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Abstract. We provide a detailed analysis of Derrida's Generalised Random Energy

Model (GREM). In particular, we describe its limiting Gibbs measure in terms Ruelle's

Poisson cascades. Next we introduce and analyse a more general class of Continuous

Random Energy Models (CREMs) which di�ers from the well-known class of Sherrington-

Kirkpatrick models only in the choice of distance on the space of spin con�gurations :

the Hamming distance de�nes the later class while the ultrametric distance corresponds

to the former one. We express explicitly the geometry of its limiting Gibbs measure in

terms of genealogies of Neveu's Continuous State branching Process via an appropriate

time change. We also identify the distances between replicas under the limiting CREM's

Gibbs measure with those between integers of Bolthausen-Sznitman coalescent under the

same time change.

1. Introduction

Through the remarkable progress achieved recently through the work of Guerra [G], Aizen-

man, Sims, and Starr [ASS], and Talagrand [T5, T6] (see also this volume) towards a rig-

orous justi�cation of the Parisi solution in the Sherrington-Kirkpatrick models, we have

now a clear understanding of how Parisi's replica symmetry breaking solution for the free

energy emerges. With the exception of a regime in the p-spin SK models where one-step

replica symmetry breaking occurs [T2, T4], however, these result only justify the formula

for the free energy. The question of how the asymptotics of the Gibbs measure is described

in general, and whether it conforms to the picture suggested by the replica theory remains

open.

In this situation it may still be instructive to see how a picture like the one predicted

by replica theory emerges in another class of spin glass models, the Generalised Random

Energy models of B. Derrida and Gardner [D3, DG1, DG2]. This is reinforced by the fact

that these structures play a crucial rôle in the Parisi solution. In this article we give a

concise review of a detailed rigorous analysis of the asymptotics of the Gibbs measures in

this class of models that we carried out recently [BK1, BK2, BK3].

The class of models we consider here can be described as follows. Consider the N dimen-

sional hypercube �N = f�1; 1gN endowed with the (normalized) ultrametric distance

dN (�; �) = 1�N�1(minfi : �i 6= �ig � 1): (1.1)

De�ne a centered normal Gaussian process X on �N with covariance given by

EX�X� = A(1� dN (�; �)) (1.2)

for some non-decreasing right-continuous function A : [0; 1]! [0; 1].

The principal objects of interest are the Gibbs measures on �N :

��;N(�) � e�
p
NX�

Z�;N
; � 2 �N ; (1.3)

where the partition function, Z�;N , is

Z�;N =
X
�2�N

e�
p
NX� : (1.4)

This class of models di�ers from the Sherrington-Kirkpatrick (SK) models only in the

choice of the distance (1.1). In fact, the SK models are de�ned in th same way, but

instead of the ultrametric distance dN one uses the Hamming distance,

dHN (�; �) = N�1#fi : �i 6= �ig:
Then the Hamiltonian of the class of SK models has a covariance structure EX�X� =

A(dHN (�; �)) with any function A such that the matrix of A(dHN (�; �)) is positively de�ned.
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Figure 1. Structure of the Hamiltonian of the GREM.

Since N�1P
i �i�i = 1 � 2dHN (�; �), the choice of A(x) = (1 � 2x)2 corresponds to the

original SK model [SK].

1.1. History of the models. In 1980 B. Derrida proposed the simplest spin-glass model

where the standard Gaussian random variables X� are independent [D1, D2]. It was called

the Random Energy Model (REM). Note that this is a particular case of the model (1.2)

with A(x) = 1fx=1g.

B. Derrida also introduced later [D3] the Generalized Random Energy Model (GREM)

in view of keeping dependence while simplifying it to a hierarchical structure in or-

der to obtain a more tractable model. The Hamiltonian of the GREM can be con-

structed explicitly in terms of i.i.d. Gaussian random variables. Namely, chose the

parameters n � 1 (number of hierarchies), a1; a2; : : : ; an 2 [0; 1] with
Pn

i=1 ai = 1,

and �1; �2; : : : ; �n 2 [1; 2] with
Qn

i=1 �i = 2. Let us represent the hypercube �N as a

product �N =
Qn

i=1�N ln�i= ln 2 and write � = �1 : : : �n where �i 2 �N ln�i= ln 2. Let

X�1 ;X�1�2 ; : : : ;X�1����n be �N1 + �N1 �
N
2 + � � �+�N1 � � ��Nn independent standard Gaussian

random variables. Then the Hamiltonian of the GREM is given by:

X� =
p
a1X�1 +

p
a2X�1�2 + � � �+p

anX�1����n if � = �1 : : : �n: (1.5)

To get some intuition in (1.5), one could imagine a tree illustrated on Figure 1 : �N1
branches of the �rst level are indexed by �1. Each of these branches supports �N2 branches

of the second level indexed by �1�2 : thus on the second level there are (�1�2)
N branches

etc. Each con�guration � = �1 : : : �n is represented uniquely as a path on this tree going

from the top to the bottom through the branches �1, �1�2, : : :, �1 : : : �n. If, moreover,

we associate to each of branches �1 : : : �k a random variable X�1:::�k , then X� is the

linear combination of these random variables taken along the path associated with � and

multiplied by coeÆcients
p
a1; : : : ;

p
an.

As can be veri�ed by computing the covariance of X�, this model is a special case of the

models (1.2), where A(x) is a step function given as

A(x) =

kX
i=0

ak; for x 2 [ln(�0 � � ��k)= ln 2; ln(�0 � � ��k+1)= ln 2); (1.6)

k = 0; 1; : : : ; n, where a0 = 0; �0 = 1; see Figure 2. The GREM was analyzed by

Derrida and Gardner [D3, DG1, DG2, DG3]. A rigorous computation of the free energy,

N�1 ln
P

� e
�
p
NX� , in full generality was later given [CCP]. Derrida and Gardner also
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Figure 2. The function A(x) of the GREM

considered limits of their results as the number of steps tended to in�nity, and interpreted

these results as corresponding to continuous functions A [DG1].

While there were very few further rigorous results on these models (but see [Ei, GMP]),

Ruelle in a seminal paper of 1988 [Ru] introduced a new class of models based on Poisson

cascades (to which we will henceforth refer to as \Ruelle's REM and GREM"), which

he understood to be the appropriate models to describe the limiting Gibbs measures of

Derrida's GREMs. Ruelle noted a number of remarkable features of these models, and in

particular observed that it was possible to construct limits as the number of steps went to

in�nity in terms of projective limits.

Shortly after that, Neveu [Ne] observed a connection between Ruelle's models and contin-

uous state branching processes. Unfortunately, this remark appeared only in a preliminary

internal report that was never published. Later, Bolthausen and Sznitman in [BS] inter-

preted the results of the replica theory of spin glasses in terms of a coalescent process,

now known as the Bolthausen-Sznitman coalescent. Following this paper, Bertoin and Le

Gall [BLG] gave a precise and complete form of the relation between Neveu's continuous

state branching processes, Ruelle's GREM, and the Bolthausen-Sznitman coalescent.

Around the time when these fascinating results appeared, we began to investigate more

closely the link to the original spin glass models with Ruelle's models. In the REM, this

connection was made in a paper with M. L�owe [BKL] (see also [Bo] and [BS2, T3, T4]).

These results were extended to the GREMs in [BK1], using essentially elementary methods.

We observed, however, that the use of the so-called Ghirlanda-Guerra identities [GG]

allowed for a di�erent approach that circumvents parts of these explicit computations

(this fact was �rst observed in the REM by Talagrand [T3], who also exploited these

identities heavily in his work on the p-spin SK models [T1, T2, T3, T4]). It allowed us

in [BK2] to extend our convergence results to the general class of models de�ned above

with general right-continuous non-decreasing functions A(x) : [0; 1] ! [0; 1]. We called

this class Continuous Random Energy Models (CREM). Finally, combining the results of

[BK2] and those of J. Bertoin and J.F. Le Gall [BLG], we concluded our investigation in

[BK3] by linking our results to the continuous state branching process of Neveu. More

precisely, we identi�ed the geometry of the limiting Gibbs measure proven to exist in [BK2]

explicitly in terms of the genealogy of Neveu's branching process, which were de�ned in

[BLG]. The rôle played by these random genealogies in the Parisi solution can be most

clearly seen in the paper by Aizenman, Sims, and Starr [ASS] (see also this volume).

We hope that these examples help to explain to a mathematical audience what physicist

describe when they talk about \continuous replica symmetry breaking".
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1.2. Geometry of Gibbs measures. The central problem one is faced with when ana-

lyzing mean �eld spin glasses is to describe the geometric structure of a random probability

measure (1.3) on a set �N as N !1. Two scenarios can be expected:

(i) at high temperatures (small �) this measure will be spread over over an expo-

nentially large set of con�gurations that is distributed rather uniformly over the

hypercube;

(ii) at low temperatures (large �) this measure will concentrate on a very small sub-

set of con�gurations �, with a rather complicated structure, corresponding to the

largest values of X�, while the mass of the enormous amount of all other con�gu-

rations � will be negligible.

