x + 0:63 sin(t+ �) + 0:25; (3.2)

'1;2(x) := �[(x� 0:5)2 + 0:75]: (3.3)

The constant � will be speci�ed in the following subcases, furthermore we set "2 =

10�3.

In each of the following �gures the solution u(x; t; ") is represented for �xed t by a

boldface curve. The graph of the function '0(x; t) for �xed t is depictured by a thick

dashed line, the graph of the functions '1 and '2 are represented by thin dashed

lines.

We note that when the right-hand side of equation (1.1) is given by (3.1), then we

have

I(x; t) �
4

3
['1(x)]

2
'0(x; t)

such that I(x; t) = 0 is equivalent to the equation '0(x; t) = 0. Thus, to given t, the

point x0(t) represents in all pictures the intersection point of the curve u = '0(x; t)

(thick dashed line) with the x-axis.

In Fig. 1, where we have � = 0, the initial function u
0(x) = �sin(2�x) intersects

the x-axis in the interval (0; 1) in the point ~x0 = x0(0) = 0:5. After a very short

time interval, the solution takes the form of a step. This process will not be studied
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Figure 1: Slow passage.

in that paper. Figure 1 shows that this step moves to the right together with the

transition point x0(t). That means that the velocity of x0(t) de�nes the velocity

of the step moving to the right. By numerical evidence we denote this process as

slow transition. After some time, x0(t) passes the boundary x = 1, and the contrast

structure of step type changes into a solution which is located in [0; 1] near '1(x)

and has only boundary layers.

t= 0.0000 t= 0.0010 t= 0.0120 t= 0.0280

t= 0.0800 t= 0.4000 t= 0.5000 t= 6.2830
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1
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Figure 2: Fast-slow passage.

In Fig. 2, where we also have � = 0, the initial function u
0(x; ") has the form of a

step intersecting the x-axis in the point ~x0 = 0:25, where the di�erence x0(0)� ~x0 =

0:5� ~x0 = 0:25 is not small. In that case, according to the numerical results, we can
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distinguish a short time interval, where the solution u(x; t; ") moves to the right with

a high velocity, which is much larger than the velocity of x0(t), until its transition

point reaches x0(t) (approximately at t = 0:08). Then its behavior can be described

as in Fig. 1, that is, it approaches slowly the root '1. Thus, we call this case as

fast-slow transition.

t= 0.0000 t= 0.0004 t= 0.0020 t= 0.0080

t= 0.0200 t= 0.0240 t= 0.0280 t= 6.2830
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Figure 3: Fast passage.

Fig. 3, where we have � = 5, is characterized by the fact that the point x0(0) is

located outside the interval [0,1] in the region x > 1. The initial function has the

form of a step and intersects the x-axis in the point ~x0 = 0:5. From Fig. 3 it follows

that the step in the solution u(x; t; ") moves fast to the right in the direction of x0(t).

When the step has arrived the boundary x = 1, then the solution changes to a pure

boundary layer solution located near '1(x). This case is called fast transition.

4 Preliminaries

The proof of our results presented in the sections 5 and 6 is based on the technique of

lower and upper solutions. For the convenience of the reader we recall the de�nition

of these functions and the corresponding basic result. Let

D := f(x; t) : 0 < x < 1; 0 < t � Tg; I"0 := f0 < " � "0g:

De�nition 4.1 Let �(x; t; ") and �(x; t; ") be functions continuously mapping D�

I"0 into R, twice continuously di�erentiable in x and continuously di�erentiable

in t for (x; t) 2 D. Then �(x; t; ") and �(x; t; ") are called ordered lower and upper

solutions of (1.1){(1.3) for " 2 I"0, if they satisfy for " 2 I"0 the following conditions:

1Æ �(x; t; ") � �(x; t; "); (x; t) 2 D; (4.1)
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2Æ "
2
�@2�
@x2

�

@�

@t

�
�f(�; x; t; ")�0�"

2
�@2�
@x2

�

@�

@t

�
�f(�; x; t; "); (x; t) 2 D; (4.2)

3Æ
@�

@x
(0; t; ") � 0 �

@�

@x
(0; t; ");

@�

@x
(1; t; ") � 0 �

@�

@x
(1; t; "); t 2 [0; T ]; (4.3)

4Æ �(x; 0; ") � u
0(x; ") � �(x; 0; "); x 2 [0; 1]: (4.4)

It is known (see, e.g., [8]) that the existence of ordered lower and upper solutions

implies the existence of a unique solution u(x; t; ") of (1.1){(1.3) satisfying

�(x; t; ") � u(x; t; ") � �(x; t; "):

Remark 4.2 In case that � and � are only picewise twice continuously di�erentiable

with respect to x, we have to ensure that the �rst derivatives of � and � with respect

to x satisfy the following inequalities for 0 < �x(t) < 1

@�

@x
(�x(t) + 0; t; ") �

@�

@x
(�x(t)� 0; t; ") (4.5)

@�

@x
(�x(t) + 0; t; ") �

@�

@x
(�x(t)� 0; t; ") (4.6)

Under the assumptions (A0){(A2), the existence of two di�erent asymptotically sta-

ble periodic solutions to the boundary value problem (1.1), (1.3) has been proven

in [4], where one of these solutions tends to the root '1(x; t) as " tends to zero, the

other one tends to '2(x; t). This result has been established by means of the tech-

nique of di�erential inequalities. The following version can be obtained by applying

simpli�ed lower and upper solutions than used in [4].

