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Alpha-stable Branching and Beta-Coalescents

M. Birkner, J. Blath, M. Capaldo, A. Etheridge,
M. Möhle, J. Schweinsberg, A. Wakolbinger

17 November 2004

Abstract

We determine that the continuous-state branching processes for which the geneal-
ogy, suitably time-changed, can be described by an autonomous Markov process are
precisely those arising from α-stable branching mechanisms. The random ancestral
partition is then a time-changed Λ-coalescent, where Λ is the Beta-distribution with
parameters 2− α and α, and the time change is given by Z1−α, where Z is the total
population size. For α = 2 (Feller’s branching diffusion) and Λ = δ0 (Kingman’s
coalescent), this is in the spirit of (a non-spatial version of) Perkins’ Disintegration
Theorem. For α = 1 and Λ the uniform distribution on [0, 1], this is the duality
discovered by Bertoin & Le Gall (2000) between the norming of Neveu’s continuous
state branching process and the Bolthausen-Sznitman coalescent.

We present two approaches: one, exploiting the ‘modified lookdown construction’,
draws heavily on Donnelly & Kurtz (1999); the other is based on direct calculations
with generators.

1 Introduction and main results

1.1 Introduction

Let Z = (Zt) be a Feller branching diffusion process satisfying the stochastic differential
equation

dZt =
√
Zt dWt, t ≥ 0, (1.1)

where W is a Wiener process with variance parameter σ2. Recall (see [16]) that Z arises
as a scaling limit as n→∞ of Galton-Watson processes (ζ(n)

k )k=0,1,... with offspring mean
one and offspring variance σ2, when time is measured in units of n generations and ‘mass’
is measured in units of n individuals:

( 1
n
ζ
(n)
�nt�
)
t≥0
→ (Zt)t≥0 in distribution as n→∞. (1.2)

AMS 2000 subject classification. 60J80, 60J70, 60J25, 60G09, 60G52, 92D25.
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Being infinitely divisible, Zt has a decomposition into a Poissonian superposition of ‘clus-
ters’:

Zt =
∑
i

χi(t), (1.3)

where the χi(t) can be thought of as the rescaled sizes of families at time t descended from
ancestors at time 0. One way to record who descended from which ancestor at time 0 is to
consider a superprocess corresponding to Feller’s branching diffusion, i.e. a process (Mt)
taking its values in the finite measures µ on [0, 1], say, and having generator

LF (µ) = σ2

2

∫ 1

0

∫ 1

0
µ(da)δa(db)F ′′(µ; a, b) (1.4)

where F ′(µ; a) := δF (µ)
δµ(a) := limε→0

1
ε(F (µ + εδa) − F (µ)), and F ′′(µ; a, b) :=

δ2F (µ)/δµ(a)δµ(b). The total population size process Zt := Mt([0, 1]) then is a Feller
branching diffusion. For t > 0, Mt is a random discrete measure whose atoms χi(t)δai

measure the mass of the offspring at time t descended from an ancestral individual of
‘type’ ai at time 0. As long as Zt > 0, the process Rt := Mt/Zt is well-defined; we will
refer to it as the ratio process. Generalising a result of [15], Perkins [27] proved that,
conditioned on the total population size process Z, the ratio process Rt is a Fleming-Viot
process with time inhomogeneous sampling rate. In our setting where there is no spatial
motion (i.e. no ‘mutation’ in the language of genetics) one can therefore think of (Rt)t≥0

as a time changed Fleming-Viot process (without mutation). Throughout this paper, we
shall work in this essentially non-spatial setting in which the Fleming-Viot process simply
encodes common ancestry of individuals in the population.

To re-phrase Perkins’ result in terms of the generator of R, we put

z := µ([0, 1]) and ρ := µ/z,

and consider functions F (µ) of the form

F (µ) = G(ρ) =
∫

ρ(da1)...ρ(dap)f(a1, ..., ap), (1.5)

where p ∈ N and f : [0, 1]p → R is measurable and bounded. For a = (a1, ..., ap) ∈ [0, 1]p

and J ⊆ {1, ..., p}, we put

aJi = amin J if i ∈ J, and aJi = ai if i /∈ J, i = 1, ..., p. (1.6)

Thinking of a as a sample drawn from ρ, passage from a to aJ means a coalescence of
ai, i ∈ J. Then, Perkins’ result implies that, for F as in (1.5),

(LF )(µ) = z−1σ2 ·
∑

J⊆{1,...,p},|J|=2

∫
ρ(da1)...ρ(dap)

(
f(aJ1 , ..., a

J
p)− f(a1, ..., ap)

)
= z−1σ2 · (FG)(ρ), (1.7)

where F is the generator of a standard Fleming-Viot process (without mutation).

It is well-known that there is a duality between the Fleming-Viot process and a coalescent
process called Kingman’s coalescent, which was introduced in [21]. To define Kingman’s
coalescent, we first introduce the n-coalescent, which is a continuous-time Markov process
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taking its values in the set Pn of partitions of {1, . . . , n}. If q denotes the transition rate
function for the n-coalescent, then for η, ξ ∈ Pn, we have q(η, ξ) = 1 if ξ can be obtained by
merging two blocks of η and q(η, ξ) = 0 otherwise. Kingman’s coalescent is a continuous-
time Markov process whose state space is the set P of partitions of N := {1, 2, . . .} with the
property that for each positive integer n, its restriction to {1, . . . , n} is the n-coalescent.
If normed by the total population size Zt, the atoms of Rt can be used to define the random
ancestral partition Θt ∈ P using Kingman’s paintbox construction [20]. To do this, we
define an i.i.d. sequence of random variables (Vi)∞i=1 such that P (Vi = j) = χj/Zt for all
j and then construct Θt such that two integers i and j are in the same block if and only
if Vi = Vj. Since (1.7) says that Rt is a Fleming-Viot process run at speed σ2Z−1

t , the
duality between the Fleming-Viot process and Kingman’s coalescent implies that if (Πs)s≥0

is Kingman’s coalescent, assumed to be independent of Z, and T (t) :=
∫ t
0 σ

2Z−1
s ds, then

for each t ≥ 0 we have
Θt

d= ΠT (t). (1.8)

Another way to state (1.8) is through the duality relation

E

[∫
Rt(da1)..Rt(dap)f(a1, ..., ap)

]
= E

[∫
db1...db|ΠT (t)|fΠT (t)

(b1, ..., b|ΠT (t)|)
]
, (1.9)

where Π is the p-coalescent starting at π0 = {{1}, ..., {p}}, and, for any partition π =
{C1, ..., Cq} of {1, ..., p},

fπ(b1, ..., bq) := f(a1, ..., ap)

with ai := bk if i ∈ Ck.

Equation (1.8), and equivalently the form of the generator (1.7), have an intuitive inter-
pretation. The random partition Pt arises through a merging of ancestral lines backwards
in time, and any two lines not having merged by time s (backwards from t) coalesce at
a rate proportional to the offspring variance σ2, and inversely proportional to the to-
tal population size Z−1

t−s, where time is measured in the scale of Kingman’s coalescent.
This genealogical interpretation can be made precise using the lookdown construction of
Donnelly & Kurtz, which we explain later (see [10, 11]).