These statements are easily proven in the REM, using the classical theory of extremes of

i.i.d. random variables [LLR]. Let us briey recall these results. To be able to embed all

hypercubes �N , N 2 N, in the same compact space, it is convenient to map them to the

unit interval via the canonical maps rN : �N ! [0; 1]:

rN (�) = 1�
NX
i=1

2�i�1(1 + �i): (1.7)

For �niteN , the Gibbs measure is then mapped to a discrete measure on [0; 1] concentrated

on 2N points: e��;N =
X
�2�N

��;N (�)ÆrN (�) (1.8)

with distribution function

��;N (x) =

Z x

0

d e��;N : (1.9)

It was proved in [Bo] that

��;N
D!

8><>:
y = x if � � p

2 ln 2
S�=

p
2 ln 2

(x)

S�=
p
2 ln 2

(1)
if � >

p
2 ln 2:

(1.10)

This means that e��;N converges to the Lebesgue measure on [0; 1] at high temperatures,

con�rming scenario (i). The random function S�=
p
2 ln 2

(x) is a stable subordinator with

the index �=
p
2 ln 2, i.e. a step function that jumps at random points, ti, i = 1; 2; : : :,

which are distributed uniformly on [0; 1]. The values of jumps wi are also random and can

be expressed as

wi =
e(�=

p
2 ln 2)xiP

j e
(�=

p
2 ln 2)xj

(1.11)

where x1 > x2 > � � � are the atoms of the Poisson point process P on R with intensity

measure e�xdx. This con�rms scenario (ii): at low temperatures the limiting Gibbs mea-

sure concentrates on a countable number of randomly chosen con�gurations corresponding

to points ti 2 [0; 1].

This description of the limiting Gibbs measure does not give any information about its

geometry. But to de�ne the geometry of a measure on the in�nite dimensional hypercube,

it is necessary, �rst of all, to specify a topology. The conventional choice of the product

topology is not suitable to capture the fact that these measure tend to concentrate on

individual random con�gurations. To resolve this problem we introduce the following

construction. Let

m�(t) = ��;N (� : dN (�; �) � 1� t) (1.12)

be the picture of the landscape of the Gibbs measure taken from a given con�guration �.
The function 1�m�(t) is a random distribution function on [0; 1]. In this way we get 2N
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di�erent pictures of the landscape of the Gibbs measure taken from di�erent con�gurations

�. It seems reasonable to subject the importance of each of these pictures to the Gibbs

mass, ��;N (�), of its starting point, �. In this way we construct the random probability

measure

K�;N �
X
�2�N

��;N (�)Æm�(�) (1.13)

on these distribution functions m�(t) that attributes to each function m�(t) the weight
��;N(�). We call K�;N the empirical distance distribution function. It has a very appealing

physical interpretation: it tells, for a �xed realization of the disorder, with which prob-

ability an observer, that is himself distributed with the Gibbs measure, will see a given

distribution of mass around himself. Convergence results for the Gibbs measures will be

formulated in term of convergence of the law, under the Gaussian process X�, of K�;N . A

key object is the �rst moment of K�;N :Z
K�;N (dm)m(�) = �
2�;N(�; � : dN (�; �) 2 �); (1.14)

which is the probability that two con�gurations, �; � , drawn independently from the Gibbs

sample satisfy dN (�; �
0) 2 �.

In the case of the REM, the limit of K�;N is a rather simple object :

K�;N
D!
8<: ÆÆ(0) � �

p
2 ln 2X

wi

wiÆwiÆ(0)+(1�wi)Æ(1) � >
p
2 ln 2: (1.15)

It will manifest much more rich and interesting structure in the case of the GREM and

CREM, as we will see.

1.3. Point process of extremes. To describe eÆciently the behavior of the limiting

Gibbs measure according to scenario (ii), it is necessary to know the maximal values of

the Gaussian process X� . In the case of independent variables the corresponding result is

well known. First of all max�2�N
X�N

�1=2 !p
2 ln 2 a.s. from where for any " > 0

P(8� : X� <
p
N(
p
2 ln 2 + "))! 1; P(8� : X� <

p
N(
p
2 ln 2� "))! 0:

To get the limiting value here between 0 and 1, one should take " = "N ! 0 as N !1.

It turns out that the right function depending on the parameter x 2 R is

uln�;N (x) =
p
2N ln�+

xp
2N ln�

� lnN + ln ln�+ ln4�

2
p
2N ln�

; (1.16)

with � = 2 as

P(8� : X� < uln 2;N (x))! e�e
�x

; N !1:

Thus, we come to the classical result on the convergence of extreme value statistics in

the case where X� are 2N independent Gaussian random variables. It says that the point

process X
�2�N

Æu�1
ln 2;N

(X�)

D! P (1.17)

converges weakly to the Poisson point process P on R with the intensity measure e�xdx,
see e.g. [LLR]. This result is the crucial ingredient in the proof of (1.10) and clari�es the

meaning of (1.11).

To start the analysis of the GREM, we need an analogous result in the case of correlated

Gaussian random variables. Results of this kind in the correlated case are much more

scarce. Most of them establish conditions under which the same limiting point process

arises as for the independent random variables. We will see that this is in general not the

case for the random variables (1.5) correlated as in the Hamiltonian of the GREM.

5



1.4. Organization of the paper. The remainder of the paper is organized as follows.

Section 2 is devoted to convergent point processes associated with the Hamiltonian of the

GREM. Namely, we �nd the point process of extreme value statistics of its Hamiltonian.

These results can be viewed as those on convergence of extreme value statistics for corre-

lated Gaussian random variables independently of the context of spin glasses. In Section

3 we study the GREM (1.5) with �nitely many hierarchies. In particular we identify the

limit of K�;N for this model with Ruelle's probability cascades. In Section 4 we analyze

the general case of CREM's (1.1), (1.2) with a \continuum of hierarchies". We prove the

existence of the limit of K�;N by the so-called \Ghirlanda-Guerra" identities, i.e. identi-

fying limits of all its moments. In Section 5 we describe explicitly the limit of K�;N in

terms of the genealogical structure of Neveu's continuous state branching process modulo

an appropriate time change depending only on � and on the concave hull of A.

Notations. When A is a step-function as on Figure 2, we will denote by A(x) its linear
interpolation. Its graph consists of the segments [P0; P1], [P1; P2]; : : : ; [Pn�1; Pn] where

Pk = (
Pk

i=0 ak; ln(�0 � � ��k)= ln 2) for k = 0; : : : ; n, with a0 = 0, �0 = 1 so that P0 = (0; 0)
and Pn = (1; 1), see Figure 2.

We will denote by bA(x) the concave hull of the function A(x) and by bA0(x) the right

derivative of the concave hull of A, see Figure 5.

2. Convergent point processes associated to the GREM.

In Theorem 2.1 below we give a necessary and suÆcient condition on the parameters ai; �i
which assure that point process of extreme value statistics of GREM's Hamiltonian (1.5)

is the same as in the case of independent random variables (1.17). This condition is the

convexity of the linear interpolation A(x). In other words, the concave hull of A(x) should
be the straight line y = x. It is illustrated on Figure 3(a). This condition is strictly weaker
than the suÆcient condition implied by Slepian's Lemma on the comparison of Gaussians.

(Theorem 4.2.1 in [LLR]). We use the notation (1.16).

Theorem 2.1. [BK1] Let n 2 N, n � 1, 0 < ai < 1 with
Pn

i=1 ai = 1, �i > 1, i =
1; 2; : : : ; n. The point processX

�=�N

Æu�1
ln 2;N

(
p
a1X�1

+
p
a2X�1�2

+���+
p
anX�1�2:::�n

)

converges weakly to the Poisson point process P on R with the intensity measure Ke�xdx,
K 2 R, i� the linear interpolation A(x) is convex, that is

ai + ai+1 + � � �+ an � ln(�i�i+1 � � ��n)= ln �� for all i = 2; 3; : : : ; n; (2.1)

see Figure 3(a). If all inequalities in (2.1) are strict, then K = 1. If some of the relations

are equalities, the 0 < K < 11.

The next lemma gives a suÆcient condition for the convergence of the multidimensional

point process to the point process of Poisson cascades de�ned by Ruelle in [Ru]. This is

a generalization of Theorem 3 of [GMP]: we do not specify the law of the vectors Y�1:::�i ,
neither assume their independence.

Lemma 2.1. [BK1] Let �i � 1, i = 1; 2; : : : ; k, �� � Qk
i=1 �i. Let Y�1 ; Y�1�2 ; : : : ; Y�1 :::�k

be �N1 + � � � + (�1 � � ��k)N identically distributed random variables. Assume that 1 +

�N1 + � � � + (�1 � � ��k�1)N vectors (Y�1)�12f�1;1gN ln�1= ln ��, (Y�1�2)�22f�1;1gN ln�2= ln �� 8�1 2
f�1; 1gN ln�1= ln ��

,

: : : ; (Y�1�2:::�k)�k2f�1;1gN ln�
k
= ln �� 8 �1 : : : �k�1 2 f�1; 1gN ln(�1����k�1)= ln ��

are independent.

