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Abstract

GARCH models are widely used in financial econometrics. However, we
show by mean of a simple simulation example that the GARCH approach
may lead to a serious model misspecification if the assumption of stationarity
is violated. In particular, the well known integrated GARCH effect can be
explained by nonstationarity of the time series.

We then introduce a more general class of GARCH models with time
varying coefficients and present an adaptive procedure which can estimate
the GARCH coefficients as a function of time. We also discuss a simpler
semiparametric model in which the B-parameter is fixed.

Finally we compare the performance of the parametric, time varying non-
parametric and semiparametric GARCH(1,1) models and the locally constant
model from Polzehl and Spokoiny (2002) by means of simulated and real data
sets using different forecasting criteria. Our results indicate that the simple
locally constant model outperforms the other models in almost all cases. The
GARCH(1,1) model also demonstrates a relatively good forecasting perfor-
mance as far as the short term forecasting horizon is considered. However, its
application to long term forecasting seems questionable because of possible
misspecification of the model parameters.

1 Introduction

Autoregressive conditionally heteroscedastic (ARCH) and generalized autoregressive
conditionally heteroscedastic (GARCH) models gained a lot of attention and are
widely used in financial engineering since they were introduced by Engle (1982) and
Bollerslev (1986). The simple GARCH(1,1) model is particularly popular. It models
the observed log-returns R; of the asset price process by the following two equations:

R, = o€,

2 2 2
o = w+aR; |+ fo;_,.

Here w, a, 3 are coefficients and o7 is the time varying volatility that is usually the
target of analysis. The innovations €; are assumed zero mean and variance one con-
ditioned on the o-field F;_; generated by the past observations. The GARCH(1,1)
suggests a very natural and tractable model with only three parameters to be es-
timated. Moreover, this model allows to mimic many important stylized facts of
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financial time series like volatility clustering (alternating periods of small and large
volatility) and persistent autocorrelation (slow decay of the autocovariance function
of the absolute or squared returns). We cite from Engle (1995): “The GARCH(1,1)
is the leading generic model for almost all asset classes of returns. ...it is quite
robust and does most of the work in almost all cases.”.

A simple parametric structure allows to directly apply the well developed parametric
statistical methodology for estimation of the parameters and calibration of the model
for real life applications and for studying the asymptotic properties of the estimates.
The GARCH models are successfully applied to short term ahead forecasting of the
volatility and particularly to Value-at-Risk problems, see McNeil and Frey (2000),
Eberlein and Prause (2002).

However, a thorough analysis of the results delivered by the GARCH modeling raises
some questions and indicates some problems.

For estimating the GARCH coefficients one usually applies a quasi likelihood ap-
proach. This means that the innovations €; are assumed i.i.d. standard normal and
then the coeflicients are obtained by maximizing the corresponding log-likelihood
function. The resulting estimate is root-n consistent and asymptotically normal,
see e.g., Berkes, Horvath and Kokoszka (2003) or Straumann and Mikosch (2003).
However, for practical applications, the convergence is quite slow and one needs
about 500 to 1000 data points to get a reasonable quality of estimation, especially
for the coefficient 3, see Mikosch and Staricd (2002, 2004). Giraitis and Robinson
(2001) and Mikosch and Starica (2004) discussed an alternative approach based on
the Whittle estimator, for GARCH parameters, while Peng and Yao (2003) consid-
ered the LAD approach. However its performance is similar. Particularly, for 250
observations (corresponds to one year for daily data) the variability in the estimated
(B-parameter is quite high.

We also face a small identifiability problem. If a = 0, then the parameters w and
(B are not identifiable. Some additional boundary conditions on the process o; are
necessary in this case. However, under the usual ergodicity condition, memory of
boundary values is lost with the exponential speed. This yields some numerical
problems for estimation of the parameters in the cases when « is near zero.

One more critical point is that GARCH modeling hardly extends to multiple time
series, because of the overparametrization problem, see e.g. the BEKK model in
Baba et al (1990) or Engle and Sheppard (2004).