Kingman’s coalescent fits into the family of Λ-coalescents introduced in [28] and [30]. On
the other hand, Feller’s branching diffusion is a special case of the general continuous
state branching processes (CSBP’s) initially studied by Jiřina [19], Lamperti [22, 23],
and Silverstein [33]. Our goal in this paper is to determine for which continuous-state
branching processes the genealogy of the process, suitably time-changed, can be described
by an autonomous Markov process. Evidently, this must be some form of coalescent.
Although a natural question, noone we spoke to seemed aware of a resolution of the
problem. A detailed analysis of the case in which the CSBP has finite variance is of course
well known. Moreover Bertoin & Le Gall [2] showed that the genealogy of a continuous-
state branching process studied by Neveu could be described by a coalescent process
called the Bolthausen-Sznitman coalescent. Donnelly & Kurtz [11] prepared the ground
for a unified treatment, even (in Section 3.1.4) introducing the generalised Fleming-Viot
processes rediscovered as duals to Λ-coalescent processes in Bertoin & Le Gall [3] and in
Section 5.1 briefly discussing Pitman’s Λ-coalescents and time changes that lead to the
Kingman coalescent. The long list of authors on this paper arose as a coalescence of three
independent groups of workers, all of whom thought it worthwhile to raise the profile of
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the results of [11] pertaining to the discontinuous CSBP’s and at the same time to identify
the family of measure-valued branching processes which ‘factorise’ in this way, namely
those arising from a stable branching mechanism.

1.2 Λ-coalescents and generalised Fleming-Viot processes

Pitman [28] and Sagitov [30] introduced coalescents with multiple collisions, also called
Λ-coalescents, which are coalescent processes in which many clusters can merge at once
into a single cluster. Here, Λ is a finite measure on [0, 1]. As with Kingman’s coalescent,
the Λ-coalescent is a P-valued Markov process whose law can be prescribed by specifying
the law of its restriction to {1, . . . , n} for all n ∈ N. If (Πs)s≥0 is the restriction of a
Λ-coalescent to {1, . . . , n}, then whenever Πs has p blocks, each transition that involves j
of the blocks merging into one happens at rate

βΛ
p,j =

∫
[0,1]

yj−2(1− y)p−jΛ(dy), (1.10)

and these are the only possible transitions. Note that Kingman’s coalescent is the special
case in which Λ = δ0.

When Λ({0}) = 0, Pitman showed that the Λ-coalescent can be constructed from a Poisson
point process on [0,∞)×{0, 1}∞ with intensity measure dt⊗L(dξ). Here L is the measure
on {0, 1}∞ such that L(A) =

∫
(0,1] Py(A)y

−2 Λ(dy) for all measurable A, where Py is the
law of an infinite sequence of i.i.d. Bernoulli random variables with success probability y.
If (t, ξ) is a point of the Poisson process with ξ = (ξ1, ξ2, . . . ) and B1, B2, . . . are the blocks
of the coalescent at time t−, ordered by their smallest element, then at time t, all of the
blocks Bi such that ξi = 1 merge together, while the other blocks remain unchanged. That
is, for each block we flip an independent coin with probability y of heads to determine
which blocks participate in the merger. The measure Λ thus governs the rates of the
multiple mergers.

We now define the corresponding generalised Fleming-Viot processes. For Λ a finite mea-
sure on [0, 1], a Λ-Fleming-Viot process takes its values in the probability measures ρ on
[0, 1] and has generator

(RG)(ρ) =
∑

J⊆{1,...,p},|J|≥2

βΛ
p,|J|

∫
ρ(da1)...ρ(dap)(f(aJ1 , ...a

J
p)− f(a1, ..., ap)), (1.11)

where G is a function of the type defined in (1.5) and βΛ
p,j is defined in (1.10). Note

that this terminology slightly differs from that in [3]: they would call this a ν-generalised
Fleming-Viot process, with ν(dy) = y−2Λ(dy). As we see in the proof of Theorem 1.1 in
Section 3, when Λ({0}) = 0, the generator can also be written as

(RG)(ρ) =
∫

(0,1]
y−2Λ(dy)

∫
ρ(da)

(
G((1− y)ρ+ yδa)−G(ρ)

)
.

An intuitive way to think about the generator is to consider a Poisson point process on
R+ × (0, 1] with intensity measure dt ⊗ y−2Λ(dy) which picks jump times and sizes for
(ρt). At a jump time t with corresponding jump size y, ρt− is modified in the following
way: pick a according to ρt−, insert an atom yδa, and scale down ρt− so that the total
mass remains equal to one.

4



As proved in [2], a Λ-Fleming-Viot process is dual to the Λ-coalescent, mirroring the
duality between the standard Fleming-Viot process and Kingman’s coalescent established
in [8].

1.3 Continuous-state branching processes

A continuous-state branching process (Zt)t≥0 is a [0,∞]-valued Markov process such that
the sum of independent copies of the process started at x and y has the same distribution
as the process started at x + y. If one excludes processes with the possibility of an
instantaneous jump to ∞, the dynamics of a continuous-state branching process (CSBP)
are characterised by a triple (σ2, γ, ν), where σ2 and γ are nonnegative real numbers, and
ν is a measure on R+ with ∫ ∞

0
(h2 ∧ 1)ν(dh) <∞. (1.12)

The generator of Z is given by

LZf(z) = z

(
γf ′(z) +

σ2

2
f ′′(z) +

∫
(0,∞)

(f(z + h)− f(z)− h1(0,1](h)f
′(z))ν(dh)

)
.(1.13)

Furthermore Lamperti [22] and Silverstein (Section 4 of [33]) showed that a CSBP with
generator (1.13) can be obtained from a Lévy process with no negative jumps whose
Laplace exponent is given by −Ψ(·), with

Ψ(u) = γu+
σ2

2
u2 +

∫ ∞

0

(e−hu − 1 + hu1(0,1](h)) ν(dh) (1.14)

for u ≥ 0. More precisely, let (Yt)t≥0 be a Lévy process such that Y0 = Z0 = s > 0 and
E[e−λYt ] = e−λs+tΨ(λ). Define (Ỹt)t≥0 to be the process (Yt)t≥0 stopped when it hits zero.
If Ut = inf{s :

∫ s
0 Ỹ

−1
u du = t}, then the processes (Zt)t≥0 and (ỸU (t))t≥0 have the same

law. The function Ψ is called the branching mechanism of the CSBP.

For some triples (σ2, γ, ν), the process X may explode in finite time or may go extinct. Let
τ∞ = inf{t : Zt =∞} be the explosion time and let τ0 = inf{t : Zt = 0} be the extinction
time. Put τ := τ∞ ∧ τ0. Grey [18] showed that the process is conservative, meaning that
τ∞ =∞ a.s., if and only if ∫ δ

0

1
|Ψ(λ)| dλ =∞

for δ > 0. To give a condition for extinction, let q = P (τ0 < ∞) be the extinction
probability. Let m = −Ψ′(0), so E[Zt] = emt and the process Z is called critical if m = 0,
subcritical if m < 0, and supercritical if m > 0. Grey [18] showed that q > 0 if and only
if, for sufficiently large θ, we have Ψ(θ) > 0 and∫ ∞

θ

1
Ψ(λ)

dλ <∞.

Grey also showed that if q > 0, then q < 1 if and only if m > 0.

1.4 Main result

To study the distribution of the random ancestral partition Θt for a general CSBP Z, we
consider an infinite types model where each ancestor has its own type. This is described
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by a measure-valued branching process (Mt) taking its values in the finite measures µ on
[0, 1], and having generator

LF (µ) = γ

∫ 1

0
µ(da)F ′(µ; a) +

σ2

2

∫ 1

0

∫ 1

0
µ(da)δa(db)F ′′(µ; a, b) (1.15)

+
∫ 1

0
µ(da)

∫
(0,∞)

ν(dh)(F (µ+ hδa)− F (µ)− 1(0,1](h)hF
′(µ; a)),

see [14] or [7]. We write

z := µ([0, 1]), ρ := µ/z, Zt := Mt([0, 1]), Rt :=Mt/Zt.

We are now ready to state our main result.

Theorem 1.1. The ratio process (Rt)0≤t<τ can be time-changed with an additive func-
tional of the total mass process (Zt) to obtain a Markov process if and only if

(i) ν = 0, or

(ii) σ = 0, and ν(dh) = const · h−1−αdh for some α ∈ (0, 2), i.e. Z is an α-stable
continuous state branching process.