1Explicit expressions for K are given in [BK1].
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A(x)

PJ0
ln ��1
ln 2

1

�a1 + �a2

1

PJ1

PJm

A(x)�a1

ln(��1 ��2)

ln 2

PJ2

AJ(x)

1

1
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Figure 3. (a) Condition (2.1), (b) Condition (2.5)

Let vN;1(x); : : : ; vN;k(x) be functions on R such that the following point processesX
�1

ÆvN;1(Y�1 )
D! P1X

�2

ÆvN;2(Y�1�2)
D! P2 8�1

� � � (2.2)X
�k

ÆvN;k(Y�1�2:::�k )
D! Pk 8�1 : : : �k�1

converge weakly to the Poisson point processes P1; : : : ;Pk on R with the intensity mea-

sures K1e
�xdx; : : : ;Kke

�xdx with some constants K1; : : : ;Kk > 0 respectively. Then the

following point process on R
k

P(k)
N �

X
�1

ÆvN;1(Y�1 )

X
�2

ÆvN;2(Y�1�2 )
� � �
X
�k

ÆvN;k(Y�1�2:::�k )
D! P(k)

converges weakly to a point process, P(k)
, called a k-level Poisson cascade, on R

k
.

Structure of P(k). The Poisson cascades P(k) can be characterized in terms of their Laplace

transfroms, see [BK1]. Informally, they are best described as follows [Ru]: If k = 1, it is a

ordinary Poisson point process on R with intensity measure K1e
�xdx. To construct P2 on

R
2 , we place the process P1 for k = 1 on the axis of the �rst coordinate and through each

of its points draw a straight line parallel to the axis of the second coordinate. Then we

put on each of these lines independently a Poisson point process with intensity K2e
�xdx.

These points on R2 form the process P2. This procedure is now simply iterated k times.

Theorem 2.1 and Lemma 2.1 combined give a �rst important result, that establishes which

convergent point processes may be constructed in the GREM: one can group together the

hierarchies between the levels J0; J1; : : : ; Jm, if condition (2.5) is veri�ed. This condition is
illustrated in Figure 3(b): it means the convexity of the function A(x) between the levels

J0; J1; : : : ; Jm.

Theorem 2.2. [BK1] Let �i � 1, 0 < ai < 1, i = 1; 2; : : : ; n,
Qn

i=1 �i = 2,
Pn

i=1 ai = 1.

Let J1; J2; : : : ; Jm 2 N be the indices 0 = J0 < J1 < J2 < � � � < Jm = n. We denote

by �al �
PJl

i=Jl�1+1 ai, ��l �
QJl

i=Jl�1+1 �i, l = 1; 2; : : : ;m, and introduce the standard

7



Gaussian random variables

�X
�1:::�J

l�1
�J

l�1+1�J
l�1+2����J

l

�
�p

aJl�1+1X�1:::�J
l�1

�J
l�1+1

+
p
aJl�1+2X�1:::�J

l�1
�J

l�1+1�J
l�1+2

+ � � �+p
aJlX�1:::�J

l�1
�J

l�1+1:::�J
l

�
=
p
�al: (2.3)

Assume that a partition J1; J2; : : : ; Jm satis�es the following condition : for all l =

1; 2; : : : ;m and all k such that Jl�1 + 2 � k � Jl

(ak + ak+1 � � �+ aJl�1 + aJl)=�al � ln(�k�k+1 � � ��Jl�1�Jl)= ln(��l): (2.4)

If AJ(x) is the linear interpolation of the points (0; 0); PJ1 ; PJ2 ; : : : ; PJm = (1; 1), condition
(2.4) is equivalent to

A(x) � AJ(x) 8x 2 [0; 1]; (2.5)

(see Figure 3(b)), then the point process

P(m)
N �

X
�1:::�J1

Æu�1
ln ��1;N

( �X�1:::�J1
)

X
�J1+1:::�J2

Æ
u�1
ln ��2;N

( �X
�1:::�J1
�
J1+1:::�J2

)
� � �

X
�Jm�1+1:::�Jm

Æ
u�1
ln ��m;N

( �X
�1:::�Jm�1
�
Jm�1+1:::�Jm

)

(2.6)

converges weakly in distribution to the point process P(m)
on R

m
, de�ned in Lemma 2.1,

with constants K1; : : : ;Km. Moreover, Kl = 1, if all Jl � Jl�1 � 1 inequalities in (2.4) for

k = Jl�1 + 2; : : : ; Jl are strict. Otherwise, 0 < Kl < 12.

It is clear that the point process of extreme values of the Hamiltonian can be constructed

from one of the partitions of Theorem 2.2. This is the one that allows to group together

the maximal number of hierarchies: among all series of indices J1; : : : ; Jm satisfying (2.4)

one should choose the one with the largest di�erences J1 � J0; : : : ; Jm � Jm�1. To de�ne

it, we set J0 � 0 and

Jl � minfJ > Jl�1 : AJl�1+1;J > AJ+1;k 8k � J +1g where Aj;k �
Pk

i=j ai

2 ln(
Qk

i=j �i)
: (2.7)

The sequence J1; : : : ; Jm, de�ned by (2.7), veri�es (2.4), for all k, such that Jl�1+2 � k �
Jl and all l = 1; 2; : : : ;m. This choice of the partition J1; J2; : : : ; Jm (2.7) has a beautiful

geometric interpretation: the linear interpolation AJ(x) of (0; 0); PJ1 ; : : : ; PJm = (1; 1) is
the concave hull of the function A(x), see Figure 4.

We set

�al �
JlX

i=Jl�1+1

ai; ��l �
JlY

i=Jl�1+1

�i; l �
r

�al
2 ln ��l

=

s
( bA)0(PJl�1

)

2 ln 2
; l = 1; 2; : : : ;m;

(2.8)

see Figure 4. Next, let us de�ne the function UJ;N as

UJ;N(x) �
mX
l=1

�p
2N�al ln ��l �N�1=2l(ln(N(ln ��l)) + ln 4�)=2

�
+N�1=2x (2.9)

and the point process

EN �
X

�2f�1;1gN
ÆU�1

J;N
(
p
a1X�1

+���+
p
anX�1����n

): (2.10)

Theorem 2.3. [BK1] (i) The point process EN converges weakly, as N " 1, to the point

process on R

E �
Z
Rm

P(m)(dx1; : : : ; dxm)ÆPm

l=1 lxl
(2.11)

2Explicit expressions for K are given in [BK1].
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PJ1�a1

bA(x)

A(x)

ln(��1 ��2)

ln 2
PJ0

ln ��1
ln 2

= q1 = q2
= q0

�a1 + �a2

�a1 + � � � + �am = 1

ln(��1�����m)

ln 2
= 1

Figure 4. The function bA(x), with parameters (2.8), (3.6).

where P(m)
is a Poisson cascade (introduced in Lemma 2.1) with constants K1; : : : ;Km, as

de�ned in Theorem 2.2 according to the partition J1; : : : ; Jm of (2.7) and the parameters

1; : : : ; m de�ned by (2.8).

(ii) The inequalities 1 > � � � > m imply the existence of E.
(iii) We have max�(X�=

p
N)!p

�a12 ln ��1+� � �+
p
�am2 ln ��m a.s. and also E(max�X�=

p
N)!p

2�a1 ln ��1 + � � �+p
2�am ln ��m.

3. GREM: detailed analysis

3.1. Fluctuations of the partition function. For any sequence of indices 0 < J1 <
� � � < Jm = n, the partition function (1.4) of the GREM can be written as:

Z�;N = e
P

m

j=1

�
�N
p

2�aj ln ��j��j [ln(N ln ��j)+ln 4�]=2
�

�
X

�1:::�J1

e
�1u

�1
ln ��1;N

( �X�1:::�J1
) � � �

X
�Jm�1+1:::�Jm

e
�mu�1

ln ��m;N
( �X

�1:::�Jm�1
�
Jm�1+1:::�Jm

)
(3.1)

where �al �
PJl

i=Jl�1+1 ai, ��l �
QJl

i=Jl�1+1 �i, l �
p
�al=
p
2 ln ��l, l = 1; 2; : : : ;m, and

the random variables �X
�1:::�J

l�1
�J

l�1+1:::�J
l
are de�ned in (2.3). For any sequence J1; : : : ; Jm,

satisfying conditions (2.4), the point process (2.6) in the exponent of (3.1) converges to

the corresponding Poisson cascade by Theorem 2.2. The sequence constructed according

to (2.7) gives the correct scale of uctuations of Z�;N via (3.1). Nevertheless it should be

cut at a certain level Jl(�) that depends on the temperature: using the sequence 1 > 2 >

� � � > m de�ned in (2.8), we set

l(�) � maxfl � 1 : �l > 1g (3.2)

and l(�) � 0 if �1 � 1. This de�nition (3.2) has a simple geometric interpretation:

l(�) � max
n
l � 1 : �

s
( bA)0(PJl�1

)

2 ln 2
> 1
o
:

9



In [CCP], the limit of the free energy has been computed in terms of (2.8) and (3.2):

lim
N!1

N�1 lnZN;� = �
�p

2�a1 ln ��1+ � � �+
q
2�al(�) ln ��l(�)

�
) +

nX
i=Jl(�)+1

(�2ai=2+ ln�j); a.s.

(3.3)

We see that the domain f� : l(�) = 0g = f� : � � 1=1g is the high temperature

region, where limN!1 = 1
N E lnZ�;N = limN!1

1
N
lnEZ�;N : The next theorem gives the

uctuations of the partition function.

Theorem 3.1. [BK1] Let �i � 1, 0 < ai < 1, i = 1; 2; : : : ; n,
Qn

i=1 �i = 2,
Pn

i=1 ai = 1.

Let J1; J2; : : : ; Jm 2 N be the sequence of indices de�ned by (2.7), the parameters �ai, ��i,
i be de�ned by (2.8) and l(�) be de�ned by (3.2).