However, it appears that the most crucial problem in the whole GARCH approach
is that the GARCH models are not robust w.r.t. violation from the stationarity
assumption. We illustrate this problem by a numerical experiment for an artificial
change point model, see Figure 1. The observed data R; for t = 1,...,2000 follow
for ¢ < t., = 1000 one GARCH(1,1) model with parameters w; = 0.25, a; = 0.2
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Figure 1: The true parameters (red) and the pointwise quantiles of the MLE’s
Wy, Oy, By obtained from the last 500 historical observations R, for s < t.

and B, = 0.1 and after ¢ = t., only the parameter w jumps to wy = 1. We ap-
ply a scrolling window estimation procedure, that is, for every point ¢ we estimate
the parameters of the GARCH(1,1) model from the last 500 historical data R for
s € [t—500,¢—1]. Therefore, for t < t., we observe the performance of the GARCH
estimator when the data generating process is indeed parametric GARCH(1,1). The
resulting estimator is rather variable, however, it basically mimics the true model.
Fort € [t +1,t.+500], the GARCH parameters are estimated from the subsample
Ry 499, ..., R; which contains a jump in the w-parameter at ¢.,. We observe for such
t that, even if most observations are from one model and only few of them come from
the other model, the estimates are completely misspecified and in particular, the pa-
rameter § jumps to a value close to 1. Mikosch and Staricd (2004) and Starica (2004)
provide an explanation of this behavior: a GARCH(1,1) model, especially with a
large value of the sum a + g, is effectively very close to an exponential smoothing
filter with memory parameter 3. In other words, if the stationarity assumption
is violated, GARCH modeling is essentially reduced to exponential smoothing of
the latest observed squared returns. Mikosch and Starica (2000, 2004) also argued
that the other stylized facts of the financial time series like long range dependence,
persistent autocorrelation and integration GARCH effect can be well explained by
nonstationarity in the observed data.

In this paper we make an attempt to overcome this problem by considering the
so called varying coefficients GARCH models. This means that the coefficients
w,a, # may vary with time and allows to model structural changes and external
shocks in the considered time series. Varying coefficient models have been applied
to model some financial time series in Fan, Jiang, Zhang and Zhou (2003) under the
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assumptions that the model parameters smoothly vary with time. We apply a more
general approach that allows to include the case when the parameters spontaneously
change. The estimation problem for such models is much more complicated than in
the parametric case because we have to estimate three parameters which are possibly
discontinuous functions of time. We also have to account that, even in a parametric
case, a careful estimation of the GARCH-parameters from a small or moderate
sample size is a hard task. To reduce the complexity of the model, apart from the
fully nonparametric model in which all three parameters are functions of time we
consider a semiparametric model in which the parameter (3 is kept fixed and the two
other parameters may vary with time. Additionally we consider the local constant
volatility model where the coefficients @ and 3 are zero and only the coefficient w is
a function of time. The latter model was considered in Polzehl and Spokoiny (2002)
and Mercurio and Spokoiny (2004a, 2004b), see also Staricdand Granger (2004).
Finally we compare these three models with the classical parametric GARCH(1,1)
model.

For a comparison we use a number of simulated examples and look at different
criteria like the prediction error, excess probability in Value-at-Risk (VaR) forecast
and mean predictive VaR values.

We also apply the considered methods to real data including the DAX time series
and the USD/GBP exchange rate series. For a comparison we look at the empirical
counterparts of the criteria used in the simulations.

The results indicate that for both simulated and real data examples, the simple
local constant model outperforms the other models including the more complicated
non- and semiparametric models and delivers, in all cases, very reasonable results.
At the same time, we observe that the fully nonparametric model has problems in
identifying all the parameters as functions of time. A less variable semiparametric
modeling delivers more stable results which also help to judge about statistical
significance of the integrated GARCH effect.

The paper is organized as follows. Section 2 discusses the parameter estimation
problem for the GARCH(1,1) model and indicates the related problems. Section 3
presents a varying coefficient GARCH model. The estimation problem for this model
is discussed in Section 4. A modified procedure for the semiparametric GARCH
model is briefly discussed in Section 4.4. Section 4.5 explains how the results of
estimation can be used for out-of-sample forecasting of the volatility. Sections 5 and
6 illustrate the numerical performance of the methods by means of some simulated
examples and applications to real data.



2 GARCH modeling and parameter estimation

Let the observed returns R; obey the conditional heteroskedastic equation
R, = o4&y t>tg,

where ¢; are “innovations” and o; is the volatility process. It is usually assumed
that o; is measurable w.r.t. the o-field F; ; generated by the past observations R,
for s < t and that the conditional distribution of the innovations given F; ; fulfills
E (e¢|Fi—1) =0 and E (2| F;_1) = 1.