Proposition 4.3 Suppose the hypotheses (A0){(A2) to be valid. Then there exists

a suÆciently small positive number "0 such that for 0 < " � "0 the boundary value

problem (1.1), (1.3) has at least two T -periodic solutions ui(x; t; "); i = 1; 2, which

are asymptotically stable and satisfy for any �xed (x; t) 2 [0; 1]�R

lim
"!0

ui(x; t; ") = 'i(x; t); i = 1; 2:

For i = 1; 2, the region S

i;" de�ned by

S

i;" := f(u; x; t) : 'i(x; t)� " < u < 'i(x; t) + "; 0 � x � 1; 0 � t � Tg ;

where  is some positive constant, belongs to the basin of attraction of ui(x; t; ").

The periodic solutions established in Proposition 4.3 do not have any interior layer

for suÆciently small " though they will have boundary layers (the functions 'i(x; t)

will in general not satisfy the boundary conditions (1.3)).

To be able to formulate conditions ensuring the existence of a periodic solution to

the boundary value problem (1.1), (1.3) with an interior layer we use the function

I(x; t) introduced in (2.1).
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(A�3) The equation

I(x; t) = 0

has in [0; 1] � R a unique smooth T -periodic solution x = x0(t) satisfying

8t 2 [0; T ]

(i) 0 < x0(t) < 1;

(ii)
@I(x0(t);t)

@x
< 0:

Under the hypotheses of Proposition 4.3 and the additional assumption (A�3), the

existence of a T -periodic solution to the boundary value problem (1.1), (1.3) with

an interior layer has been proven in [4]. The following result is valid.

Proposition 4.4 Under the assumptions (A0){(A2), (A
�

3) there exists a suÆciently

small positive number "0 such that for 0 < " � "0 the boundary value problem (1.1),

(1.3) has at least three periodic solutions. Two of these solutions are described in

Proposition 4.3, the third solution u3(x; t; ") represents a periodic contrast structure

which is asymptotically stable and satis�es for �xed (x; t) 2 [0; 1]� [0; T ]

lim
"!0

u3(x; t; ") =

(
'1(x; t) for 0 � x < x0(t);

'2(x; t) for x0(t) < x � 1;

i.e., it has an interior layer near x0(t).

The proof of this theorem is also based on the technique of di�erential inequalities.

Remark In the case that the condition (ii) in assumption (A�3) will be replaced

by the inequality
@I(x0(t);t)

@x
> 0, then we can prove analogously the existence of a

periodic contrast structure u4(x; t; ") satisfying

lim
"!0

u4(x; t; ") =

(
'2(x; t) for 0 � x < x0(t);

'1(x; t) for x0(t) < x � 1;

In the next section we will consider the initial-boundary value problem (1.1){(1.3),

where we assume that x0(t) will cross the boundary x = 1.

5 Slow transition from a step type contrast struc-

ture to a pure boundary layer solution

In the sequel we consider the initial-boundary value problem (1.1){(1.3) under the

additional assumption

7



(A3) The equation

I(x; t) = 0

has in R �R a unique smooth T -periodic solution x = x0(t) satisfying

(i)
@I(x0(t);t)

@x
< 0:

(ii) 0 < x0(0) < 1.

(iii) There is a number t1>0 such that
dx0(t)

dt
�0 for t 2 [0; t1], and x0(t1)>1.

Our goal is to prove that the initial-boundary value problem (1.1){(1.3) has a unique

solution u(x; t; ") tending to some asymptotically stable periodic solution as t!1 if

the assumptions (A0){(A3) hold and if the initial function u0(x; ") has some internal

transition layer.

The proof is based on the method of ordered lower and upper solutions. For this

purpose, we construct ordered lower and upper solutions �(x; t; ") and �(x; t; ")

respectively for the boundary value problem (1.1), (1.3), which have an internal

layer of step-type near x0(t) as long as x0(t) belongs to the interval 0 < x < 1.

The condition on the initial function will be formulated by means of the constructed

lower and upper solutions.

According to assumption (A3) there are a small positive number Æ0 and a number

t0 such that 0 < x0(0) � x0(t) � 1� Æ0 for 0 � t � t0. Now we construct lower and

upper solutions to (1.1){(1.3) for 0 � t � t0 as in [4]. The lower and upper solutions

are functions connecting the roots '1(x; t) and '2(x; t) by means of a transition

layer whose position at the moment t is de�ned by the function x0(t). Hence, we

have the following structure of � and � (see [4]).