If l(�) = 0, then
Z�;N

2N e�
2N=2

! C(�).

If l(�) > 1, then

e

Pl(�)

j=1

�
��N

p
2�aj ln ��j+�j [ln(N ln ��j)+ln 4�]=2

�
�N

P
n

i=J
l(�)+1(�

2ai=2+ln�j)
Z�;N

D! C(�)

Z
Rl(�)

e�1x1+�2x2+���+�l(�)xl(�)P(l(�))(dx1 : : : dxl(�)): (3.4)

This integral is computed over the Poisson cascades P(l(�))
on R

l(�)
, de�ned in Lemma 2.1,

with the constants Kj of Theorem 2.2. The constant

C(�) = 1; if �l(�)+1 < 1; (3.5)

and 0 < C(�) < 1, if if �l(�)+1 = 13.

3.2. Gibbs measure: approach via Ruelle's probability cascades. We consider

everywhere below �ai, ��i, i de�ned by (2.8) according to (2.7) and l(�) de�ned by (3.2).

Let us denote the jump points of the derivative of the concave hull bA0(x) by
ql �

lX
n=1

ln ��n
ln 2

; l = 1; 2; : : : ;m; (3.6)

with the convention q0 = 0. They are illustrated on Figure 4. Let Bl(�) be the ball in �N

with center � and radius 1� q :

Bl(�) � f�0 2 �N : dN (�; �
0) � 1� qlg = f�0 : �01 : : : �0Jl = �1 : : : �Jlg; l = 1; 2; : : : ; l(�):

(3.7)

Let us de�ne the point process W(m)

�;N on (0; 1]m as

W(m)

�;N �
X
�

Æ(��;N (B1(�));:::;��;N (Bm(�)))
��;N (�)

��;N (Bm(�))
(3.8)

and its projection on the last coordinate

R(m)

�;N �
X
�

Æ��;N (Bm(�))

��;N (�)

��;N (Bm(�))
: (3.9)

It is easy to see that W(m)

�;N satisfy the following relation:

W(m)

�;N (dw1; : : : ; dwm) =

Z 1

0

W(m+1)

�;N (dw1; : : : ; dwm; dwm+1)
wm+1

wm

where the integral is taken over the last coordinate wm+1. The next theorem gives the

limits of these point processes for all m � l(�).

3Explicit formulae for C(�) are given in [BK1].
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Theorem 3.2. [BK1] Let l(�) � 1 i.e. � >

q
2 ln 2=( bA)0(0). If m � l(�), then the point

process W(m)

�;N on (0; 1]m converges weakly, as N ! 1, to the point process W(m)

�~ , whose

atoms w(i) are expressed through the points (x1(i); : : : ; xm(i)) of the Poisson cascade P(m)

of Lemma 2.1, with constants Kj of Theorem 2.2, as follows:

(w1(i); : : : ; wm(i)) (3.10)

=
�R P(m)(dy)Æ(y1 � x1(i))e

�(;y)R P(m)(dy)e�(;y)
; : : : ;

R P(m)(dy)Æ(y1 � x1(i)) : : : Æ(ym � xm(i))e
�(;y)R P(m)(dy)e�(;y)

�
:

The vector ~ = (1; : : : ; m) is de�ned by (2.8) according to (2.7). The process R(m)

�;N

converges to the process R(m)

� , where the atoms are the last components of the atoms of

(3.10).

The balls Bl(�)(�) are the smallest ones that have positive mass, ��;N , as N ! 1:

For m > l(�), ��;N(Bm(�)) ! 0 for any � 2 �N . I� Jl(�) = n, i.e. � > 1=m =q
2 ln 2= limx!1( bA)0(x), these balls consist of a single con�guration, �. In this case the

mass of the Gibbs measure is concentrated on certain randomly chosen individual con�g-

urations. Otherwise, these balls consist of all con�gurations having the same spins as �
starting from the �rst sit up to the Jl(�)th site.

De�nition 3.1. [Ru] The process W(m)

�~ de�ned in Theorem 3.2 is called the process of

probability cascades on [0; 1]m with m levels and parameters �1 > � � � > �m > 1. I

The most complete object of Theorem 3.2 is of course the processW(l(�))

�;N . Thus, Theorem

3.2 asserts the convergence of the point processW(l(�))
�;N of Derrida's model with parameters

n � 1, ai, �i to the point process of probability cascades of Ruelle's model with parameters
l(�) and �1; : : : ; �l(�) de�ned by (2.8) and (3.2). Let us also emphasize the fact that

the parameters of the limiting process of probability cascades depend only on the concave

hull bA(x) and on �.

3.3. Distribution of the overlaps. One of the most important physical objects is the

distribution of the overlap

� � �0
N

=

PN
i=1 �i�

0
i

N
(3.11)

of two spin con�gurations under the Gibbs measure:

ef�;N (q) � �
2�;N

�(� � �0)
N

� q
�
: (3.12)

In the context of the GREM it appears more natural to consider the ultrametric distance

f�;N(q) � �
2�;N
�
dN (�; �

0) � 1� q
�
: (3.13)

The next theorem asserts the remarkable fact that the laws of these two objects coincides

in the thermodynamic limit.

Theorem 3.3. [BK1] The distribution functions f�;N et ef�;N converge in law to the same

distribution function f� as N !1. Moreover E f�;N ! E f� and E
ef�;N ! E f� where

E f�(q) = min
n
��1

s
2 ln 2

( bA)0(q) ; 1
o
=

(
��1

q
2 ln ��j
�aj

if q 2 [qj�1; qj); j � l(�)

1 if q � ql(�):
(3.14)
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The function f� is a step function that jumps at points f0; q1; : : : ; ql(�)g. For any q 2
[qi�1; qi)

f�(q) =

Z
W(l(�))

�~ (dw1; : : : ; dwl(�))wl(�)(1� wi); i = 1; : : : ; l(�); (3.15)

f�(q) = 1 for q � ql(�).

Rather then just considering the distribution of the total overlap, we can give a more

precise description of the Gibbs measure by considering the vector of overlaps within each

hierarchy. Let

�l = [� ln ��l= ln 2; ln ��l= ln 2]; for l = 1; 2; : : : ; l(�) (3.16)

�l(�)+1 = [� ln(�Jl(�)+1 � � ��n)= ln 2; ln(�Jl(�)+1 � � ��n)= ln 2]:
It is clear that (��l � ��0l)=N 2 �l, l = 1; : : : ; l(�) + 1. We introduce the measure f


l(�)+1

�;N on

�1��2� � � ���l(�)+1 induced by ��l � ��0l on all levels of limiting probability cascades: for

any Il 2 �l, l = 1; : : : ; l(�) + 1, we put

f

l(�)+1

�;N (I1 � � � � � Il(�)+1) � E�;�0
Ql(�)+1

l=1 1I(��l���0l)=N2Il
e�
p
N(X�+X�0

)

Z2
�;N

= �
2�;N

� l(�)+1Y
l=1

1I(��l���0l)=N2Il

�
: (3.17)

Theorem 3.4. [BK1] The measure f

l(�)+1

�;N converges in law to the following measure on

�1 ��2 � � � � ��l(�)+1:

f

l(�)+1

�;N ! Q0Æ(0;0;:::;0) +

l(�)X
j=1

QjÆ(ln ��1= ln 2;:::;ln ��j= ln 2;0;:::;0) N !1:

The random variables Q1; : : : ; Ql(�) are de�ned as

Qj(�) �
Z
W(l(�))

�~ (dw1; : : : ; dwl(�))wl(�)(wj � wj+11Ifj�l(�)�1g); j = 1; : : : ; l(�):

3.4. Ghirlanda-Guerra identities. The processW(l(�))

�~ has been constructed explicitly

in Theorem 3.2 in terms of Ruelle's probability cascades. This allows to compute all its

characteristics. Now we present a di�erent approach that determines W(l(�))

�~ completely,

without the use of Ruelle's probability cascades. This amounts to the computation of all

moments of W(l(�))

�~ by recursion, starting from the second one. This approach will bear

its full fruits in the analysis of the CREM.