In case (i), let Tt =
∫ t
0 σ

2Z−1
s ds and T−1(t) = inf{s : Ts > t}. Then the process

(RT−1(t))t≥0 is the classical (non-spatial) Fleming-Viot process, dual to Kingman’s coa-
lescent. In case (ii), if we let Tt = const · ∫ t0 Z1−α

s ds and define T−1(t) as before, then
(RT−1(t))t≥0 is the Λ-Fleming-Viot process, where Λ is the Beta(2−α, α) distribution, i.e.
Λ(du) = Cα u

1−α(1− u)α−1du.

If Tτ < ∞ we understand (RT−1(t))t≥0 to be extended for t ≥ Tτ by an independent Λ-
Fleming-Viot process started from RT−1(Tτ−).

In particular, under (ii) we have the following analogue of (1.9),

E

[∫
Rt(da1)..Rt(dap)f(a1, ..., ap)

]
= E

[∫
db1...db|ΠT (t)|fΠT (t)

(b1, ..., b|ΠT (t)|)
]
, (1.16)

in which (Πt)t≥0 is now a Beta(2− α, α)-coalescent started from {{1}, . . . , {p}}.
Note that case (i) is a direct consequence of Perkins’ result [27]. It is interesting that case
(ii) cannot be strengthened to a direct analogue of the Perkins Disintegration Theorem.
In the case α < 2 conditional on the total mass process, the ratio process is not just a
time change of an independent generalised Fleming-Viot process: its jump times are now
deterministic.

In case (ii) when α = 1, the CSBP Z is the continuous-state branching process that was
studied by Neveu [26]. Also, Λ is the uniform distribution on [0, 1], so the Λ-coalescent is
the Bolthausen-Sznitman coalescent, which was introduced in [5], so this case corresponds
to the result of Bertoin and Le Gall [2]. Bertoin and Le Gall’s result was used by Bovier
and Kurkova [6] in their study of Derrida’s generalised random energy models.

Let (Z(1)
t )t≥0 and (Z(2)

t )t≥0 be two independent α-stable CSBP’s. Equation (1.16) tells us,
in particular, that for α ∈ [0, 1], the process (RT−1(t)([0, a]))t≥0, which is a time change
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of the process (Z(1)
t /(Z(1)

t + Z
(2)
t ))t≥0, is equal to the dual of the block-counting process

introduced in Möhle [25]. These results were generalised by Bertoin and Le Gall in [4].

From (1.14) and the fact that m = −Ψ′(0), we see that in case (i), the branching mecha-
nism of Z is Ψ(u) = −mu+ σ2

2 u
2. In case (ii), when 1 < α < 2, we have Ψ(u) = −mu+cuα

for some constant c > 0. When α = 1, we have Ψ(u) = −du + cu logu, where d ∈ R is
a drift coefficient (see [2]), and when 0 < α < 1, we have Ψ(u) = −du − cuα for some
constant c > 0. Note that d (or m in the case α > 1) is the drift of the driving Lévy
process; as it can no longer be interpreted as a mean, we name it d rather than m in case
(ii) when α ≤ 1. By checking Grey’s conditions, it easily follows that Z is conservative
except in case (ii) when 0 < α < 1. Also, q = 0 only in case (ii) when α ≤ 1, and otherwise
q = 1 only when m ≤ 0.

Proposition 1.2. In case (i) of Theorem 1.1, we have Tτ =∞ a.s. if and only if m ≤ 0.
In case (ii), we have Tτ =∞ a.s. if and only if either 0 < α ≤ 1 and d ≥ 0 or 1 < α < 2
and m ≤ 0.

Remark 1.3. We say a Λ-coalescent (Πt)t≥0 comes down from infinity if Πt almost surely
has only a finite number of blocks for all t > 0. When Λ is the Beta(2−α, α) distribution,
it is shown in [31] that the Λ-coalescent comes down from infinity if 1 < α < 2 but not
when 0 < α ≤ 1. Combining this observation with Theorem 1.1, we obtain the result
that for the α-stable CSBP with 1 < α < 2, only finitely many individuals at time zero
have descendants alive in the population at time t > 0. This fact is well-known in the
superprocesses literature (see, for example, [9]). On the other hand, when 0 < α ≤ 1 and
t > 0, there are infinitely many individuals at time zero who have descendants alive at
time t.

Proposition 1.2 is now easily understood for 1 < α < 2. Notice that if m > 0 there is a
positive probability of more than one infinite line of descent in which case it must be that
Tτ <∞.

In case (ii) of the Theorem, we have

(LF )(µ) = const · z1−α · (RG)(ρ).

In view of (1.11) this has the following interpretation. A sample of size p from Mt+dt is
obtained as follows: first in the time interval (t, t + dt] any j-tuple (2 ≤ j ≤ p) merges
with probability const · βΛ

p,jZ
1−α
t dt+ o(dt); the resulting ancestors are then sampled from

Mt.

There are three regimes for the Zt-dependent time change which are qualitatively different:

• In the case 1 < α < 2 (many small jumps), for large population size z the ratio
process Rt runs slower – the law of large numbers starts to take effect. Note that
when m ≤ 0, we can have Tτ =∞ a.s. even when the CSBP goes extinct a.s. because
the process Rt runs quickly when the population size gets small.

• In the case 0 < α < 1 (many large jumps), for large population size z the process
Rt runs quicker - a lot of fluctuations happen. Consequently, we can have Tτ = ∞
a.s. even though P (τ∞ <∞) = 1.
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• In the case α = 1, the speed of the ratio process is independent of the population
size and no time change is necessary.

1.5 Heuristics

In order to see why a factorisation of the type considered in this paper will work only in
the case of a stable branching mechanism, we invite our readers to consider a simplified
scenario, where only two ‘types’ are present. Let X and X ′ be two independent CSBP’s
with the same characteristics given by (1.14), and denote by St := Xt +X ′

t, Rt := Xt/St
the total mass resp. the frequency of the first type.

If at some time t the current total mass is St− and a new family of size h > 0 is created
(an event which occurs at rate St−ν(dh)dt), the relative mass of the newborns is y :=
h/(St− + h), so

∆Rt =
{

y(1−R) with probability Rt− and
−yR with probability (1−Rt−) .

Thus, if we want to find a time-change that eliminates the dependence of the relative jump
size y on the current total population size St−, and hence converts the time-changed R

into a Markov process in its own right, the Lévy measure ν must satisfy the factorisation
property

∀ s, y > 0 , sν({h : h/(h+ s) > y}) = sν({h : h > sy/(1− y)}) = g(s)f(y)

for some functions f, g. One convinces oneself easily that this forces ν to have algebraic
tails (see e.g. the proof of Lemma 1 in Section VIII.8 of [17]), and hence X and X ′ to be
stable branching processes. Details can be found in Lemma 3.5.

2 Genealogies and the lookdown construction

The measure-valued process Mt introduced in Section 1.1 allows us to keep track of which
individual, at time zero, is the ancestor of an individual in the population at time t.
However, if we wish to trace the genealogy of the population by sampling individuals at
time t and following the ancestral lines backwards in time, then we need to know who is
the ancestor of a given individual at time t for any time s < t.

To extend Theorem 1.1 to a result about the genealogies of CSBP’s, we first need to give
a precise definition of the genealogies of the CSBP’s that arise in Theorem 1.1. Several
methods for describing the genealogy of CSBP’s have been proposed. Bertoin & Le Gall
[2] defined the genealogy using a flow of subordinators (S(s,t)(a))0≤s≤t,a≥0, where, for fixed
s and t, the process (S(s,t)(a))a≥0 is a subordinator whose law depends only on t− s and
we interpret S(s,t)(a) as being the size of the population at time t descended from the first
a individuals in the population at time s. Alternatively, Le Gall & Le Jan [24] showed, in
the case of a finite first moment, how to describe the genealogy of a CSBP by constructing
a ‘height process’ that determines the continuous analogue of a Galton-Watson tree. See
[12] for further developments in this direction.