�(x; t; ") = u0�(x; t)� "+Q0�(��; t) + "Q1�(��; t)� "(e���0 + e
���1); (5.1)

�(x; t; ") = u0�(x; t) + "+Q0�(��; t) + "Q1�(��; t) + "(e���0 + e
���1): (5.2)

Here, the functions u0� and u0� are related to the roots '1 and '2 as follows

u0� :=

(
'1(x; t) for 0 � x < x�(t);

'2(x; t) for x�(t) � x � 1;

u0� :=

(
'1(x; t) for 0 � x < x�(t);

'2(x; t) for x�(t) � x � 1;

where the functions x� and x� are de�ned by

x�(t) := x0(t) + Æ; x�(t) := x0(t)� Æ;

here Æ is a suÆciently small number independent of " and satisfying 0 < Æ < Æ0.

The functions Qi� and Qi�; i = 1; 2; are interior layer functions characterizing the

transition from '1 to '2. To their de�nition we have to consider the following bound-

ary value problem for ordinary di�erential equations depending on the parameter t.

Q
�

0�(��; t), where �� is de�ned by �� = (x� x�(t))=", is the solution of the problem

8



d
2
Q
�

0�

d�
2
�

= f('1(x�(t); t) +Q
�

0�; x�(t); t) for �� < 0;

Q
�

0�(0; t) = '0(x�(t); t)� '1(x�(t); t); Q
�

0�(�1; t) = 0:

(5.3)

Under the assumptions (A0){(A3) this problem has a solution Q
�

0�(��; t) de�ned for

�� � 0 and t � 0 which exponentially decays for decreasing �� (see, e.g., [6]). The

function Q
+
0� is the solution of the problem

d
2
Q

+
0�

d�2�

= f('2(x�(t); t) +Q
+
0�; x�(t); t); for �� > 0;

Q
+
0�(0; t) = '0(x�(t); t)� '2(x�(t); t); Q

+
0�(1; t) = 0:

(5.4)

The functions Q�

1�(��; t) and Q
+
1�(��; t) are de�ned as solutions of the boundary value

problems

d
2
Q
�

1�

d�2�

= fu('1(x�(t); t) +Q
�

0�; x�(t); t)Q
�

1� + h
�

1 (��) for �� < 0;

Q
�

1�(0; t) = �; Q
�

1�(�1; t) = 0;

(5.5)

and

d
2
Q

+
1�

d�2�

= fu('2(x�(t); t) +Q
+
0�; x�(t); t)Q

+
1� + h

+
1 (��); for �� > 0;

Q
+
1�(0; t) = �; Q

+
1�(1; �) = 0;

(5.6)

where

h
�

1 (��) :=
h
fu('1(x�(t); t) +Q

�

0�(��; t); x�(t); t)
@'1

@x
(x�(t); t)

+fx('1(x�(t); t) +Q
�

0�(��; t); x�(t); t)
i
�� +

+
h
fu('1(x�(t); t) +Q

�

0�(��; t); x�(t); t)� fu('1(x�(t); t); x�(t); t)
i
;

and h+1 (��) is de�ned similarly. It is known that these problems have solutions which

exponentially decay.

Using (5.3){(5.6), the functions Qi;�(��; t); i = 1; 2; are de�ned by

Qi�(��; t) :=

(
Q
�

i�(��; t) for �� < 0;

Q
+
i�(��; t) for �� > 0:

Correspondingly, we can de�ne the functions Qi�(��; t) for i = 0; 1; where �� =

(x � x�(t))=". The terms e
���0 and e

���1 in (5.1) and (5.2), where �0 = x

"
and

9



�1 =
1�x
"

are needed to ful�l the inequalities in (4.3) near the boundaries x = 0 and

x = 1, � and  are appropriate positive constants.

From the paper [4] it follows that under our assumptions the functions � and �

introduced in (5.1) and (5.2) are ordered lower and upper solutions for the initial-

boundary value problem (1.1){(1.3) for 0 � t � t0; 0 � x � 1. Hence, (1.1){(1.3)

has a unique solution on the interval [0; t0] with an internal layer near x0(t).

By means of these lower and upper solutions we can formulate the condition for the

initial functions u0(x; ").

(A4) The function u
0 : [0; 1]� [0; "0]! R is suÆciently smooth and satis�es

�(x; 0; ") � u
0(x; ") � �(x; 0; ")

where � and � are de�ned by (5.1), (5.2).

Under the conditions (A1){(A4) we can conclude that the initial-boundary value

problem (1.1){(1.3) has a unique solution u(x; t; ") with an interior layer for 0 � t �

t0. In what follows we study this problem in the interval [0; t1]; where t1 has been

introduced in hypothesis (A3) and is characterized by the relation x0(t1) = 1 + �,

where � is some small positive number. For this purpose we introduce for the interval

[t0; t1] a lower solution ~� in the form

~�(x; t; ") = '1(x; t)� "� "(e���0 + e
���1):

Compared with the lower solution �(x; t; ") in (5.1), ~� has no transition layer. It is

easy to verify that ~� satis�es all conditions for a lower solution.