Lemma 3.1. [BK1] Assume that the parameters �i and ai are such that the inequalities

(2.4) are strict. Then for any bounded function h : �n
N ! R and for any i = 1; : : : ; n

lim
N"1

���E�
n+1
�;N

�
h(�1; : : : ; �n)1I�k1 :::�ki =�

n+1
1 :::�n+1

i

�
� 1

n
E�


n
�;N

�
h(�1; : : : ; �n)

� nX
l 6=k

1I�l1:::�
l

i
=�k1 :::�

k

i

+ E�

2
�;N (1I�11 :::�

1
i
=�21 :::�

2
i

)
����� = 0:(3.18)

The proof of this lemma is based on the integration by parts of Gaussian random variables

coupled with a concentration of measure argument. This lemma determines the so-called

Ghirlanda-Guerra identities for the GREM: it allows to compute the expected distance

distribution function between n replicas under the Gibbs measure by the recurrence pro-

cedure (3.18) for n = 3; 4 : : : subsequently starting from n = 2. To see this, it suÆces to

12



put the function h equal to the indicator function of distances between n+1 replicas and

to note that by (3.18) the term with n+1 replicas is completely determined by the terms

with n replicas and by the one with two replicas,

lim
N"1

E�

2
�;N (1I�11 :::�

1
i
=�21 :::�

2
i

) = 1� E f�

� iX
j=1

ln�j= ln 2
�
;

that has been already computed in (3.14). In fact, let J � (J0; : : : ; JN ) be a set of

subsets of 1; : : : ; n+ 1 that determines the distances between n+1 replicas: each element

Jr = (Jr;1; : : : ; Jr;jr) is a collection of subsets of 1; : : : ; n+ 1 that reassembles the numbers

of con�gurations for which the �rst r coordinated of the spin variables are equal. Then,

for any Jr;i, there exists Jr�1;k, such that Jr;i � Jr�1;k. Assume that Jr;i is the set of

numbers fjr;i1 ; : : : ; j
r;i
jJr;ij

g. We can then de�ne the function:

AJ �
NY
r=1

jrY
i=1

1I

f�
j
r;i

1
1 :::�

j
r;i

1
r =���=�

j
r;i

jJr;i j

1 :::�

j
r;i

jJr;ij

r g

: (3.19)

The length of J is kJk = n+1. Let us construct a set J 0 of length n by erasing everywhere

in J the integer n + 1. Indeed, there exists r 2 f1; : : : ; Ng, such that there exists l 2
f1; : : : ; ng, such that n + 1 and l belong to the same subset, Jr;i, of J , i.e. their �rst

r coordinates coincide. If we choose the maximal r with this property, this determines

uniquely the participation of n+ 1 everywhere in J : for any p = 1; 2; : : : ; r � 1 it belongs

to the same subset Jp;i as l. In other words, once the ultrametric distances between n
replicas are �xed, it suÆces to specify the distance of the (n+ 1)th replica to the closest

to it, in order to determine completely its distance to all other replicas. This implies

AJ = AJ01I�l1:::�lr=�
n+1
1 :::�n+1

r
: (3.20)

Hence, substituting h = AJ 0 in Lemma 3.1, we can compute limN!1 E�

n
�;N (AJ) subse-

quently for n = 3; 4; : : :, starting from n = 2, given by (3.14).

From the other hand, in [BK1], we expressed all moments of W(m)

� in terms of AJ :Z
W(m)

�;N(dw)w
i1
1 : : : wil

l : : : w
im
m

= �

(i1+���+im)

�;N

�
1If�11=���=�

i1+���+im
1 g : : : 1If�

i1+���+i
l�1+1

1 :::�
i1+���+i

l�1+1

l
=���=�i1+���+im

1 :::�
i1+���+im
l

g

� � � 1I
f�

i1+���+im�1+1

1 :::�
i1+���+im�1+1
m =���=�i1+���+im

1 :::�
i1+���+im
m g

�
(3.21)

where im � 1, otherwise this expression is in�nite. This implies the following theorem.

Theorem 3.5. [BK1] The process W(m)

�~
is completely determined by the relations (3.18)

up to the mean value of the two-replica distance distribution function given by (3.14).

Theorem 3.5 in the case of the REM has been �rst proven by M. Talagrand. Lemma 3.1

implies also the following result, that has been remarked by Ruelle in [Ru].

Corollary 3.1. The l-th marginal of Ruelle's process of probability cascades W(m)

�~
with m

levels and parameters �1 > � � � > �m > 1 has the same distribution as Ruelle's process

of one level with parameter �l, l = 1; : : : ;m

To see this, we need to control all moments of this marginal that can be expressed via

the quantities �
r�;N
�
1If�11 :::�

1
l
=���=�r1 :::�

r

l
g
�
, which in turn satisfy the identities (3.18) for

r = 3; : : :, while for r = 2 they are de�ned by f�(ql) = (�l)
�1. But these identities are

the same for the GREM with one hierarchy (i.e. the REM), with the same two replica
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Figure 5. (a) Concave hull of A(x), (b) The function (4.5).

distance distribution. Consequently, the l-th marginal of W(m)

�;N , in the limit N ! 1
behaves as

P
� Æ��;N (�) of the REM at temperature e� = �l

p
2 ln 2.

3.5. Empirical distance distribution function K�. The process W(l(�))

�;N is a point

process on [0; 1]m. Its points (��;N (B1(�)); : : : ; ��;N (Bl(�)(�))) can be considered as values
of the ultrametric distance distribution function around �

m�(x) = ��;N (dN (�; �
0) � 1� x) (3.22)

at points x = q0; : : : ; ql(�). The limit of this distribution function is a step-function that

jumps precisely at these points. We could then considerW(l(�))
�;N as a point process of these

distribution functions : W(l(�))
�;N =

P
� Æm�(�).

This object is, however, not properly adapted to the CREM. In the analysis of the CREM

it is essentially imperative to replace it by the probability measure on these distribution

functions:

K�;N =
X
�

��;N (�)Æm�(�); (3.23)

that we have introduced and discussed in the introduction. To conclude the analysis of

the GREM, we give its asymptotic behavior in the following theorem.

Theorem 3.6. [BK4] The process K�;N converges weakly to the point process K�

K� =

Z
Rl(�)

W(l(�))

�~ (dw)w(l(�))Æm(w) (3.24)

where the measures m(w) are de�ned by the formulas :

m(w) = (1�w(1))Æ1 +(w(1)�w(2))Æ1�ln �1= ln 2+ � � �+w(l(�))Æ1�ln(�1����l(�))= ln 2: (3.25)

4. CREM: implicit approach

We start now the analysis of the CREM with covariances (1.2) where A(x) : [0; 1]! [0; 1]

is a right-continuous distribution function with the concave hull bA(x) whose right right
derivative we denote by ( bA)0(x); see Figure 5(a). We assume that A is non-critical in the

sense that it is equal to its concave hull bA only on the set of extremal points of the convex

hull.
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4.1. Maximum of the Hamiltonian. Limit of the free energy.

Theorem 4.1. [BK2] Let fX�g be a family of 2N standard Gaussian random variables

with covariances (1.2). Then

lim
N!1

Emax
�

X�p
N

=
p
2 ln 2

1Z
0

q
( bA)0(x)dx: (4.1)

Theorem 4.2. [BK2] Let fX�g be a family of 2N Gaussian random variables with co-

variances (1.2). Let

x� = sup
n
x
��� ( bA)0(x) > 2 ln 2

�2

o
: (4.2)

Then

lim
N!1

N�1
E lnZ�;N =

p
2 ln 2�

x�Z
0

q
( bA)0(x)dx+ �2

2
(1� bA(x�)) + ln 2(1� x�): (4.3)

Consequently the critical temperature of the CREM de�ned as

�0 = supf� : lim
N!1

N�1E lnZ�;N = lim
N!1

N�1 lnEZ�;Ng
equals :

�0 =

s
2 ln 2

limx#0( bA)0(x) : (4.4)

The proofs of these theorems rely heavily on results already obtained for the GREM.

Namely, we approximate A(x) from above and below by step-functions for which corre-

sponding results have been already established in Theorem 2.3 (ii) and (3.3) in the study

of the GREM. Then the results announced in Theorems 4.1 and 4.2 follow from theorems

about the comparison of the mean values of convex or concave functions of Gaussian pro-

cesses implied by the comparison of the covariances of these processes (see Theorem 3.1

in [LT](Kahane's Theorem)).

We are not able to evaluate the uctuations of the partition function of the CREM. We

anticipate that they depend not only on bA(x) in view of the analysis of the maximum of

branching Brownian motion by Bramson [Br]. But (4.3) suÆces to deduce the following

very important result which is in the basis of the description of the CREM's Gibbs measure.

4.2. Two-replicas ultrametric distance distribution function.

Theorem 4.3. [BK2] Let fX�g be a family of 2N Gaussian random variables with co-

variances (1.2). Let x� be de�ned by (4.2). Then

lim
N!1

E�

2
�;N(dN (�; �

0) � 1� x) = E f�(x) =

8><>: ��1

s
2 ln 2

( bA)0(x) if x < x�

1 if x � x�

(4.5)

The function E f�(x) is illustrated on Figure 5(b). Let us sketch the main points of the

proof. The result of Theorem 4.2 allows to compute the limit of the free energy

lim
N!1

N�1
E lnZ

u
�;N = F u

�

for the CREM where the function A(x) is slightly perturbed by a small parameter u > 0

in a neighborhood of the point x. Next, using the integration by parts of Gaussian random
variables, we show that the desired quantity limN!1 E�


2
�;N (dN (�; �

0) � 1�x) is equal to
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limN!1
d
du
N�1 lnZu

�;N

���
u=0

that can be computed as d
du
F u
�

���
u=0

by convexity and leads

to (4.5).

4.3. Ghirlanda-Guerra identities. The next lemma is a generalization of Lemma 3.1:

it proves Ghirlanda-Guerra identities in the case of the CREM.

Lemma 4.1. [BK2] For any n 2 N, any bounded function h(x) and x 2 [0; 1] n x�
lim
N"1

���E�
n+1
�;N

�
h(�1; : : : ; �n)1IdN (�k ;�n+1)>x

�
� 1

n
E�


n+1
�;N

�
h(�1; : : : ; �n)

� nX
l 6=k

1IdN (�k;�l)>x + E�

2
�;N(1IdN (�1;�2)>x)

����� = 0:(4.6)

One of the pillars of the proof of this lemma is the representation X� = X�(1) where X�(t)
is the family of standard Gaussian processes on [0; 1] with covariances: cov (X�(t);X�0(s)) =
A(t ^ s ^ dN (�; �

0)): Two other pillars are the same as in the case of the GREM : the in-

tegration by parts of Gaussians and a concentration of measure argument.