The GARCH(1,1) model specifies the volatility process o2 by the equation
02 =w+aR? |+ Bol ;.

We denote X, = 052 and Y, = Rf so that the process X; obeys the linear autoregres-
sive equation

Xi=w+aY, 1 +06X,1. (1)
Usually all the coefficients are assumed nonnegative, that is, « > 0, w > 0, 8 > 0.

The condition o + 8 < 1 ensures ergodicity of the process Y.

We denote by @ = (w, a, 3)" the vector of parameters. Note that equation (1) does
not uniquely determine the process { X;}. Apart the vector 8, one has to specify the
boundary (initial) value n = X;, for some point t,. However, the dependence on this
parameter in the ergodic case is rather small, and we simply set X, = Y;, = R;. We
therefore use the notation X, = X,(0) to indicate the dependence of the volatility
process on 6.

The structural linear equation can now be written as
X,(0) =9,(0)0 =w+ aY, 1+ X, 1(0), (2)

with U, () = (1,Y;_1,XS_1(0)). Using this linear equation we can recursively
compute the values X,(0), s > t¢, starting from the initial value X;, = n.

Similarly we obtain the derivatives V.X,(0) = dX,(0)/d6 and V2X,(0) = d*>X,(0)/d6*.
Namely it holds

VX,(0) = U](0)+AVX, (0), (3)

with the initial condition V.X;(0) = 0 for t = t;. A similar recurrent formula applies
for the matrix of second derivatives:

V2X,(0) = VU,(0)+VV,(0)+BVX, 1(0), (4)
where VU,(0) = (0,0,VX, 1(0)) and V2X,(0) = 0 for s < t,.
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For estimating the parameter 0, one usually applies the quasi maximum likelihood
approach assuming independent standard normal innovations {es}s>s,. The log-
likelihood for model (1) up to a constant term can be represented in the form

1
s>to
where £(r,0?) = —(logo? + r?/0?)/2. We define the (quasi) maximum likelihood
estimate (MLE) 6 of the parameter @ by maximizing L(8):
6 = argsup L(0) = argsup Y _ £(R,, X,(6))). (5)
0 0

s>to
The MLE 6 fulfills the estimating equation dL(6)/d6 = 0 leading to
> (¥~ X.(0)1X.(8) VX, () = 0. (6)

s>1g

For solving this equation, one can apply an iterative Newton-Raphson procedure.
Let some initial value 80 be fixed and let 8%~V be the estimated parameter
vector after step K — 1 for £ > 1. One can compute the latent volatility pro-
cess XM = X,(0%7Y) by (2) and the derivatives vx¥ = dX,(0*1)/do and
v2x® = @2x,(6% 1) /d6? by (3) and (4) and define the update 8% as 6®) =
6% 1 (B*)=15*) with

S® = 3 |x®| (Us - Xg’”)vxs(’“),

s>1g
B® = S |x®|Pvx® (vx®)'
s>to
-2 2 T
+ ;\Xﬁ’“)\ (Us —X§’“>) (vagw (vx®)" - V2X§’“>> L
s>to s

The update 8% can be interpreted as gradient decent in direction of the estimated
gradient of the log-likelihood. It is recommended to check that the this update
really improves the likelihood, that is, L(O(k)) < L(O(k’l)). If this inequality does
not hold, the step in the gradient direction should be taken smaller, ok = g1 4
p(B¥)~15() for some p < 1, e.g. p=1/2 and checked again.

The constrains @ > 0, w > 0, 8 > 0 and a+ 8 < 1 can be naturally incorporated in
the Newton-Raphson procedure using a barrier function. We omit the details.

3 Varying coefficient GARCH

Having the problems mentioned in the introduction in mind, we aim to extend the
GARCH approach by including a possibility for structural changes. This can be done
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using the notion of a varying coefficient model. Namely, we assume that the GARCH
parameters may depend on time t. We denote them as 9¥; = (w;, s, 5;)". Two
special cases are usually considered in the literature. For change point models, the
parameters change spontaneously at some time points and remain constant between
them, see e.g. Chu (1995) and Mikosch and Staricd (2002). Smooth transition
models assume that the parameters vary slowly and smoothly in time, cf. Fan,
Jiang, Zhang and Zhou (2003). We do not assume any special dependence of the
GARCH-parameters on time, in particular, our modeling approach applies to both
change point and smooth transition models. Moreover, our approach applies even
ifd; is a predictable random process. The varying coefficient GARCH(1,1) reads as
follows:

Ry ~ ¢(-, Xy), X, =wi+ R+ B Xy = 0,0, (8)

where ¥; = (1, R? |, X; ;) and ¥, is now the vector composed by the elements w;, o
and f;. Each of them may vary with time ¢.