As an upper solution we keep the function �(x; t; ") as de�ned in (5.2). Most con-

ditions for an upper solution can be checked easily as demonstrated in [4]. At the

boundary x = 1 we have

@�

@x
(1; t; ") =

@'2

@x
(1; t) +

1

"

@Q0�

@��
���x=1 + � +O(") +

@Q1�

@��
���x=1: (5.7)

We note that for suÆciently large � this expression is not negative, since @'

@x
(x; t)

and
@Q1�

@�
(��; t) are bounded, and

@Q0�

@��
(��; t) is always positive. Therefore, we can

conclude that the initial-boundary value problem (1.1){(1.2) has a unique solution in

the region [0; t1]�[0; 1]. If we choose the constant Æ so small that we have x0(t1)�Æ >

1, then by taking into account that the functions Qi�(��), i=0,1, decay exponentially

according to Proposition 4.3, for suÆciently small " the solution u(x; t; ") is located

in the region of attraction of the asymptotically stable periodic solution u1(x; t; ").

Thus, the solution u(x; t; ") tends to u1(x; t; ") as t tends to in�nity, and has no

interior layer for t � t1, but in general a boundary layer. Therefore, the following

theorem is valid:
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Theorem 5.1 Suppose the hypotheses (A0){(A4) are valid. Then there is a suÆ-

ciently small positive "0 such that for 0 < " � "0 the initial-boundary value problem

(1.1){(1.3) has a unique solution u(x; t; ") satisfying

lim
t!+1

h
u(x; t; ")� u1(x; t; ")

i
= 0 for 0 � x � 1;

where u1 is the T -periodic solution introduced in Proposition 4.3.

Remark 5.2 From the proof of this theorem it follows that the solution u(x; t; ") has

an interior layer for any �xed t of the interval [0; ~t), where ~t is de�ned by x0(~t) = 1.

For any �xed t satisfying t > ~t, u(x; t; ") has no interior layer and is a pure boundary

layer solution.

6 Fast transition from a step type contrast struc-

ture to a pure boundary layer solution

In this section we consider the initial-boundary value problem (1.1){(1.3) under the

assumption

(H1) I(x; 0) > 0 for 0 � x � 1.

Assumption (H1) implies that x0(0) is located outside the interval [0,1]. We note

that the case I(x; 0) < 0 can be treated analogously.

The numerical results represented in Fig. 3 show that under the hypothesis (H1)

the solution u(x; t; ") of (1.1){(1.3) starting from the steplike initial function u0(x; ")

with the transition point ~x0 2 (0; 1) moves very fast to the boundary in the direc-

tion of x0(t). After the interior layer has arrived the boundary, the solution u(x; t; ")

changes from a contrast structure to a pure boundary layer solution. In what fol-

lows we want to prove this behavior. For this purpose, we �rst construct a formal

asymptotic solution for the step-type solution of the boundary value problem (1.1),

(1.3). In the second step we use this approximation to construct moving lower and

upper solutions yielding the predicted behavior.

6.1 Formal asymptotics

In (1.1), (1.3) we rescale t by setting t = "� and consider the corresponding boundary

value problem on a �nite � -interval

"
2@

2
u

@x2
� "

@u

@�
= f(u; x; "�); � 2 (0; ~�); 0 < x < 1; (6.1)

@u

@x
(0; "�; ") =

@u

@x
(1; "�; ") = 0 for � 2 (0; ~�); (6.2)

11



where ~� is some positive number. We construct the formal asymptotics of a step-

type contrast structure of this boundary value problem. For this purpose we denote

by x̂(�; ") the transition point of the internal layer of the solution u(x; �; ") of (6.1),

(6.2). We look for an asymptotic expansion of x̂(�; ") in the form

x̂(�; ") = x̂0(�) + " x̂1(�) + : : : (6.3)

For the following we introduce the notation

%(x; �; ") :=
x� x̂(�; ")

"
; %0 = x="; %1 = (1� x)=";

D
(�)

:= f(x; �) 2 R
2 : 0 � x � x̂(�; "); 0 � � � ~�g;

D
(+)

:= f(x; �) 2 R
2 : x̂(�; ") � x � 1; 0 � � � ~�g:

(6.4)

First, in D
(�)

we consider the boundary value problem

"
2@

2
u

@x2
� "

@u

@�
= f(u; x; "�); � 2 (0; ~�); 0 < x � x̂(�; "); (6.5)

@u

@x
(0; "�; ") = 0; u(x̂(�; "); "�; ") = '0(x̂(�; "); "�); � 2 (0; ~�): (6.6)

We seek the formal asymptotic expansion of the solution to this boundary value

problem in the form

U
(�)(x; �; ") = u

(�)(x; �; ") +Q
(�)(%; �; ") + �(%0; �; ") =

=
1X
i=0

"
i[u

(�)
i (x; �) +Q

(�)
i (%; �) + �i(%0; �)];

(6.7)

where u(�); Q(�) and � denote the regular, internal layer and boundary layer parts

of the asymptotic expansion of U (�) in the region D
(�)

.