This lemma implies the following important Theorem 4.4, that determines implicitly the

empirical distance distribution function K�;N . Let us de�ne a family of measures Qn
N on

[0; 1]n(n�1)=2

Q(n)

�;N (
�dN 2 C) � E�


n
N;�(

�dN 2 C) (4.7)

where �dN is the vector of distances between n replicas with components dk;lN = dN (�
l; �k),

1 � l < k � n, and C is a Borel subset of [0; 1]n(n�1)=2. We denote by Bk the sigma-�eld

generated by the �rst k(k � 1)=2 coordinates.

Theorem 4.4. [BK2] For any n 2 N, the family of measures Q(n)
�;N converges, as N " 1,

to the limiting measure Q(n)

� . All these measures are uniquely determined by (4.5). They

satisfy the identities:

Q(n+1)

� (dk;n+1 2 CjBn) = 1

n
Q(2)

� (C) +
1

n

nX
l=1;l 6=k

Q(n)
� (dk;l 2 CjBn) (4.8)

for any Borel subset C � [0; 1]. Consequently K�;N de�ned by (3.23) and (3.22) converges

in law to the limit K� with generalized moments determined by Q(n)

� .

The recurrent formulas (4.8) come from (4.6) if we put h equal to the indicator function of

any desired event of Bn. Let us remark also that, due to the ultrametric structure, once the
distances between n replicas are prescribed, it suÆces to �x the distance from the (n+1)-

th replica up to the closest to it among the n replicas f1; 2; : : : ; ng, in order to determine

its distance up to all other n�1 replicas. This fact is already formally explained in (3.19).

Then the formulas (4.8) determine completely the measures limN!1Q(n)

�;N = Q(n)

� up to

the measure Q
(2)

� already computed in (4.5). The moments K�;N can be expressed in terms

of the measures Q(n)
�;N . This implies the convergence of K�;N to a limiting object K� with

moments expressed in terms of Q(n)
� .

4.4. Marginals of K� in terms of Ruelle's probability cascades. In this subsection

we give an explicit form of all marginals of K�;N . Let 0 < t1 < t2 < � � � < tm < 1 be points

of increase of the function (4.5), t0 = 0. We can de�ne then the marginal process:

K�;N (t0; t1; : : : ; tm) =
X
�

��;N (�)Æm�(t0);m�(t1);m�(t2);:::;m�(tm): (4.9)
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Theorem 4.5. [BK2] Let t0 = 0 < t1 < t2 < : : : < tm � 1 = tm+1 be points of increase

of the function (4.5). Consider the GREM of m+ 1 hierarchies, with parameters �i such

that ln�i= ln 2 = ti � ti�1, i = 1; : : : ;m + 1, ai with
Pm+1

i=1 ai = 1 at temperature e� such

that e��1p2 ln�i=ai = ��1
q
2 ln 2=( bA)0(ti�1), i = 1; : : : ;m+ 1. Then

lim
N!1

K�;N (t0; t1; : : : ; tm) = K(m+1)

e� ; (4.10)

where K(m+1)

e� is the empirical distance distribution function of the GREM computed in

Theorem 3.6 in terms of Ruelle's probability cascades.

The second moments of limN!1K�;N (t0; t1; : : : ; tm) and of K(m)

e� for the GREM in question

are the same due to the choice of the parameters of the GREM. Then all their moments

coincide by the Ghirlanda-Guerra identities. The parameters ai and e� explicitly are equal

to :

ai = �
bA0(ti�1) ln�i

ln 2
; e� = ��1=2�; � =

�m+1X
i=1

bA0(ti�1) ln�i
ln 2

��1
; i = 1; : : : ;m+ 1:

5. Genealogies and Neveu's branching process.

5.1. Problems with the explicit description of limiting Gibbs measures. We

obtained an implicit description of the limiting Gibbs measure of the CREM via recursive

computation of all moments of K�. Nevertheless, we would like to identify explicitly a

limiting measure to which our Gibbs measures converge and that encodes the full geometric

information contained in K�. This is not immediately possible for the following reason.

In [Bo] one of us proposed to describe the in�nite volume limit of the Gibbs measure for the

REM by considering the image of the hypercube �N on [0; 1] through the map rN : �N !
(0; 1] (1.7). However, the de�nition of K�;N involves masses of sets f�0 : dN (�; �0) < 1� tg.
If we map such sets on the unit interval via rN , we obtain intervals (r[Nt] � 2�[tN ]; r[Nt]]

of length 2�[tN ]. So, when N = 1, these sets map to intervals of length 2�t1. We can

not analyze the structure of the measure by looking at intervals of the size 2�t1.

What will however be possible, is the following. We will introduce the notion of a ow

of compatible probability measures on [0; 1] indexed by pairs of parameters s � t 2 I
and with distribution functions satisfying the compatibility assumption (5.1). Next, we

will associate to each of such ows a certain genealogical structure on [0; 1] described by

a genealogical map, KT 2 M1(M1([0; 1])), which is an empirical distribution of family

sizes of all individuals as functions of degree of relatedness. Then we will provide a

ow of compatible probability measures for each �nite N with the genealogy describing

eÆciently the geometry of the Gibbs measure of the CREM: its genealogical map, K�;N
T ,

will equal the empirical distance distribution function K�;N . Finally, we will show that

this ow of probability measures converges as N ! 1 to the ow of compatible random

probability measures with distribution functions that are normalized stable subordinators

associated to Neveu's continuous state branching process via an appropriate deterministic

time change. This convergence of ows is understood in the sense that their genealogical

maps, K�;N = K�;N
T , converge. Thus, the limiting geometry of the Gibbs measure of the

CREM will be expressed in terms of the genealogy of Neveu's continuous state branching

process modulo a time change determined only by E f�(x) of (4.5).

5.2. Genealogical map of a ow of probability measures.
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Figure 6. Genealogical structure induced by a ow S(s;t).

De�nition 5.1. A two-parameter family of measures with probability distribution func-

tions S(s;t)
on [0; 1], s � t, s; t 2 I � R, is called a ow of compatible probability measures

on I, if and only if for any collection t1 � t2 � � � � � tn � I

S(t1;tn) = S(tn�1;tn) Æ S(tn�2;tn�1) Æ : : : S(t2;t3) Æ S(t1 ;t2) (5.1)

holds.

Let us admit the following terminology. We say that each point a 2 [0; 1] is an individual

in generation s and its image S(s;t)(a) 2 [0; 1] is its o�spring in generation t. Let us de�ne
for any distribution function �(x) its inverse function

��1(x) = inffa j �(a) � xg: (5.2)

Then each individual x 2 [0; 1] in generation t has an ancestor a in generation s which is

a = (S(s;t))�1(x). Given an individual x 2 [0; 1] in generation t, let us look for individuals
x0 having the same ancestor as x in generation s:

mx(s; t) � fx0 : (S(s;t))�1(x0) = (S(s;t))�1(x)g: (5.3)

If S(s;t) is continuous at a = (S(s;t))�1(x), then any individual x0 6= x has a di�erent

ancestor from the one of x. If S(s;t) makes a jump at a = (S(s;t))�1(x), then the family

(5.3) of the individual x having the same ancestor as x in generation s is the following

interval :

mx(s; t) = lim
�#0

�
S(s;t)

�
(S(s;t))�1(x)� "

�
; S(s;t) Æ (S(s;t))�1(x)

i
:

In Figure 5.2 the individual x in generation t has a family of \cousins" mx(s; t) having
the same \grand-father" in generation s, while the individual y is the unique \grand-

child" of his ancestor in generation s. We are mainly interested in a nontrivial case when

functions S(s;t) make jumps. The next lemma justi�es this terminology. It says that any

individual having an ancestor in common with x in generation s has necessarily an ancestor
in common with x in any generation s0 < s. In other words, if we partition the interval

[0; 1] into families mx(s
0; t) having the same ancestor in generation s0, then the partition

into families mx(s; t) having the same ancestor in generation s > s0 is a re�nement of the
previous one.
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Lemma 5.1. Let S(s;t)
be distribution functions of a ow of measures according to De�-

nition 5.1. Then for all x 2 [0; 1]

mx(s; t) � mx(s
0; t) 8s0 < s � t 2 I: (5.4)

Whenever t = T is �xed, the function jmx(�; T )j is the family size of the individual x in

generation T as a function of the degree of relatedness. By Lemma 5.1, it is a decreasing

function on I. Finally, we de�ne the associated empirical distribution of the functions

jmx(�; T )j

KT =

1Z
0

dxÆjmx(�;T )j: (5.5)

This construction allows to associate to any ow of probability measures, in the sense of

De�nition 5.1, an empirical distributionKT . If we assume, in addition, that [0; T ] � I and
jmx(�; T )j are right-continuous, then 1 � jmx(�; T )j are probability distribution functions.

Then we will think of KT as a map from ows of probability measures into M1(M1([0; 1]))
which we call the genealogical map.

5.3. Coalescent associated with a ow of probability measures. Now, let us de�ne

the exact degree of relatedness between two individuals x; y 2 [0; 1] with respect to a ow

of measures (5.1) as

T (x; y) � sup (s 2 I : y 2mx(s; T )) : (5.6)

Lemma 5.2. T � T de�nes an ultrametric distance on the unit interval.