The target of the analysis is the parameter process © = (9¥)i>4,. This process
uniquely defines the process X = X(©) due to (8), and hence, the distribution
of the process (R:)i>t,. Similarly to the parametric case, we define the (quasi)
maximum likelihood estimate of the process ® by maximizing the corresponding
log-likelihood expression

L(©) =Y U(R,, X,(O)). (9)
s>t

The maximization is done over the class of all “admissible” processes ©. Two ex-
amples of such classes have been already mentioned: change point models assume
that the process © is piecewise constant while smooth transition models are effec-
tively based on the smoothness assumption of this process. Our approach is more
general and it includes these two examples as special cases. The only assumption
we make about the process O is local time homogeneity. This means that for every
time point ¢ the parameter vector 9, is nearly constant within some neighborhood
of the point ¢. To state this assumption in a more formal way, we need to explain
how a local neighborhood of a point ¢ can be described. Similarly to Polzehl and
Spokoiny (2000, 2002, 2003) we apply localization by weights. Let, for a fixed ¢, a
nonnegative weight w, , € [0, 1] be assigned to the observation Y. The collection of
weights Wy = (wys)s>1, describes a local model corresponding to the point .

We mention two examples of choosing the weights w, ;. Localization by a bandwidth
is defined by weights of the form w;s = Kijoc(lis) with 1 s = |(t — s)/h|* where h
is a bandwidth and K., is a location kernel. This method is applied e.g. in Fan,
Jiang, Zhang and Zhou (2003). Localization by a window simply means that the
parametric structure is assumed to hold within some subset (window) U, containing
t. In this case the weights are defined as w; s = 1(s € U;). This approach suits well
to change point models where the parameter 19 is a piecewise constant function of ¢.
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Following to the adaptive weights idea from Polzehl and Spokoiny (2000), we do not
assume any special structure for the weights w,,. The weights will be computed
from the data in a data driven way.

We apply a local perturbation approach to maximize the log likelihood L(©) from
(9). This means that we change the process © locally near every point ¢ and obtain
the local estimation equation by maximizing L(®) for such local perturbations.
Before we discuss this method in detail, it is important to note that, even if the
parameter process © is changed only locally around some point ¢, the corresponding
process X,(©) changes for all s > ¢. This requires to consider the global log-
likelihood even if the parameters are only locally perturbed.

Suppose that a process ©° = (¥9;) is fixed. This process can be viewed as starting
value or preliminary estimate of the true process ® = (9;). Let now W; be a
collection of weights (wys)s>t, describing a local model at a point ¢. We define for
every value 0 a locally perturbed process © = (9,) as

‘195 = wt’se + (1 — wt’s)'ﬂz, VS Z t(].

The corresponding latent process denoted by X;,(0) = X;,(W;,0;0°), s > t,
fulfills the equation

Xt’s(O) = \Pt,s(e) (wmo + (1 — wt’s)'ﬂ;)
= (Wew + (1 — wis)wy) + (Wi + (1 — wis)a]) Yo
+ (wy,e B+ (1 — wys) 85) Xip,6-1(9) (10)
where U, (0) = (1, Y51, X¢5-1(0)).
The updated value 9, of the process © at ¢ is defined by maximizing the (quasi)

likelihood expression corresponding to the process X; ;(0):

9, = argsup L(W,, 0, 0°) = argsup ZE(}Q,Xt’S(O)) . (11)
0

s>1g

As in the parametric case, the corresponding estimate 5t solves the equation

D VX1.(0) (Y — X,4(6))]X,,4(6)7> = 0.

s>tg

A numerical solution of this equation can be obtained by the Newton-Raphson
procedure as described in Section 2. The definition of the process X;,(0) in (10)
leads to the following expression for the derivatives VX, ,(0):

VX;:(0) = wt,sm;(e) + (ws,s0 + (1 — wy 4)9,) VU, ,(0)
- wt,Sm;l:s(e) + (wt,SIB + (1 - wt,s)ﬁ.:) VXt,sfl(o)a (12)
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with the starting conditions VX; ,(0) = 0 for s < t,. A similar recurrence formula
applies for the matrix of second derivatives:

V2X,.5(0) = wy s VU(0) + w, V0, (0) + (wis8+ (1 — wis) ;) VEXys-1(6). (13)

We can proceed exactly as in the parametric case described in Section 2.