Next, in D
(+)

we consider the boundary value problem

"
2@

2
u

@x2
� "

@u

@�
= f(u; x; "�); � 2 (0; ~�); x̂(�; ") < x � 1; (6.8)

@u

@x
(1; "�; ") = 0; u(x̂(�; "); "�; ") = '0(x̂(�; "); "�); � 2 (0; ~�) (6.9)

and its formal asymptotic expansion

U
(+)(x; �; ") = u

(+)(x; �; ") +Q
(+)(%; �; ") + R(%1; �; ") =

=
1X
i=0

"
i[u

(+)
i (x; �) +Q

(+)
i (%; �) +Ri(%1; �)];

(6.10)

where u(+); Q(+) and R denote the regular, internal layer and boundary layer parts

of the asymptotic expansion in the region D
(+)

.
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To determine the zero-th order regular asymptotic terms we put " = 0 in (6.5) and

(6.8) and obtain

f(u0(x; �); x; 0) = 0:

Thus, according to assumption (A1) we set

u0(x; �) =

8<
: u

(�)
0 (x; �) = '1(x; 0) for (x; �) 2 D

(�)
;

u
(+)
0 (x; �) = '2(x; 0) for (x; �) 2 D

(+)
:

In order to determine the coeÆcients x̂k(�) of the expansion (6.3) we use the C1-

matching condition for the formal solutions U (�) and U
(+) in D

(�)
and D

(+)
respec-

tively, which reads

"
@U

(�)(x; �; ")

@x
= "

@U
(+)(x; �; ")

@x
for x = x̂(�; "): (6.11)

For the following it is convenient to use the variable % introduced in (6.4) to rewrite

the di�erential operator

L � "
2 @

2

@x2
� "

@

@�

in the form

L �

@
2

@%2
+ v(�; ")

@

@%
� "

@

@�
; (6.12)

where v(�; ") = @x̂

@�
(�; "):

Using (6.12) for " = 0 we get by the standard representation of f(u; x; "�) (see, e.g.,

[1]) for the zero-th order internal layer functions Q
(�)
0 and Q

(+)
0 the boundary value

problems (v0(�) = x̂
0

0(�))

d
2
Q

(�)
0

d%2
+ v0(�)

dQ
(�)
0

d%
= f('1(x̂0(�); 0) +Q

(�)
0 ; x̂0(�); 0); % < 0

Q
(�)
0 (�1; �) = 0; Q

(�)
0 (0; �) = '0(x̂0(�); 0)� '1(x̂0(�); 0);

d
2
Q

(+)
0

d%2
+ v0(�)

d
2
Q

(+)
0

d%
= f('2(x̂0(�); 0) +Q

(+)
0 ; x̂0(�); 0); % > 0

Q
(+)
0 (+1; �) = 0; Q

(+)
0 (0; �) = '0(x̂0(�); 0)� '2(x̂0(�); 0):

(6.13)

Using the function

~Q0(%; �) :=

(
'1(x̂0(�); 0) +Q

(�)
0 (%; �) for % � 0;

'2(x̂0(�); 0) +Q
(+)
0 (%; �) for % � 0;

we can write the boundary value problems (6.13) as

13



d
2 ~Q0

d%2
+ v0(�)

d ~Q0

d%
= f( ~Q0; x̂0(�); 0) for % 2 R;

~Q0(0; �) = '0(x̂0(�); 0); ~Q0(�1; �) = '1(x̂0(�); 0);

~Q0(+1; �) = '2(x̂0(�); 0):

(6.14)

We note that the solution of the boundary value problem (6.14) represents a traveling

wave (heteroclinic orbit) connecting the saddles ('1; 0) and ('2; 0). It is known (see,

e.g., [7]) that (6.14) has such a solution for

v0(�) � x̂
0

0(�) =
I(x̂0(�); 0)R
1

�1

�
@ ~Q0

@%

�2
d%

: (6.15)

Equation (6.15) represents a di�erential equation which determines x̂0(�) to a given

initial condition x̂0(0).

The zero-th order C1-matching condition (6.11) implies

@Q
(�)
0

@%
(0; �) =

@Q
(+)
0

@%
(0; �):

This condition is satis�ed because of the solvability of problem (6.13).

The boundary layer functions � and R in (6.7) and (6.10), respectively, can be

determined by the standard theory (see,e.g.,[1]), and we will not consider their

construction here.

Now we determine the �rst order terms in the asymptotic expansions (6.7) and

(6.10). By comparing the �rst order terms in (6.1) we obtain for u
(�)
1

u
(�)
1 (x; �) = �

ft('1(x̂0(�); 0); x̂0(�); 0)

fu('1(x̂0(�); 0); x̂0(�); 0)
�:

If we replace '1 by '2 in this expression, then we obtain u
(+)
1 (x; �).