We choose to define the genealogy of CSBP’s by using the lookdown construction of Don-
nelly & Kurtz [11]. (In that paper it is actually refered to as the ‘modified’ lookdown
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construction to distinguish it from the construction of the classical Fleming-Viot super-
process introduced by the same authors in [10]. Here we drop the prefix ‘modified’.) We
can use this construction to define the genealogy of both continuous-state branching pro-
cesses and generalised Fleming-Viot processes. This construction allows one to represent
a measure-valued process as the empirical measure of a countable system of particles. We
now describe a special case of the construction which will be sufficient for the results pre-
sented here. We refrain from including a ‘Brownian component’ (corresponding to case
(i) in Thm. 1.1) because that case is well known and cumbersome to incorporate.

Let n =
∑

i δ(ti,yi) be a point configuration on R+ × (0, 1] with the property that
∑
i : ti≤t

y2
i <∞ for all t ≥ 0. (2.1)

We think of each particle being identified by a level j ∈ N. We equip the levels with
types ξjt , j ∈ N in some type space E (and we think of E = [0, 1] to fit into the previous
framework). Initially, we require the types ξj0, j ∈ N to be exchangeable and such that

lim
n→∞

1
n

n∑
j=1

δ
ξj
0
=

µ

µ(E)

for some finite measure µ on E.

In principle, the construction works with any initial distribution of types, not necessarily
exchangeable, but then there will be very little to prove about the object obtained. The
point is that the construction preserves exchangeability.

The jump times ti in our point configuration n will correspond to “birth events”. Let Uij,
i, j ∈ N, be i.i.d. uniform([0, 1]). Define for J ⊂ {1, . . . , l} with |J| ≥ 2,

LlJ (t) :=
∑
i : ti≤t

∏
j∈J

1Uij≤yi

∏
j∈{1,...,l}−J

1Uij>yi .

LlJ (t) counts how many times, among the levels in {1, . . . , l}, exactly those in J were
involved in a birth event up to time t. Note that for any configuration n =

∑
δ(ti,yi)

satisfying (2.1), since |J| ≥ 2, we have

E[LlJ(t)] =
∑
i : ti≤t

y
|J|
i (1− yi)l−|J| ≤

∑
i : ti≤t

y2
i <∞,

so that LlJ(t) is a.s. finite.

Intuitively, at a jump ti, each level tosses a uniform coin, and all the levels j with Uij ≤ yi
participate in this birth event. Each participating level adopts the type of the smallest
level involved. All the other individuals are shifted upwards accordingly, keeping their
original order with respect to their levels (see Figure 1). More formally, if t = ti is a jump
time and j is the smallest level involved, i.e. Uij ≤ yi and Uik > yi for k < j, we put

ξkt = ξkt−, for k ≤ j

ξkt = ξjt−, for k > j with Uik ≤ yi

ξkt = ξ
k−Jk

t
t− otherwise,

9
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Figure 1: Relabelling after a birth event involving levels 2, 3 and 6.

where Jkti = #{m < k : Uim ≤ yi} − 1. The point is that for each t > 0, (ξ1
t , ξ

2
t , . . .) is an

exchangeable random vector, so that

Xt = lim
n→∞

1
n

n∑
j=1

δ
ξ

j
t

(2.2)

exists almost surely by de Finetti’s Theorem.

We now make use of the explicit description of the modified construction to determine the
coalescent process embedded in it. Recall the notation LlK from above. For each t ≥ 0 and
k = 1, 2, . . . , let N t

k(s), 0 ≤ s ≤ t, be the level at time s of the ancestor of the individual
at level k at time t. In terms of the LlK , for 0 ≤ s ≤ t,

N t
k(s) = k −

∑
K⊂{1,...,k}

∫ t

s−
(N t

k(u)−min(K))1{N t
k(u)∈K} dL

k
K(u)

−
∑

K⊂{1,...,k}

∫ t

s−
(|K ∩ {1, . . . , N t

k(u)}| − 1)1{N t
k(u)>min(K),N t

k(u)/∈K} dL
k
K(u).

(2.3)

Fix 0 ≤ T and, for t ≤ T , define a partition RT (t) of N such that k and l are in the same
block of RT (t) if and only if NT

k (T − t) = NT
l (T − t). Thus, k and l are in the same block

if and only if the two levels k and l at time T have the same ancestor at time T − t.

We now use this lookdown construction to embed a genealogy into a CSBP (Zt). We focus
on the case in which σ = 0. As before, let τ be the time of extinction or explosion of Z.
Let (ti)i∈N be an enumeration of {0 ≤ t < τ : ∆Zt > 0}, and put yi := ∆Zti/Zti . Taking
the corresponding n =

∑
δ(ti,yi) in the lookdown construction, we obtain partitions RT (t)

10



which encode the genealogy of Z. The process (Xt)t≥0 of (2.2) is then such that(
ZtXt

)
0≤t<τ is the superprocess with generator (1.15) . (2.4)

The case α ∈ (1, 2] corresponds to Example 3.1.2 of [11] and then Theorem 3.2 (also of
[11]) provides the proof of the claim. For completeness we now check (2.4) for any CSBP
with σ = 0.

Proof of (2.4). First we remark that it suffices to check that

F (ZtXt)− F (Z0X0)−
∫ t

0
LF (ZsXs) ds (2.5)

is a martingale for functions of the type

F (µ) = ψ(|µ|)〈φ, µ|µ|〉
m, m ∈ N, ψ ∈ C2

c (R+), ψ(0) = 0, φ ∈ Bb([0, 1]). (2.6)

For such a function, denoting by GY the generator of the Lévy process that generates the
total mass process via Lamperti’s time change, we have

LF (µ) = |µ|GY ψ(|µ|)× 〈φ, µ|µ|〉
m + |µ|

m∑
j=2

∫
(0,∞)

(
m

j

)( h

|µ|+ h

)j( |µ|
|µ|+ h

)m−j

× ψ(|µ|+ h)
[〈
φj ,

µ

|µ|
〉〈φ, µ|µ|〉m−j − 〈φ, µ|µ|〉

m
]
ν(dh). (2.7)

To see that this is equivalent to the more familiar ‘exponential form’ of the martingale
problem one can check that the respective linear spans of{

(F,LF ) : F (µ) = exp(−〈φ, µ〉), φ ∈ B++
b ([0, 1])

}
and{

(F,LF ) : F (µ) = ψ(|µ|)〈φ, µ|µ| 〉
m, m ∈ N, ψ ∈ C2

c (R+), ψ(0) = 0, φ ∈ Bb([0, 1])
}

have the same bounded-pointwise closure, where B++
b ([0, 1]) = {φ ∈ Bb([0, 1]) : inf φ > 0},

and apply Proposition 3.1, Chapter 4 of [16].