We will be interested in cases where the ow S(s;t) of De�nition 5.1 is random. We will

now de�ne the coalescent process on integers that completely characterizes a random

genealogical map KT in this case.

Having de�ned a distance T�T on [0; 1], we can de�ne in a very natural way the analogous
distance on the integers. To do this, consider a family of i.i.d. random variables, fUigi2N ,
distributed according to the uniform law on [0; 1]. Given such a family, we set

�T (i; j) = �T (Ui; Uj): (5.7)

Due to the ultrametric property of the �T and the independence of the Ui, for �xed T , the
sets Bi(s) � fj : �T (i; j) � T � sg form an exchangeable random partition of the integers.

Moreover, the family of these partitions as a function of T � s is a stochastic process on

the space of integer partitions with the property that for any s > s0, the partition Bi(s
0)

is a coarsening of the partition Bi(s). Such a process is called a coalescent process.

The key observation is the following lemma.

Lemma 5.3. The genealogical map KT of a ow S(s;t)
is completely determined by its

moments; they can be expressed through the probabilities

P(�T (i; j) � T � tm(i;j); 8i; j 2 f1; : : : ; lg) (5.8)

of the corresponding coalescent, where m(i; j) 2 f1; : : : ; pg, 0 < t1 < � � � < tp � T , l � 2.

To illustrate this lemma, let us note that

E

Z
m(t)KT (dm) = E

Z 1

0

mx(T; t)dx = P(�T (1; 2) � T � t): (5.9)
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5.4. Finite N setting for the CREM.. We will now show that for �nite N we can use

the general construction from Subsections 5.2, 5.3 to relate the geometric description of

the Gibbs measure on �N to the genealogical description of a family of embedded measures

on [0; 1].

Recall that we have already introduced the image measure e��;N (1.8) of the Gibbs measure

on the unit interval via the map rN (1.7). Let ��;N be the probability distribution function

of e��;N :
��;N (x) = e��;N (� : r[N ](�) � x): (5.10)

Let us take a parameter s 2 [0; 1] and consider the map r[sN ] : �N ! [0; 1]. Clearly, its

image consists of 2[sN ] points, and for any �; �0 with dN (�; �
0) > s we have r[sN ](�) =

r[sN ](�
0). Now we de�ne a family of compatible distribution functions in the sense of

De�nition 5.1:

S
(s;t)

�;N (a) =
X
�

��;N (�)1If�(r[sN](�))�ag (5.11)

as states Lemma 5.4. To better understand the construction of (5.11), let us take con�gu-

rations, �1; �2; : : : ; �2
[sN]

, di�ering in the �rst [sN ] coordinates, i.e. with dN (�
i; �j) � 1�s,

and arrange them in order such that 0 < r[sN ](�
1) < r[sN ](�

2) < � � � < r[sN ](�
2[sN]

) = 1:
Let

xsi = ��;N(�
0 : dN (�

0; �i) < 1� s); i = 1; : : : ; 2[sN ]; x0 = 0:

De�ne

ysi � xs0 + xs1 + � � �+ xsi = �(r[sN ](�
i)); i = 0; 1; : : : ; 2[sN ]:

Then we may write the representation

S
(s;t)
�;N (a) =

2[sN]X
i=0

ysi 1Ifa2[ys
i
;ys
i+1)g: (5.12)

Lemma 5.4. The functions, S
(s;t)
�;N , de�ned in (5.11) satisfy the assumptions of De�nition

5.1 with I = [0; 1].

It follows from this observation that we are entitled to apply the construction of the

previous section to S
(s;t)
�;N . Their genealogy is

mx(s; t) = (ysi�1; y
s
i ] with jmx(s; t)j = jxsi j; if x 2 (ysi�1; y

s
i ]; i = 1; : : : ; 2[sN ]:

We may associate with this genealogy the genealogical map,KT , and the coalescent process

on the integers. The next lemma expresses the geometry of the Gibbs measure of the

CREM contained in the empirical distance distribution function K�;N , de�ned in (1.13),

in terms of the genealogy induced by the functions de�ned in (5.11).

Lemma 5.5. We have

K�;N = K
�;N
1 ;

where the empirical distance distribution function K�;N is de�ned in (1.13) and K�;N
1 is

the genealogical map de�ned in (5.5), with T = 1, of the ow of probability distribution

functions (5.11).

5.5. Genealogy of a continuous state branching process. Another example of ows

of probability measures satisfying De�nition 5.1 arises in the context of continuous state

branching process [BLG]. The basic object here is a continuous state branching process

X(t) on R
+ characterized by its Laplace exponent ut(�). The process started in a � 0

will be denoted by X(�; a). This can be extended to a genuine two parameter process

(X(t; a); t; a � 0) using the fundamental branching property that states that, ifX 0(�; b) and
X(�; a) are independent copies, then X(�; a+ b) has the same law as X 0(�; b)+X(�; a). The
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process X(t; a) is characterized by the property that, for any a; b � 0, X(�; a+ b)�X(�; a)
is independent of the processes X(�; c), for all c � a, and its law is the same as that of

X(�; b). The right continuous version of X(t; �) is a subordinator. Bertoin and Le Gall

[BLG] prove the following proposition, based on the Markov property of this process.

Proposition 5.1. On some probability space there exists a process (eS(s;t)(a); 0 � s �
t; a � 0), such that

(i) For any 0 � s � t, eS(s;t)
is a subordinator with Laplace exponent ut�s(�).

(ii) For any integer p � 3 and 0 � t1 � t2 � � � � � tp, the subordinators eS(t1;t2); eS(t2;t3); : : : ; eS(tp�1;tp)

are independent, andeS(t1;tp)(a) = eS(tp�1;tp) Æ eS(tp�1;tp) Æ � � � Æ eS(t2;t3) Æ eS(t1;t2)(a); 8a � 0; a.s. (5.13)

(iii) The processes eS(0;t)(a) and X(t; a) have the same �nite dimensional marginals.

The process eS(s;t) allows to construct a ow of probability distribution functions by setting

S(s;t)(x) � 1

X(t; 1)
eS(s;t)(X(s; 1)x); 0 � s � t � 1: (5.14)

For I taken as any countable subset of R+ , they satisfy the assumptions of De�nition 5.1

a.s.

We are interested in a particular case of Neveu's continuous state branching process Xt

with

E(e��Xt j X0 = a) = e�ut(�)a; ut(�) = �e
�t

: (5.15)

In this case eS(s;t) are stable subordinators with index es�t. Then the normalized stable

subordinators S(s;t) of (5.14) is a family of random probability distribution functions sat-

isfying De�nition 5.1. Thus, the genealogical construction of Subsections 5.2, 5.3 applies

to them.

Finally, note that if we take an increasing function t(y) � 0 for y 2 [0; 1], then we

may consider the time-changed ow �S(y;z) = S(t(y);t(z)), 0 � y � z, satisfying again

De�nition 5.1 and therefore allowing the genealogical construction of Subsections 4.2, 4.3.

Bertoin and Le Gall [BLG] showed that the coalescent process on the integers induced by

S(s;t) of (5.14) associated to Neveu's process (5.15) coincides with the coalescent process

constructed by Bolthausen and Sznitman [BS]. They also proved the following remarkable

result connecting the collection of subordinators to Ruelle's Generalized Random Energy

Model: Take the parameters 0 < x1 < � � � < xp < 1 and 0 < t1 < � � � < tp linked by the

identities

tk = lnxk+1 � lnx1 (5.16)

for k = 0; : : : ; p�1, and tp = � lnx1. Then the law of the family of jumps of the normalized

subordinators S(tk;tp), for k = 0; : : : ; p � 1, is the same as the law of Ruelle's probability

cascades W(p) with parameters xi, i = 1; : : : ; p, see De�nition 3.1.

Now consider a GREM with �nitely many hierarchies and parameters such that the points

y0 = 0 and 0 < y1 < : : : < yp � 1 are the extremal points of the concave hull of A. Recall
that limN!1 E f�;N(y) = E f�(y) can be computed by (4.5) for any y 2 [0; 1]. Now set

E f�(yi�1) = xi; i = 1; : : : ; p; (5.17)

where all of the xi < 1. In Theorem 3.2 we proved that the point process W(p)
N;� in

[0; 1]p converge to Ruelle's probability cascades with parameters xi, i = 1; : : : ; p. (The

convergence of the marginals of the process W(p)

N;� for the GREM under the assumption

that for any given hierarchy i = 1; : : : ; p and N > 0 the number of con�gurations f�0 :
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dN (�; �
0) < 1�yig is the same for all � 2 �N , has been also established in Proposition 9.6

of [BS2].) Combining these two results yields

Lemma 5.6. Let ��;N be the Gibbs measure associated to a GREM with �nitely many

hierarchies satisfying (5.17) at the extremal points yi, i = 1; : : : ; p of the concave hull of

the function A. Then the family of distribution functions S
(yk;yp)

�;N , k = 1; 2; : : : ; p de�ned

according to (5.11) converges in law, and the limit has the same distribution as the family

of normalized stable subordinators (5.14) S(tk;tp), k = 0; 1; : : : ; p� 1 in the sense that the

joint distribution of their jumps has the same law, provided tk are chosen according to

(5.16), (5.17).