For the �rst order internal layer function Q
(�)
1 we get the boundary value problem

d
2
Q

(�)
1

d%2
+ v0(�)

dQ
(�)
1

d%
� fu( ~Q0; x̂0(�); 0)Q

(�)
1 = f

(�)
1 (%; �) for % < 0; (6.16)

Q
(�)
1 (�1; �) = 0; Q

(�)
1 (0; �) = �u1(x̂0(�); �) +

+
h@'0

@t
(x̂0(�); 0)� '1(x̂0(�); 0)

i
� +

+
h@'0

@x
(x̂0(�); 0)�

@'1

@x
(x̂0(�); 0)

i
x̂1(�) � g

(�)
1 (�);

(6.17)

where

14



f
(�)
1 (%; �) � �v1(�)

@Q0

@%
(%; �) +

@Q0

@�
(%; �) + f

0
uu

(�)
1 (x; �) +

+(x̂1(�) + %)
h
f
0
u

@'1

@x
(x̂0(�); 0) + f

0
x

i
+ f

0
t �:

(6.18)

Here, the upper index 0 means that the derivatives f 0u , f
0
x and f

0
t are evaluated at

the point ( ~Q0(%; �); x̂0(�); 0), v1(�) is de�ned by v1(�) := x̂
0

1(�) .

Similarly, Q
(+)
1 can be de�ned. The solutions of the boundary value problems for

Q
(�)
1 and Q

(+)
1 can be represented in the explicit form

Q
(�)
1 (%; �) = g

(�)
1 (�)

�(%; �)

�(0; �)
� �(%; �)

Z %

0
�
�2(�; �)e�v0(�)� �

�

Z
�1

�
�(�; �)ev0(�)�f

(�)
1 (�; �)d�d�;

(6.19)

where �(%; �) = @ ~Q0

@%
(%; �) > 0.

The �rst order of C1-matching condition (6.11) yields

@'1

@x
(x̂0(�); 0) +

@Q
(�)
1

@%
(0; �) =

@'2

@x
(x̂0(�); 0) +

@Q
(+)
1

@%
(0; �): (6.20)

Substituting the expression (6.19) into (6.20) and using the formula (6.17), (6.18)

we can reduce the conditions (6.20) to a linear algebraic equation for v1(�) (see, e.g.,

[4]). The construction of the asymptotic expansion can be continued to any order,

provided the function f is suÆciently smooth.

6.2 Construction of lower and upper solutions

Our construction of lower and upper solutions which can be used to describe the

moving transition layer (front) on a �nite interval of � will follow the scheme pre-

sented in the previous section.

We recall that the di�erential equation (6.15) with a given initial condition x̂0(0)

(x̂0(0) is any number of the interval (0; 1)) determines x̂0(�). Under the assumption

(H1) we can conclude from (6.15) that x̂00(�) is positive as long as x̂0(�) belongs

to the interval [0; 1]. Hence, under our smoothness assumptions, there is a positive

number �̂ such that x̂0(�̂) > 1. Let � � 2 (0; �̂) such that x̂0(�
�) = 1� Æ1, where Æ1 is

any small positive number. By means of x̂0(�) we de�ne lower and upper solutions

to the boundary value problem (6.1), (6.2) for 0 � � � �
� as follows
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�(x; �; ") = u0�(x; �) + "(u1(x; �)� ) +Q0�(%�; �)

+ " Q1�(%�; �)� "(e��%0 + e
��%1);

�(x; �; ") = u0�(x; �) + "(u1(x; �) + ) +Q0�(%�; �);

+ " Q1�(%�; �) + "(e��%0 + e
��%1):

(6.21)

Here, the zero-th order terms u0� and u0� are de�ned by

u0� =

(
'1(x; 0) for 0 � x � x�(�);

'2(x; 0) for x�(�) � x � 1;

u0� =

(
'1(x; 0) for 0 � x � x�(�);

'2(x; 0); for x�(�) � x � 1;

where x�(�) = x̂0(�)+~Æ; x�(�) = x̂0(�)�~Æ and ~Æ is a suÆciently small �xed positive

number such that x̂0(�) + ~Æ � 1� Æ1 for 0 � � � �
�.