The AWS procedure presented in the next section combines this method of estimat-
ing the process © with an approach for defining the weights w,.

4 Adaptive weights smoothing

This section presents an estimation method for a varying coefficient GARCH given
by (8). The underlying idea is to maximize the log likelihood L(®) from (9) in an
iterative way. At every step we first describe in a data driven way a neighborhood
of every point ¢ in which the varying coefficient model (8) can be well approximated
by a model with constant parameter values. We then apply the local perturbation
approach to update the estimate of the process ® as described in the previous
section.

More precisely, we start defining at every point ¢ a local model Wt(o) using the
classical kernel weights with a very small bandwidth A(®). We then successively
repeat two basis steps: for all ¢ > t;, we estimate the parameter 19; for the local

model Wt(k) = (wt(,ks))szto, and then, again for all £ > t,, we generate new larger local
~(k
models Wt(kH) using the obtained estimates 19§ ), k=0,1,2....

4.1 Defining weights

The method for assigning weights wt(,ks) which define the local model Wt(k) is the

central point of the AWS procedure. As suggested in Polzehl and Spokoiny (2002,
(k)

t,s

2003), for every pair (t,s), the weight w,, is defined using two different values: a

location penalty lﬁf? and a statistical penalty si’ks).

The location penalty lﬁf;’ = (|t — s|/h™))? is deterministic and depends only on the
distance between ¢ and s and on the bandwidth A*) applied at step k. At the
beginning of the iteration process, the bandwidth A is taken very small leading to
a strong localization. During iteration the bandwidth h*) grows which relaxes the
location penalty and allows to increase every local model. However, this ir}c)rease is
*) which

t,s
measures the difference in the parameter values for the local models Wt(k_l) and

Wk, Following Polzehl and Spokoiny (2002, 2003), this penalty can be defined

done in an adaptive (data-driven) way by use of the statistical penalty s
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by the expressions
st = Ti)/A
T;f(,l.:) = L(Wt(k_l)J at . ,@(k—l)) - L(Wt(k_1)7 5.(51671)
(k—1)

8

60-1)

where ©*%=1) = (9, ) is the estimate of the process © = (¥9,) obtained at the

step k — 1. The value Tt(’;) can be interpreted as the test statistic for testing the
~(k-1) ~
two sample hypothesis 9¥; = 9J,: indeed, L(Wt(k), 195 ), 6(’“_1)) is the maximum of

the log-likelihood L(Wt(k), 6, 0¢-1)) for the local model W Y over all possible 6
and Tt(’;) is defined as the discrepancy between this maximum and the particular

value L(Wt(k): 0, @(k_l)) with 0 = 5?71) coming from another local model WY,
The value A can be treated as a critical value for this test. If the statistical penalty
(k) -

s;;’ is large, then one can say that there is an empirical evidence that the GARCH

parameters ¥ are different at points s and t.
To reduce the computational effort of the procedure, one may also use the quadratic
approximation of the log-likelihood:

(k=1)  (

~ ~(k=1)  ~(k—1)\T —1) k-1)
) BEV@) -8, ) 2, (14)

Tt(,,.:) = (ﬂt - 195

where Bt(k_l) is defined similarly to (7) using the weights wt(k; Y,

Suppose that for the pair (¢,s), the penalties liks) and sg’s) have been computed.

Polzehl and Spokoiny (2002) suggested to define the new weight wt(f;) such that the
value wt(’ks) is small if any of the penalties is large and that the different penalties act

independently. This leads to a definition in form of a product:

wg ) = Kloc (l( ))KSt (Sgi.)),

S

where K, and K are two kernel functions on the positive semiaxis.

The choice of the initial estimates 1950) is important. At the beginning we set the

parameter B\ to zero which reduces the GARCH(1,1)-model to ARCH(1). In such
a case, the structural equation (8) reads X; = w; + a;R? | and the value X; is

independent of the values ws, s for s # t. Therefore, one can define the starting

values v\ = (wt(o), o, ) by optimization of the local log-likelihood

L(Wt( ZE R,,w+ aR}_)w, © (15)

s>1g

w.r.t. ¥ = (w, @) where wgs) Kioc(|s — t]2/h3).