The proof is now straightforward. First we write down the generator Am for the (m+1)-
tuple (Zt; ξ1

t , . . . , ξ
m
t ) corresponding to the CSBP and the first m levels of the lookdown

construction. This can be found in [11]. For the interested reader, in their notation we
are taking Q(t) = Zt, p(q) = q (so P (t) = Q(t)), q1(v) ≡ 0, q2(v, v′) = (v′ − v)2. Still
in their notation this implies U(t) = [P ]t =

∑
s≤t(∆Pt)

2, β(v, v′) = (v′ − v)/v′, and
η(v, dv′) = Cv(v′ − v)−1−αdv′. Let m ∈ N, x = (x1, . . . , xm). For

f(v, x1, . . . , xm) = ψ(v)
M∏
i=1

φ(xi)
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we have

Amf(v, x) =
m∏
i=1

φ(xi)
[
γvψ′(v) + v

∫
(0,∞)

{
ψ(v+ h)− ψ(v)− 1(0,1](h)hψ

′(v)
}
ν(dh)

+
∑

J⊂{1,...,m}

∫
R+

(v′ − v

v′
)|J|(

1− v′ − v

v′
)m−|J|

× ψ(v′)
[
φ(xmin J)|J|

∏
k∈Jc

φ(xk)−
m∏
i=1

φ(xi)
]
η(v, dv′)

=
m∏
i=1

φ(xi)
[
γvψ′(v) + v

∫
(0,∞)

{
ψ(v+ h)− ψ(v)− 1(0,1](h)hψ

′(v)
}
ν(dh)

+
∑

J⊂{1,...,m}

∫
R+

( h

v + h

)|J|(
1− h

v + h

)m−|J|

× ψ(v + h)
[
φ(xmin J)|J|

∏
k∈Jc

φ(xk)−
m∏
i=1

φ(xi)
]
vν(dh)

= vGY ψ(v)×
m∏
i=1

φ(xi) +
∑

J⊂{1,...,m},
|J|≥2

∫
(0,∞)

vν(dh)
( h

v + h

)|J|(
1− h

v + h

)m−|J|

× ψ(v + h)
[
φ(xmin J)|J|

∏
k∈Jc

φ(xk)−
m∏
i=1

φ(xi)
]
.

So for test functions F (q, ρ) := ψ(q)〈φ, ρ〉m the generator A of the pair (Q,X), consisting
of the driving total mass process and the empirical measure process, obtained from the
lookdown construction is

AF (q, ρ) =
〈
Amf(q, ·), ρ⊗m

〉
= qGY ψ(q)× 〈φ, ρ〉m

+
∑

J⊂{1,...,m},
|J|≥2

∫
(0,∞)

qν(dh)
( h

q + h

)|J|(
1− h

q + h

)m−|J|

× ψ(q + h)
[〈
φ|J|, ρ

〉〈φ, ρ〉m−|J| − 〈φ, ρ〉m
]

Now substituting q = |µ|, ρ = µ/|µ|, we see that AF (|µ|, µ/|µ|) = LF (µ) as required.

While the classical duality in Theorem 1.1 is only a statement about distributions, there is
also a pathwise version, given by the lookdown construction, which relates both processes
on the same probability space.

Theorem 2.1. Assume that an α-stable branching superprocess (Mt) has been obtained
as above from an α-stable continuous-state branching process (Zt) and the lookdown con-
struction. Define Tt from Z as in Theorem 1.1. Assume that either 0 < α ≤ 1 and
d ≥ 0 or 1 < α < 2 and m ≤ 0, so that Tτ = ∞ a.s. Fix t > 0, and for 0 ≤ s ≤ t,
let Πs = RT−1(t)(T−1(t) − T−1(t − s)). Then, the P-valued process (Πs)0≤s≤t is a
Beta(2− α, α)-coalescent.
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Remark 2.2. An analogous result holds in the general case. If Tτ <∞ we can augment the
point process

∑
s≤Tτ

∆Z̃s/Z̃s that is used in the lookdown construction with an independent
auxiliary Poisson point process in a similar way to the proof of Lemma 3.7 and thus produce
a Beta(2−α, α)-coalescent that lives for all time. However, the auxiliary part no longer has
anything to do with the genealogy of the given realisation of the measure-valued branching
process.

Remark 2.3. We refer to [32] for another route leading, at least for α ∈ (1, 2], from
α-stable branching to Beta-coalescents, this time via a particle approximation obtained
from a Galton-Watson branching process by holding the population size fixed by randomly
sampling N offspring in each generation to survive.

3 Proofs

Our first step will be to consider the time change in Theorem 1.1 and to prove Proposition
1.2, which gives necessary and sufficient conditions to have Tτ = ∞ a.s. Define the
continuous-state branching process Zt and the time-change Tt as in Theorem 1.1. Let
(Yt)t≥0 be a Lévy process with Laplace exponent −Ψ such that Y0 > 0. We write {Ft :
t ≥ 0} for its canonical filtration. For all a ∈ R, let ζ(a) = inf{t : Yt = a}. Then, as
discussed previously, we may assume that Zt = YU (t), where Ut = inf{s : ∫ s0 Y −1

u du = t},
for t <

∫ ζ(0)
0 Y −1

u du. For t ≥ ∫ ζ(0)
0 Y −1

u du, we have Zt = 0 if ζ(0) < ∞ and Zt = ∞ if
ζ(0) =∞. Recall that τ = τ0 ∧ τ∞, where τ∞ = inf{t : Zt =∞}, τ0 = inf{t : Zt = 0} are
the explosion resp. extinction times of Z. The following lemma shows how we can combine
the two time changes and express the condition that Tτ =∞ in terms of the Lévy process
Y . For this result, and the rest of this section, case (i) of Theorem 1.1 corresponds to
setting α = 2.

Lemma 3.1. We have Tτ =∞ a.s. if and only if
∫ ζ(0)
0 Y −α

t dt =∞ a.s.

Proof. For 0 ≤ t ≤ ζ(0), define K(t) =
∫ t
0 Y

−1
u du and note that ZK(t) = Yt. Therefore,∫ ζ(0)

0
Y −α
t dt =

∫ ζ(0)

0
Y 1−α
t Y −1

t dt =
∫ ζ(0)

0
Z1−α
K(t)Y

−1
t dt.

Note that if τ = τ0 < ∞ then τ0 = K(ζ(0)), and if τ = τ∞ < ∞ then τ∞ = K(ζ(0)).
Also, if τ =∞ then K(ζ(0)) =∞, so we have K(ζ(0)) = τ . Since the function t �→ K(t),
defined on (0, ζ(0)), is almost surely absolutely continuous with derivative K ′(t) = Y −1

t ,
we make the change of variables s = K(t) to obtain∫ ζ(0)

0
Y −α
t dt =

∫ τ

0
Z1−α
s ds. (3.1)

The lemma is now immediate from the definition of Tτ .

Lemma 3.2. Let (Wt)t≥0 be a stable Lévy process having Laplace exponent Φ(u) = sgn(1−
α)cuα, where α ∈ (0, 1)∪ (1, 2] and c > 0. Let r and x be positive real numbers. Then

P (|Wt −W0| ≤ rx for 0 ≤ t ≤ xα) = ηα,r,

where ηα,r is a positive constant which does not depend on x.
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Proof. For t ≥ 0, let W̃t = Wt −W0. From the form of Φ, it straightforward to verify the
scaling property, which says that for any k > 0, the processes (W̃t)t≥0 and (k−1/αW̃kt)t≥0

have the same law. Therefore by taking k = x−α, we get

P (|W̃t| < rx for 0 ≤ t ≤ xα) = P (|W̃t| < r for 0 ≤ t ≤ 1). (3.2)

It remains to show that the probability on the right-hand side of (3.2), which we call ηα,r,
is positive. For 0 < α < 1, M1 = sup0≤s≤1 |Ws| has a stable density which is strictly
positive on (0,∞). For 1 < α < 2, exact asymptotics for ηα,r as r → 0 are given e.g. in
Proposition 3, Chapter VIII of [1].

We now combine Lemma 3.1 with scaling properties of Lévy processes to prove Proposition
1.2. We present the proof in the form of two lemmas.

Lemma 3.3. We have Tτ = ∞ a.s. if either α = 1, 0 < α < 1 and d ≥ 0, or 1 < α ≤ 2
and m ≤ 0.

Proof. First, note that if α = 1, then time is changed only by a constant factor. Therefore,
since Z neither explodes nor goes extinct, we have Tτ =∞ a.s.

We next consider 1 < α ≤ 2 and m ≤ 0. In this case, ζ(b) <∞ and we have Yζ(b) = b for
all b < Y0 a.s. because Y has no negative jumps (see e.g. p. 188 of [1]). For n ∈ N, write
xn = Y02−n and let An be the event that 1

2xn < Yt <
3
2xn for all t ∈ [ζ(xn), ζ(xn) + xαn].