5.6. Main result. From the preceding proposition we expect that Neveu's process will

provide the universal limit for all of our CREMs. The dependence on the particular model

(i.e. the function A) and on the temperature must come from a rescaling of time. Set

x(y) � E f�(y) =

8><>:
p
2 ln 2

�

q bA0(y) ; if y < y�

1; if y � y�

(5.18)

where y� = sup(y :
p
2 ln 2

�
p bA0(y)

< 1) (here E f�(y) is de�ned by the function A through (4.5)).

Set also

T = � lnx(0); t(y) = T + lnx(y): (5.19)

De�ne the ow of probability distribution functions

�S(y;z)(x) � S(t(y);t(z))(x) (5.20)

where S(s;t) is the ow of functions (5.14) associated to Neveu's process (5.15). Let �K
t(y)
T

be the genealogical map (5.5) associated to this ow.

Theorem 5.1. Consider Continuous Random Energy Model with general function A such

that A does not touch its concave hull bA in the interior of any interval where bA is linear.

Then

K�;N = K�;N
1

D! �K
t(y)
1 : (5.21)

Here K�;N is the empirical distance distribution function (1.13), K
�;N
1 is the genealogical

map (5.5) of the ow of probability distribution functions (5.11) and the equality K�;N =

K�;N
1 holds by Lemma 5.5. Theorem 5.1 is the main result of this paper. It expresses

the geometry of the limiting Gibbs measure contained in K�;N in terms of the genealogy

of Neveu's branching process via the deterministic time change (5.19). We prove this

theorem in the next subsection.

5.7. Coalescence and Ghirlanda-Guerra identities. As it was remarked in Subsec-

tion 5.3, KT associated with a ow of measures is completely determined by its moments,

and these can be expressed via genealogical distance distributions of the corresponding co-

alescent (5.8). So, we will prove that the moments of K�;N , which are the n-replica distance
distributions in our spin glass model, converge to the genealogical distance distributions

on the integers (5.8) constructed from the ow of compatible measures with distribution

functions �S(y;z) (5.20). But the ow �S(y;z) is the time changed ow (5.14) of Neveu's

branching process (5.15) that by [BLG] corresponds to the coalescent of Bolthausen-

Sznitman. Therefore, its genealogical distance distributions on the integers are those

of Bolthausen-Sznitman coalescent under this time change (5.19). Then the proof of The-

orem 5.1 is reduced to the following Theorem 5.2 that gives in addition the connection

between the n-replica distance distribution function of the CREM with the genealogical

distance distribution function of the Bolthausen-Sznitman coalescent.
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Theorem 5.2. Under the same assumptions as in Theorem 5.1, for any n 2 N,

lim
N"1

E�

n
�;N (dN (�

1; �2) � 1� y1; ; : : : ; dN (�
n�1; �n) � 1� yn(n�1)=2) (5.22)

= P

�
�T (1; 2) � T � t(y1); : : : ; �T (n� 1; n) � T � t(yn(n�1)=2)

�
where t(y) is de�ned in (5.19) via (5.18).

The distance �T is the distance on integers for the Bolthausen-Sznitman coalescent, in-

duced through (5.7) by the genealogical distance T of the ow of measures S(s;t) (5.14)

of Neveu's branching process (5.15). The fact that in Bolthausen-Sznitman coalescent

P(�T (1; 2) � T � t) = et�T and the convergence (4.5) imply the statement of the theorem

for n = 2:

E�

2
�;N(dN (�; �

0) � 1� y)! x(y) = et(y)�T = P(�T (1; 2) � T � t(y)):

The proof of the theorem for n > 2, and in fact the entire identi�cation of the limiting pro-

cesses with objects constructed from Neveu's branching process, relies on the Ghirlanda-

Guerra identities [GG] that were derived in Theorem 4.4 for the left-hand side of (5.22).

Thus we must show that the right-hand side of (5.22) satis�es the same identities, that is

for t < T :

P (�T (1; n+ 1) � T � t j Bn) = 1

n
et�T +

1

n

nX
k=2

P (�T (1; k) � T � t j Bn) (5.23)

that can be equivalently written as

P (�T (k; n+ 1) < T � t j Bn) = jl 2 f1; : : : ; ng : �T (k; l) < T � tj � et�T

n
(5.24)

There are two ways to verify that (5.23) holds for the Bolthausen-Sznitman coalescent.

The �rst one is to observe that relation (5.23) involves only the marginals of the coalescent

at a �nite set of times. By Theorem 5 of Bertoin-Le Gall [BLG], these can be expressed

in terms of Ruelle's probability cascades modulo the appropriate time change. Thus,

by Theorem 3.2 these probabilities can be expressed as limits of a suitably constructed

GREM (with �nitely many hierarchies) for which the Ghirlanda-Guerra relations do hold

by Lemma 3.1. Thus (5.23) is satis�ed.

The second way is to verify directly that Ghirlanda-Guerra relations (5.24) hold for the

Bolthausen-Sznitman coalescent.

This can be done by identifying its partitions with exchangeable random partitions called

\Chinese restaurant process".

For that purpose, let us �rst give the following de�nition. Given the sequence of normalized

jumps of the stable subordinator (�i=T ) with index x and given U1; U2; : : : independent
uniform random variables on [0, 1], the partition of positive integers � distributed as a

partition of blocks of indices of Ui belonging to the same intervals �i=T 2 [0; 1] is called
(x; 0)-partition, see [Pi].

Let us introduce an operation of coagulation on partitions, see [Pi1]: for a partition

� = (A1; A2; : : : ; ) and � = (B1; B2; : : : ), the �-coagulation of � consists of blocks of the

form
S
j2Bi

Aj.

By [BS] the Markov kernels (e�t; 0)-coagulation, t � 0, on partitions of N form a semi-

group. The Markov process

P
�(�(t+) 2 �) = (et�T ; 0)� coagulation of � (5.25)

is distributed as the Bolthausen-Sznitman coalescent. It starts from a partition of singletons

at time T and �nishes by a partition of one block N at time �1. (The semi-group
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property can be also seen from the fact that the limiting frequencies of (e�t; 0)-partitions
are distributed as normalized jumps of stable subordinators and from their matching

condition (5.1).)

Next, consider exchangeable random partitions � on N, introduced by J. Pitman under the

name of Chinese restaurant processes. For each parameter 0 < x < 1 the partition called

\Chinese restaurant process" can be constructed as follows. Let �n denote the restriction

of � to the �rst n positive integers. Then, conditionally given �n = fA1; : : : ; Akg for

any particular partition of f1; 2; : : : ; ng into k subsets (tables) Ai of sizes ni, i = 1; : : : ; k,
the partition �n+1 is an extension of �n such that the number n + 1 (new customer) is

attached to the class (table) Ai with probability (ni � x)=n, and forms a new class (sits

at a new table) with probability kx=n. Let us denote by p(n1; : : : ; nk) the probability of

partitions � with �n a particular partition of k classes of sizes n1; : : : ; nk respectively.

Then

p(n1 + 1; n2; : : : ; nk) =
n1 � x

n
p(n1; : : : ; nk) (5.26)

The crucial fact is that the partition � of the Chinese restaurant process with parameter

x is a (x; 0)� partition. This fact, noticed in [Pi], follows from the combination of the

results of [Pi1] and [PPY] : On the one hand, in [Pi1] it is proven that the limiting relative

frequencies, in order of appearance, Pi, in the Chinese restaurant process have the same

distribution as the product (1�W1)(1�W2) � � � (1�Wi�1)Wi, with Wi independent beta

random variables with parameters (1� x; ix). On the other hand, in [PPY] the following

was proven: let �(i)=T denote the reordering to the intervals �i=T in order of appearance

of the Ui, i.e. de�ne �(i) such that U1 2 �(1)=T , Uminfj:Uj 62�(1)=Tg 2 �(2)=T etc.. Then

j�(i)=T j has the same distribution as products, (1 �W1) : : : (1 �Wi�1)Wi, where Wi are

the independent beta random variables appearing above. Thus, the sequences j�(i)=T j
and Pi have the same distribution.

Therefore, by (5.25), the marginals of Bolthausen-Sznitman coalescent �(t) at times 0 =
t0 < t1 < � � � < tp�1 < tp = T can be constructed as the following sequence of Chinese

restaurant processes: let xi = eti�1�tp , 0 < x1 < x2 < � � � < xp < 1. Then �(tp�1+) is
distributed as a (xp; 0)� partition, i.e. as the Chinese restaurant process with parameter

xp. Next, we de�ne the partition �(tp�2+) as the Chinese restaurant process on the classes
of partition �(tp�1+) with parameter xp�1=xp = etp�2�tp�1 ; this means that, given the

classes Ap�1
1 ; : : : ; Ap�1

k obtained from Ap
1; : : : ; A

p
l , where A

p�1
i consists of li blocks of �

p,

i = 1; : : : ; k, l1+ � � �+ lk = l, the block Ap
l+1 joins A

p�1
i with probability (lp�1i �xp�1=xp)=l

and forms a new class with probability kxp�1=(xpl). One iterates this procedure with

parameters xp�2=xp�1; : : : ; x1=x2 to construct the partitions �(tp�3+); : : : ;�(t0+). By

the semi-group property of (e�t; 0)� coagulations, �(ti+) is distributed as a Chinese

restaurant process with parameter xi+1 = eti�tp for all i = 0; 1; : : : ; p�1, satisfying (5.26).

Now (5.24) is immediate from the Chinese restaurant property (5.26).
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