4.2 The procedure

We now present a formal description of the method. Important ingredients of the
procedure are:
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- the kernels K. and Kg;
- the parameter A;
- the initial bandwidth (Y, a factor @ > 1 and the maximal bandwidth Apmax.

The choice of the parameters is discussed in Section 4.3. The procedure reads as
follows:

1. Initialization: For every ¢t > t(], define the local model W ) with weights wt( ) =

Kl(lg’s)) where lts = (|t — s|/nC ) for all 5. Next, set 3" = 0 and (wt ) &l )) =
L(Wt( ),'y), see (15). Set k = 1.

T

argmax

v=(w,)

2. Iteration: for every t = {,...,

e Calculate the adaptive weights: For every point s > ¢, compute the
penalties

2
(16)

sﬁ,'? = ! {L(Wt(k_l),aikil), k1)) — L(Wt(k—l),ﬁikfl)j @(k—l))} ‘

where L(W, 6;0) is given by (9) and (10). Define

S

wi) = Koo (1) Ko (s)

and Wt(k) = (wt(,ks))szto'

~(k
e Estimate the parameter 9;: Define the local MLE 19§ :

55 - = argsup L(W ,0,00%1). (17)
6co

3. Stopping: Increase k by 1, set h®) = qgh®* V. If A*) < h .. continue with
step 2. Otherwise terminate.

We denote the total number of iterations by £*. The final estimates are obtained
~ ~(k*

as 9, — 19( ).

parameter o7 for the varying coefficient model (8).

The value Xt(li*) can be naturally viewed as the estimate of the

4.3 Choice of parameters

The parameters of the procedure are selected similarly to Polzehl and Spokoiny
(2002). We briefly discuss each of the parameters.

Kernels Kgand Kj,.: The kernels K and Kjo. must fulfill K (0) = Kj,(0) = 1,
with K decreasing and Kj,. non-increasing on the positive semiaxis. We recom-
mend to take K (z) = e *Ij,<¢}. We also recommend to apply a compactly sup-
ported localization kernel Kj,. to reduce the computational effort of the method.
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Similarly to Polzehl and Spokoiny (2002) we apply the triangle kernel Kj,.(z) =
(1= 2)4.

Initial bandwidth A("), parameter ¢ and maximal bandwidth A.,..: The
starting bandwidth A(®) should be small. In general we select A(®) such that every
initial local neighborhood [t — RO t 4+ h(o)] contains sufficiently many design points
to obtain an estimate of the parameter ;.

The parameter a controls the growth of the local neighborhoods. Our default choice
is a = 1.25. The maximal bandwidth hn.x may be very large, e.g.
hmax = 1. However, this parameter can be used to bound the numerical com-
plexity of the procedure. The exponential growth of the bandwidth A®*) ensures
that the number of iterations £* is at most logarithmic in the sample size.

Parameter A\: The most important parameter of the procedure is A which scales
the statistical penalty s;s. Small values of A lead to overpenalization which may
result in unstable performance of the method in a homogeneous situation. Large
values of A result in a loss of adaptivity, i.e. less sensitivity to structural changes. A
reasonable way to define the parameter A for a specific application is based on the
condition of free extension, which we also call “propagation condition”. This means
that in a homogeneous situation, i.e. when the process © is constant, the impact of
the statistical penalty on the computed weights w; , is negligible. This would result
in a free extension of every local model. If the value Ay, is sufficiently large, all
the weights w; , will be close to one at the end of iteration process and every local
model will essentially coincide with the global one. Therefore, one can adjust the
parameter A using Monte-Carlo simulations. Simply select the minimal value of A
that still provides a prescribed probability to obtain the global model at the end of
iteration process for the homogeneous (parametric) model ¥; = 6. The theoretical
justification for such a choice is given in Polzehl and Spokoiny (2002).

Our default choice, obtained by this method, is A = gs(x2), that is, the §-quantile
of the x? distribution with 3 degree of freedom, where § = 0.99.