If An occurs, then ζ(xn+1) ≥ ζ(xn) + xαn, and so

∫ ζ(xn+1)

ζ(xn)

Y −α
t dt ≥

∫ ζ(xn)+xα
n

ζ(xn)

Y −α
t dt ≥ xαn[(3/2)xn]

−α = (2/3)α.

Therefore, if infinitely many of the An occur a.s., then
∫ ζ(0)
0 Y −α

t dt = ∞ a.s., which by
Lemma 3.1 implies that Tτ = ∞ a.s. It thus suffices to show that infinitely many of the
An occur a.s. By the strong Markov property, the events An are independent, so by the
Borel-Cantelli Lemma, it suffices to show that

∑∞
n=1 P (An) =∞.

By the strong Markov property, P (An) = P (|Yt − Y0| ≤ xn/2 for all 0 ≤ t ≤ xαn). Define
a process (Wt)t≥0 by Wt = Yt −mt. Then W is a Lévy process with Laplace exponent
−cuα for some c > 0. Let Bn be the event that |Wt −W0| ≤ xn/4 for all 0 ≤ t ≤ xαn,
and note that P (Bn) = ηα,1/4 by Lemma 3.2. If Bn occurs and mxαn ≤ xn/4, then
|Yt − Y0| ≤ xn/2 for all 0 ≤ t ≤ xαn. Note that mxαn ≤ xn/4 if and only if 4m ≤ x1−α

n ,
which is true for sufficiently large n. It follows that P (An) ≥ P (Bn) = ηα,1/4 for sufficiently
large n, which implies that

∑∞
n=1 P (An) =∞.

Next, suppose 0 < α < 1 and d ≥ 0. In this case, the process Y is a stable subordinator
with nonnegative drift added, so Y is nondecreasing and limt→∞ Yt = ∞ a.s. Define a
sequence of stopping times (Sn)∞n=0 by S0 = 0 and Sn = inf{t : Yt ≥ 2YSn−1} for n ≥ 1.
Note that for all n, we have Sn < ∞ a.s. Let An be the event that Sn+1 − Sn ≥ Y α

Sn
. If

An occurs, then ∫ Sn+1

Sn

Y −α
t dt ≥ (Sn+1 − Sn)(2YSn)

−α ≥ 2−α.

Thus, once again it suffices to show that infinitely many of the An occur a.s. Let FSn

be the σ-field generated by the stopped process Y·∧Sn . Note that An ∈ FSn+1 , so by
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the conditional Borel-Cantelli Lemma (see Section 4.3 of [13]), it suffices to show that∑∞
n=1 P (An|FSn) =∞ a.s.

For b > 0, let p(b) = P (Yt − Y0 ≤ b for all 0 ≤ t ≤ bα). By the strong Markov property,
P (An|FSn) = p(YSn). Let Wt = Yt − dt, and let q(b) = P (Wt −W0 ≤ b/2 for all 0 ≤ t ≤
bα). If Wt−W0 ≤ b/2 for all 0 ≤ t ≤ bα and dbα ≤ b/2, then Yt−Y0 ≤ b for all 0 ≤ t ≤ bα.
We have dbα ≤ b/2 if and only if 2d ≤ b1−α, which is true for sufficiently large b. It follows
that p(b) ≥ q(b) for sufficiently large b. Since YSn ≥ 2nY0, we have p(YSn) ≥ q(YSn) for
sufficiently large n. However, q(b) = ηα,1/2 for all b by Lemma 3.2, so

∑∞
n=1 P (An|FSn) =

∞ a.s.

Lemma 3.4. If 1 < α ≤ 2 and m > 0, or if 0 < α < 1 and d < 0, then P (Tτ <∞) > 0.

Proof. First, suppose 1 < α ≤ 2 and m > 0. Now the event {ζ(0) = ∞} has positive
probability, and as then Y grows approximately linearly with inf t Yt > 0, (3.1) will be
finite. Indeed, let Wt = Yt−mt−Y0 for all t ≥ 0, so (Wt)t≥0 is a stable Lévy process with
Laplace exponent Ψ(u) = −cuα for some c > 0. We have lim supt→∞ t−1|Wt| = 0 a.s. (see,
for example, p. 222 of [1]). Therefore, if 0 < a < m, there exists M such that M < ∞
a.s. and Yt = Wt +mt+ Y0 ≥ at for all t ≥ M . Thus, the process Yt drifts to ∞, in the
terminology of p. 167 of [1], and since Y0 > 0, we have P (Yt > Y0/2 for all t ≥ 0) > 0. On
the event that Yt > Y0/2 for all t ≥ 0, we have∫ ∞

0
Y −α
t dt ≤

∫ M

0
(Y0/2)−α dt+

∫ ∞

M
(at)−α dt <∞.

It follows that P (Tτ <∞) > 0.

Next, suppose 0 < α < 1 and d < 0. Now the event {ζ(0) <∞} has positive probability,
and on this event, Yt− 0 will look approximately like const · (ζ(0)− t) for t near ζ(0)−, so
that (3.1) will be finite.

More formally, for all t ≥ 0, let It = inf{Ys : 0 ≤ s ≤ t} be the infimum process, and for
x ≤ Y0, let Sx = inf{t ≥ 0 : It < x}. Since d < 0, the process (Yt)t≥0 is a Lévy process with
no negative jumps that is not a subordinator. Therefore, we can apply Theorem 1 on p. 189
of [1] to −Y to see that the process (SY0−t)t≥0 is a subordinator, killed at an independent
exponential time κ. If κ > Y0 then S0 <∞, which means Yt < 0 for some t and therefore
ζ(0) < ∞. Since κ has an exponential distribution, it follows that P (ζ(0) < ∞) > 0.
Furthermore, we have S0 = ζ(0) almost surely on the event {ζ(0) <∞}.
Using the time-reversal property of subordinators, we see that, conditional on the event
{ζ(0) <∞}, the process (S̃t)0≤t≤Y0 defined by S̃t = ζ(0)−St is a subordinator. It follows
(see Proposition 8 on p. 84 of [1]) that limt↓0 t−1S̃t = β, where β is the drift coefficient for
the subordinator S̃. It follows that for any β′ > β there exists ε > 0 such that S̃t ≤ β′t for
all 0 ≤ t ≤ ε. Therefore, there exists B <∞ such that S̃t ≤ Bt, and so St ≥ ζ(0)−Bt, for
all 0 ≤ t ≤ Y0. Thus, if 0 ≤ t ≤ ζ(0), then S(ζ(0)−t)/B ≥ t. It follows that if 0 ≤ t ≤ ζ(0),
then It ≥ (ζ(0)− t)/B. Hence, on the event {ζ(0) <∞}, we have∫ ζ(0)

0
Y −α
t dt ≤

∫ ζ(0)

0
I−αt dt ≤

∫ ζ(0)

0
[(ζ(0)− t)/B]−α dt = Bα

∫ ζ(0)

0
s−α ds,

which is finite because 0 < α < 1. Thus,
∫ ζ(0)
0 Y −α

t dt < ∞ a.s. on {ζ0 < ∞}, which by
Lemma 3.1 implies that P (Tτ <∞) > 0, as claimed.
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We now show rigorously that the generator L of our measure-valued process (Mt)t≥0 ap-
plied to functions of the form (1.5) factorises precisely under the conditions of Theorem 1.1.

Lemma 3.5. Let ν be a measure on (0,∞) satisfying (1.12), and for z > 0 let λz = φz(ν)
be the image of ν under the mapping given by

φz : h �→ r :=
h

z + h
. (3.3)

There exists a measure λ on R+ and a measurable mapping s : R+ → R+ such that

λz = s(z)λ (3.4)

if and only if, for some α ∈ (0, 2),

ν(dh) = const · h−1−αdh.