The function Q0�(%�; �) is de�ned by boundary value problems which are similar to

(6.13):

d
2
Q

(�)
0�

d%
2
�

+ v0�(�)
dQ

(�)
0�

d%�
= f('1(x�(�); 0) +Q

(�)
0� ; x�(�); 0) for %� < 0;

Q
(�)
0� (�1; �) = 0; Q

(�)
0� (0; x�(�)) = '0(x�(�); 0)� '1(x�(�); 0);

d
2
Q

(+)
0�

d%2�

+ v0�

dQ
(+)
0�

d%�
= f('2(x�(�); 0) +Q

(+)
0� ; x�(�); 0) for %� > 0;

Q
(+)
0� (1; �) = 0; Q

(+)
0� (0; �) = '0(x�(�); 0)� '2(x�(�); 0);

(6.22)

where

v0�(�) =
I(x�(�); 0)R

1

�1

(@Q0

@%
)2(%; x�(�))d%

� Æv;

Æv is a positive suÆciently small �xed number, %� = (x � x�(�))=". The function

Q0�(%�; �) can be de�ned analogously if we replace in (6.22) x�(�) and %� by x�(�)

and %� = (x� x�(�))=" respectively, and v0� by v0�, where

v0�(�) =
I(x�(�); 0)R

1

�1

(@Q0

@%
)2(%; x�(�))d%

+ Æv:

For the �rst order internal layer function Q1� in (6.21) we obtain boundary value

problems which are similar to (6.16){(6.18). Particularly, for the function Q
(�)
1� we

get

d
2
Q

(�)
1�

d%2�

+ v0(�)
dQ

(�)
1�

d%�
� fu( ~Q0�; x�(�); 0)Q

(�)
1� = f

(�)
1 (%�; �) for %� < 0;
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Q
(�)
1� (�1; �) = 0; Q

(�)
1 (0; �) = �u1(x�(�); �) +

h@'0

@t
(x�(�); 0)� '1(x�(�); 0)

i
�

where ~Q0� = ~Q
(�)
0� = Q

(�)
0� + '1(x�(�); 0) and

f
(�)
1 (%�; �) = %�

h
f
0
u

@'1

@x
(x�(�); 0) + f

0
x

i
+

+(f 0u � fu)(u
(�)
1 + ) + (f 0t � f t)� +

@Q0

@�
(%; �):

(6.23)

We note that f
(�)
1 (%�; �) in (6.23) is di�erent from f

(�)
1 (%; �) in (6.18) by setting x̂1 =

0; v1 = 0. The derivatives f 0u , f
0
x and f

0
t here are evaluated at the point (

~Q0�; x0�; 0);

and the derivatives fu, fx and f t are evaluated at the point ('1(x�(�); 0); x�(�); 0).

Analogously, Q
(+)
1� can be de�ned.

Remark. For the proof of our main result (see Theorem 6.1 below) it is suÆcient to

use the upper and lower solutions in the form (6.21). If we want to approximation

the solution in the transition layer, then we have to construct another expressions

for � and � containing x̂1(�) and v1(�).

The function Q1� can be introduced similarly.

Using the expressions for the functions � and � we can verify by means of the stan-

dard approach (see, for example, [4], [5]) that they satisfy the following inequalities

for 0 < x < 1; 0 < � < �
�

:

L� := "
2@

2
�

@x2
� "

@�

@�
� f(�; x; �) � 0; L� � 0:

The corresponding inequalities at the boundaries can be satis�ed if we take � in

(6.21) suÆciently large (see also (5.7). From the exponential decay of theQ-functions

in (6.21) it follows that � and � are ordered, i.e.

�(x; �; ") � �(x; �; ") for x 2 [0; 1]; � 2 [0; � �]:

From the de�nitioon of � and � in (6.21) it follows that these functions are contin-

uous but not di�erentiable for x = x�(�) and x = x�(�), respectively. The jump

of the derivative of � with respect to x at the point x�(�) is determined by the

expression

@�

@x
(x�(�) + 0; �; ")�

@�

@x
(x�(�)� 0; �; ") =

1

"

0
@@Q(+)

0�

@%�
(0; �)�

@Q
(�)
0�

@%�
(0; �) + o(1)

1
A :

In order to guarantee that this jump is admissible, that is, it satis�es

@�

@x
(x�(�) + 0; �; ")�

@�

@x
(x�(�)� 0; �; ") < 0; (6.24)

we have to ensure

@Q
(+)
0�

@%�
(0; �)�

@Q
(�)
0�

@%�
(0; �) < 0: (6.25)
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To this end, we rewrite the �rst equation in (6.22) in the following simpli�ed form

d
2
u

d�2
+ v

du

d�
= ~f(u); (6.26)

where

u =

8<
:

~Q
(�)
0� for �1 < �� < 0;

~Q
(+)
0� for 0 < �� < +1:

Equation (6.26) is equivalent to the system

du

d�
= p; (6.27)

dp

d�
= �vp+ f(u): (6.28)

It is easy to verify that in the half plane p > 0 all vectors of the vector �eld de�ned

by (6.27) rotate in mathematically positive sense as v increases. As we mentioned

above, system (6.27) has two equilibria ('1; 0), '2; 0) which are saddles, where for

v = v0 the separatrix p = �1(u) of the saddle ('1; 0) and the separatrix p = �2(u)

of the saddle ('2; 0) form a heteroclinic orbit located in the half plane p > 0. From

the property that (6.27) is a rotated vector �eld [10] we obtain that for v < v0

�2('0)� �1('0) < 0;

and therefore, the jump condition (6.24) is satis�ed.