In this case, s(z) = const · z−α, and λ(dr) = const · r−2Beta(2− α, α)(dr).

Proof. The “if” direction follows by inspection; hence it suffices to prove the “only if”
direction. For c > 0, write ψc for the mapping h �→ c · h. Evidently, for all z, c,

φz = φcz ◦ ψc (3.5)

Hence, using (3.4) and (3.5),
s(z)λ = φcz(ψc(ν)). (3.6)

On the other hand, again by (3.4),

φcz(ν) = s(cz)λ (3.7)

Inverting (3.7),
ν = s(cz)φ−1

cz (λ), (3.8)

and inverting (3.6) and using (3.8),

ψc(ν) =
s(z)
s(cz)

ν. (3.9)

Choosing z = 1 and putting s̃( 1
c ) = s(1)/s(c), we obtain for the tail probabilities

K(h) := ν([h,∞))

the relation
K
(h
c

)
= ψc(ν)([h,∞)) = s̃

(1
c

)
ν([h,∞)) = s̃

(1
c

)
K(h).

From this it follows readily that K(h) = const ·h−α, where α ∈ (0, 2) by assumption (1.12).
Finally, it is straightforward to check that λ is of the claimed form.

Proof of Theorem 1.1. It suffices to consider functions of the form (1.5). Recall z = |µ|,
ρ = µ/z. A straightforward calculation shows that for functions F of the form (1.5)

(LF )(µ) = z−1σ2 · (FG)(ρ)+ z · (Rν,zG)(ρ), (3.10)
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where (FG)(ρ) is as in (1.7), and

(Rν,zG)(ρ) =
∫ 1

0
ρ(da)

∫
(0,∞)

ν(dh)
(
G

(
µ+ hδa
z + h

)
−G(ρ)

)
. (3.11)

A quick way to see this for the case σ = 0 is to note that for functions F of the form
F (µ) = h( 1

z 〈µ, φ〉) = h(〈ρ, φ〉) with h : R→ R differentiable and φ bounded, we have

F ′(µ; a) = h′
(〈ρ, φ〉)1

z
(φ(a)− 〈ρ, φ〉),

yielding
∫
µ(da)F ′(µ; a) = 0. This shows that (3.11) is indeed equal to (LF )(µ) if the func-

tion f appearing on the right hand side of (1.5) is of the form f(a1, . . . , ap) =
∏p

i=1 φ(ai)
for some, say continuous, φ : [0, 1]→ R. Finally note that any continuous function from
[0, 1]p to R can be uniformly approximated by linear combinations of f ’s of that type.

Defining λz as the image of the measure ν under the mapping (3.3), we can re-write
equation (3.11) as

(Rν,zG)(ρ) =
∫

ρ(da)
∫

(0,1)
λz(dr)(G((1− r)ρ+ rδa)−G(ρ)).

By Lemma 3.5, λz factorises in the desired form if and only if, for some α ∈ (0, 2),

(Rν,zG)(ρ) = const · z−α(RG)(ρ)

where
(RG)(ρ) =

∫
ρ(da)

∫
(0,1)

1
r2

Λ(dr)(G((1− r)ρ+ rδa)−G(ρ)) (3.12)

and
Λ := Beta(2− α, α).

It remains to check that RG given by (3.12) is indeed the generator of a generalised
Fleming-Viot process, i.e. RG is of the form (1.11).

For this purpose, let A1, ..., Ap be i.i.d. with distribution ρ, and let, for r ∈ (0, 1), J ⊆
{1, ..., p} be the random success times of a coin tossing with success probability r and
independent of (A1, ..., Ap). Using the notation introduced in (1.6) it is readily checked
that

∫
(0,1)

ρ(da)(G((1− r)ρ+ rδa)−G(ρ)) = E[f(AJ
1, ..., A

J
p)− f(A1, ..., Ap)]

=
∑

J⊆{1,...,p}
r|J|(1− r)p−|J|

∫
ρ(da1)...ρ(dap)(f(aJ1 , ...a

J
p)− f(a1, ..., ap)).

Noting that the subsets J with |J| ∈ {0, 1} do not contribute to the sum, we obtain

(RG)(ρ) =
∫

(0,1)
Λ(dr)

1
r2

∑
J⊆{1,...,p},|J|≥2

r|J|(1− r)p−|J|

∫
ρ(da1)...ρ(dap)(f(aJ1 , ..., a

J
p)− f(a1, ..., ap)) (3.13)

=
∑

J⊆{1,...,p},|J|≥2

βΛ
p,|J|

∫
ρ(da1)...ρ(dap)(f(aJ1 , ...a

J
p)− f(a1, ..., ap)),
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where βΛ
p,j is defined in (1.10).

Thus, R is precisely of the form appearing in [3] p. 280, and the second summand on the
right hand side of (3.10) is const · z1−α(RG)(ρ).

It remains to prove Theorem 2.1. We achieve this by two lemmas. The first says that both
the Λ-Fleming-Viot process and the Λ-coalescent can be obtained through a realisation-
wise lookdown construction from a time-homogeneous Poisson point process on [0,∞)×
(0, 1]. The second explains how the required time-homogeneous Poisson point process can
be recovered from an α-stable CSBP.

Lemma 3.6. Let Λ be a finite measure on (0, 1] and let N =
∑

i δ(ti,yi) be a Poisson
point process on [0,∞)×(0, 1] with intensity measure dt⊗y−2Λ(dy). Note that (2.1) holds
almost surely, so we can define the measures Xt and the partitions RT (t) via the lookdown
construction in Section 2.

(i) The process (Xt)t≥0 is the Λ-Fleming-Viot process.

(ii) For fixed T > 0, the process (RT (t))0≤t≤T is a Λ-coalescent run for time T .

Proof. Part (i) is a direct consequence of Section 4 of [11]. In their notation, we choose

Q(t) :=
∑
i:ti≤t

y2
i , P (t) ≡ 1, U(t) = Q(t), t ≥ 0,

p(v) ≡ 1, q1(v) ≡ 0, q2(v, v′) = v′ − v. The process Q is Markov. In fact it is a driftless
subordinator with Lévy measure given by

K(B) =
∫

[0,1]
1B(r2)

1
r2

Λ(dr). (3.14)

The transition kernel η(v, dv′) of Q is given by K(v+dv′). We let the type space E = [0, 1]
and the motion operator B be the 0-operator. Consider, for m ∈ N, test functions of the
type

f(v′, x1, . . . , xm) = ψ(v′)
m∏
i=1

φ(xi).

Then, using x = (x1, . . . , xm) the (m+ 1)-tuple consisting of the process Q and the first
m levels of the lookdown construction has generator (equation (4.2) in [11])

Amf(v, x) = Gf(v, x) +
∑

J⊂{1,...,m}

∫
R+

(
√
v′ − v)|J|(1−√v′ − v)m−|J|

× (f(v′, θJ(x))− f(v′, x)
)
η(v, dv′)

= Gf(v, x) +
∑

J⊂{1,...,m}

∫
[0,1]

y|J|(1− y)m−|J|

× (f(v + y2, xJ)− f(v + y2, x)
) 1
y2

Λ(dy), (3.15)
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where G is the generator of Q and xJ is as defined in (1.6). Note that the martingale
problem for Am is well-posed due to the boundedness of∫

R+

(
√
v′ − v)2 η(v, dv′) =

∫
[0,1]

y2 1
y2

Λ(dy) = Λ([0, 1])<∞.

Let Xt be the empirical process obtained from the lookdown construction by

Xt = lim
k→∞

1
k

∑
k

ξkt .

By [11], Theorem 4.1, we have that for the pair (Qt, Xt) and f as above,

〈f(Qt, ·), Xm
t 〉 −

∫ t

0

〈Amf(Qs, ·), Xm
s 〉 ds (3.16)

is a martingale with respect to the canonical filtration of (Q,X).

Note that for f as above with ψ ≡ 1, we have

〈Amf(Qt, ·), Xm
t 〉

=
∫∫

Em

∑
J⊂{1,...,m}

∫
[0,1]

y|J|(1− y)m−|J|

×
[
φ(xminJ )j

∏
k∈Jc

φ(xk)−
m∏
i=1

φ(xi)
]
1
y2

Λ(dy)Xm
t (dx1, . . . , dxm). (3.17)

Observe that only terms involving J with |J| ≥ 2 contribute to the above integral, so that
we can rewrite, by slight abuse of notation abbreviating f(Qt, ·) = f(·),

〈Amf(·), Xm
t 〉

=
∑

J:|J|≥2

βΛ
m,|J|

∫∫
Em

[
f(xJ)− f(x)

]
Xm
t (dx1, . . . , dxm), (3.18)

where xJ is defined as in (1.6). This is the generator in the martingale problem for the
generalised Fleming-Viot process stated in Bertoin & Le Gall [3], which is well-posed (by
duality with the Λ-coalescent).

Part (ii) is immediate from the construction.

The final lemma of this section identifies the distribution of the process of relative jump
sizes of our time-changed CSBP and thus, combined with Lemma 3.6, completes the proof
of Theorem 2.1.

Lemma 3.7. Assume that either 0 < α ≤ 1 and d ≥ 0 or 1 < α < 2 and m ≤ 0. Then,
writing Z̃t := ZT−1(t), ∑

t : ∆Z̃t>0

δ(t,∆Z̃t/Z̃t)

is a Poisson point process on [0,∞)× (0, 1) with intensity measure dt⊗ y−2Λ(dy), and Λ
is the Beta(2− α, α) distribution.
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In the complementary case, there exists a Poisson point process N̄ =
∑

i δ(ti,yi) with the
same intensity measure and a random time η such that

 ∑
i : ti≤η

δ(ti,yi) , η


 d=


 ∑
t≤Tτ :∆Z̃t>0

δ(t,∆Z̃t/Z̃t)
, Tτ


 .

Proof. As in the preamble to this section, Z can be expressed as a time change of a Lévy
process Y . Evidently, Z̃ is also a time change of Y . Indeed, writing Bt =

∫ t
0 Y

−α
s ds for

t < ζ(0) and Bt = Bζ(0)− for t ≥ ζ(0), we have that Z̃t = YB−1(t) with the stopping times
B−1(s) := inf{t ≥ 0 : Bt > s}. Observe that under the given conditions, from Lemma 3.1
we have Bζ(0)− = ∞, so that B−1(s) is defined for all s. In this case it therefore suffices
to check that the random measure∑

t : ∆YB−1(t)>0

δ(t,∆YB−1(t)/YB−1(t))

is a Poisson point process on R+×(0, 1) with intensity measure dt⊗r−2Beta(2−α, α)(dr).
To this end, let Ut :=

∑
s≤t∧ζ(0)(∆Ys/Ys)

2, Ũs := UB−1(s). It is enough to show that Ũ is a
subordinator (without drift) with Lévy measure given by (3.14) with Λ = Beta(2− α, α),
so that the square roots of its jumps form the required Poisson point process. Fix a
continuously differentiable function f with compact support and let

H(s,∆Ys) := 1(ζ(0) > s)
(
f(Us− + (∆Ys/(∆Ys + Ys−))2)− f(Us−)

)
,

so f(Ut) = f(U0) +
∑

s≤tH(s,∆Ys). Put

Mf
t := f(Ut)−

∫ t

0

∫
(0,∞)

(
f(Us(−) + (h/(h+ Ys(−)))

2)− f(Us(−))
)
h−1−αdhds

= f(Ut)−
∫ t

0

∫
(0,1)

(
f(Us(−) + u2)− f(Us(−))

) 1
u2
u1−α(1− u)α−1du Y −α

s(−)
ds

(we have substituted u = h/(Ys(−) + h) in the second line). We now show that Mf
t is a

uniformly integrable (Ft)-martingale. Let K be such that f(u) = 0 for u ≥ K, and let Lf
denote the Lipschitz constant of f .

E

[ ∫ t

0

∫
(0,∞)

|H(s, y)|ν(dy)ds
]
≤ LfE

[ ∫ t∧ζ(0)

0

∫
(0,∞)

1(Us ≤ K)
(
h/(h+ Ys)

)2
h−1−αdh ds

]

= Lf
Γ(2− α)Γ(α)

Γ(2)
E

[ ∫ t∧ζ(0)

0
1(Us ≤ K)Y −α

s ds

]
. (3.19)

Let us assume for the moment that

E

[ ∫ ζ(0)

0
1(Us ≤ K)Y −α

s ds

]
<∞ for all K > 0. (3.20)

Given this, (3.19) together with standard results on Poisson point processes (see e.g. [29],
Cor. XII.1.11) implies that Mf is a martingale w.r.t. (Ft). Note that for t > 0

|Mf
t | ≤ ||f ||∞ + Lf

Γ(2− α)Γ(α)
Γ(2)

∫ ζ(0)

0
1(Us ≤ K)Y −α

s ds,
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and that the right hand side has finite expectation by (3.20), so that (Mf
t )t≥0 is uniformly

integrable.

Using Y −α
s(−)

ds = dBs, uniform integrability and the Optional Stopping Theorem applied
to the stopping times B−1(s), we see that

f(Ũs)−
∫ s

0

∫
(0,1)

(
f(Ũs(−) + u2)− f(Ũs(−))

) 1
u2
u1−α(1− u)α−1duds

is a martingale with respect to the new filtration {F̃s := FB−1(s)}. The corresponding
well-posed martingale problem is solved by the subordinator with Lévy measure K defined
in (3.14) with Λ = Beta(2− α, α), see Thm. 3.4 in Chapter 8 of [16].

In the complementary case, when Bζ(0)− <∞, provided we can check (3.20), we can apply
Lemma 5.16, Chapter 4 of [16] to find a version of Ũ that lives for all time.

It remains to check (3.20). The proof is reminiscent of that of Lemma 3.3. Here is a sketch
(in the strictly stable case):
Let τ(a,b)c := inf{t > 0 : Yt �∈ (a, b)}. Note that by scaling we have for all x > 0

Ex

[ ∫ τ
(1
2 x, 32 x)c

0
Y −α
s ds

]
= E1

[ ∫ τ
( 1
2 , 32 )c

0
Y −α
s ds

]
≤ 2αE1

[
τ( 1

2
, 3
2
)c

]
<∞,

q := Px

(∃ s ≤ τ( 1
2
x, 3

2
x)c : ∆Ys > 1

4x
)
= P1

(∃ s ≤ τ( 1
2
, 3
2
)c : ∆Ys > 1

4

)
> 0.

Define a sequence of stopping times via T0 := 0, Tn := inf{t > Tn−1 : Yt �∈
( 1
2YTn−1,

3
2YTn−1)}. Put An := {∃s ∈ (Tn−1, Tn) : ∆Ys ≥ 1

4YTn−1}. Note that Tn ↗ ζ(0),
and that the sequence 1A1, 1A2, . . . is i.i.d. by the strong Markov property. Furthermore
An ⊂ {UTn − UTn−1 ≥ 1/36}. Thus

∫ T∧ζ(0)

0
1(Us ≤ K)Y −α

s ds =
∞∑
n=1

∫ Tn

Tn−1

1(Us ≤ K)Y −α
s ds

≤
∞∑
n=1

1
(∑n−1

j=1 1Aj ≤ !36K"
)∫ Tn

Tn−1

Y −α
s ds,

and the expectation of the right hand side is (in an obvious notation)

E1

[ ∫ τ
( 1
2 ,32 )c

0
Y −α
s ds

]
×

∞∑
n=1

Binn−1,q({0, 1, . . . , !36K"}) <∞.
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