Similarly we can show that the function �(x; �; ") has an admissible jump of its

derivative at the point x�(�):

@�

@x
(x�(�) + 0; �; ")�

@�

@x
(x�(�)� 0; �; ") > 0:

Under the additional assumption

(H2). Suppose u
0(x; ") is a step type internal layer function such that

�(x; 0; ") � u
0(x; ") � �(x; 0; ")

where � and � are de�ned in (6.21).

We have the following result:

Theorem 6.1 Suppose the hypotheses (A0) - (A2), (H1), (H2) are valid. Then,

for suÆciently small ", the initial boundary value problem (1.1){(1.3) has a unique

solution u(x; t; ") for t 2 (0; "� �) such that

lim
"!0

u(x; �; ") =

(
'1(x; 0); 0 � x < x̂0(�)

'2(x; 0); x̂0(�) < x � 1:
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6.3 Fast transition to a pure boundary layer solution.

In order to prove that the contrast structure whose existence has been established

in Theorem 6.1 changes into a pure boundary layer solution we will use the same

scheme as in the proof of Theorem 5.1 in section 5.

First we extend the existence result of the initial-boundary value problem (1.1){(1.3)

to the interval [0; ~� ] in which x0(�) crosses the boundary x = 1 such that we have

x0(~�) > 1:

In order to show that the solution u(x; �; ") changes its form by losing its interior

layer, we use for that interval the lower solution ~� in the form

~�(x; �; ") = '1(x; 0)� "� "(e��p0 + e
��p1):

As an upper solution we use the function �(x; �; "); de�ned in (6.21). By repeating

the considerations from section 5 we get the following result.

Theorem 6.2 Suppose the hypotheses (A0){(A2), (H1), (H2) are valid. Then there

exists a �nite time � = ~� such that at t = ~�" the solution of the initial-boundary

value problem (1.1){(1.3) is in the domain of attraction of the periodic boundary

layer solution, and therefore near the moment t = ~�" the contrast structure solution

changes into a pure boundary layer type solution. Moreover we have

lim
t!1

h
u(x; t; ")� u1(x; t; ")

i
= 0;

where u1(x; t; ") is the periodic boundary layer solution of the problem (1.1), (1.3).

7 Fast-slow transition from step type contrast

structure to a pure boundary layer solution.

We again consider the initial-boundary value problem (1.1){(1.3) under the condi-

tions (A0){(A3). Furthermore, we suppose that the initial function u
0(x; ")) is of

step-type, where the location of the transition layer is characterized by the point

~x0. But di�erent from assumption (H1) introduced in section 5 we suppose that ~x0
is not near 0(0). In this case, the numerical results ( Fig. 2) show a fast motion of

the initial step type contrast structure to the neighbourhood of x0(0), and then a

slow motion with x0(t) to the boundary, where the solution changes from a contrast

structure solution into a pure boundary layer solution.

In order to be able to prove an analytic result we introduce the following additional

assumption.

(H3). Suppose for de�niteness ~x0 < x0(0) and that u0(x; ") is a step-type internal

layer function whose transition point ~x0 is located near x̂0(0) and such that

�(x̂0(0); 0; ") � u
0(x; ") � �(x̂0(0); 0; ")
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where � and � are de�ned by (6.21).

From assumption (A3) it follows that I(x; 0) > 0 for x < x0(0) and I(x; 0) < 0 for

x > x0(0).

Let Æ1 is a small positive independent on " number such that Æ1 < Æ (Æ is the

number which is used in the construction of lower and upper solutions in (5.5),

(5.6)). Under the assumptions above we can apply the results of Theorem 6.1 for

the time interval 0 � t � "�
�

0 , where �
�

0 is the time is the stretched scale such that

x̂0(�) = x0(0)� Æ1 (x̂0(�) moves to the point x0(0) according the results of Theorem

6.1). From the structure of the lower and upper solutions de�ned by (6.17) it follows

that for t = "�
�

0 the solution of problem (1.1) - (1.2) satis�es the condition (A4) for

the time t = "�
�

0 . From this time we can apply the results of Theorem 5.1 to describe

the motion of step type contrast structure and its transformation into boundary layer

solution. Our observations we summarize in the following theorem.

Theorem 7.1 Assume the hypotheses (A1){(A3) and (H3) to be valid. Then for

suÆciently small " there exists a unique solution of problem (1.1){(1.3) which has

an interior layer for any t 2 [0; t0), where t0 is de�ned by x0(t) = 1. This solution

exhibits a phase of fast motion for 0 � t � "�
�

0 and a phase of slow motion for

� � t < t0, where � is any small number. For any �xed t > t0; u(x; t; ") is a pure

boundary layer solution. Moreover

lim
t!1

h
u(x; t; ")� u1(x; t; ")

i
= 0:

Remark For the time interval ["� �0 ; �] there is a transition from the fast to the slow

motion which is not described by our approach.
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