4.4 Semiparametric modeling

In many situations a reasonable estimate of the parameter § requires a large sample
size. This makes a local analysis relatively inefficient. A natural way to solve this
problem is a semiparametric approach assuming that the parameter (3 is constant
while the other parameters w, @ may vary with time. The AWS procedure can be
easily adjusted to such models. Namely, at every iteration we locally estimate the
varying coefficients v = (w,a)” while the value 8 = 8%~ is kept fixed. Afterwards
we update the parameter 3. The basic AWS procedure reads exactly as described
in Section 4.2. The only difference is that the parameter 9 should be replaced by ~
and in the definition of the process ©*~1 one should apply 3%~ in place of Bt(kfl).
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For updating the parameter 3, at the end of the iteration k, define for every vector
3 the process XF(8) = XM (8,0®) with I® = (4% = (", )T, s > 1) using
the recurrence equation

X®(B) = w® + oMY, 1+ 6xH,(8).

The new estimate 3*) maximizes the log-likelihood L(3) = ZsZtOE(Ys,XS(k)(ﬁ))
w.r.t. §. Again, the Newton-Raphson algorithm with the quadratic approximation
(7) can be used.

4.5 Application to forecasting

The forecasting problem for the model (8) can be formulated as follows. Given the
observations Ry, ..., Ry estimate the value of the latent process X; for some future
point t =T + j for j > 1, and predict the distribution of future observations R;.
A natural way of solving this problem (at least if the forecast horizon j is not too
large) is to model the processes R; and X; for ¢ > T from the latest estimated model
corresponding to t = 7.

Let 9 = (@,@, B) be 5;c ) and X, = X:(p’f;) = X,(0r) for s = t,,...,T. We then
define X7, as

XT+1|T = \IIT_|_1’I9 - @ + aR% + /BXT y

where {I}T-i—l = (1, R%, )?T) Using the estimate )?T+1\T of X1, we can generate Rr.q
from a GAussian distribution with variance )A(TH‘T. These two steps, compute Xz ;
and generate Rr,;, can be repeated for ¢t = 7'+ 2,7 + 3. In general there is no
closed form expression for the distribution of the forecasted value Rr.;, but it can
be numerically evaluated by Monte-Carlo simulations.

5 Simulated examples

The aim of this section is to illustrate the performance of the proposed models and
compare them with the classical GARCH(1,1) model and the local constant AWS
procedure for volatility estimation from Polzehl and Spokoiny (2002). The latter is
a very particular and much simpler special case of the varying coefficient GARCH
model with & = 8 = 0 and only w varying with time.

We especially focus on the “integrated GARCH” effect (value 8 close to one) and
demonstrate that it can be artificially produced if the stationarity assumption is
violated.

We use a set of six artificial examples to illustrate the predictive performance of
parametric, non- and semiparametric GARCH(1,1) models. The sample size is set
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Figure 2: Parameters of simulated examples as functions of time.

to n = 1000. Example 1 is a parametric GARCH(1,1) model with w = 0.2, @ = 0.1
and B = 0.8. Example 2 describes a local constant volatility model (a = § = 0).

Example 3 and 6 are generated as semiparametric GARCH(1,1) models with small

and large values of 3, respectively, while examples 4 and 5 are entirely nonparametric
GARCH(1,1) again with small and large values of 3. Parameters are local constant
and may change every 125 observations. Figure 2 illustrates the parameters used.

The AWS estimates are computed sequentially based on all the observations from
the past. For the parametric GARCH(1,1) model, a scrolling estimate from the last

250 observations is used.

We use the following criteria to compare the behavior of the estimates:

e Mean estimated value of 3

e A predictive likelihood risk PL(k) with horizon k& = 10

n—k k
1 T Xt+s
PL(k) = — log X, —
)=~ e o 2 (8 e 222 )

=251 s=1 t+s|t

where )?Hs“ denotes the predicted volatility at time ¢ 4+ s based on the esti-
mated process using observations up to time ¢.
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Table 1: Simulation results for artificial examples 1-6. Simulation size 50. Mean
estimated values of 3, mean predictive likelihood, probability of exceeding the VaR
and mean VaR obtained for the scrolling GARCH(1,1) estimate (from the last 250
observations), sequential AWS for nonparametric and semiparametric GARCH(1,1),
and the sequential local constant volatility AWS procedure.

Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6

Mean g3 0.8 0.0 0.2 0.181 0.65 0.8

Mean B GARCH 0.609 | 0.781 | 0.802 | 0.821 | 0.802 | 0.804
Mean B NP-GARCH 0.558 | 0.551 | 0.491 | 0.520 | 0.566 | 0.622
Mean B SP-GARCH 0.365 | 0.258 | 0.220 | 0.241 | 0.325 | 0.398
PL(10) GARCH -1.732 | 1.450 | 1.313 | 1.395 | 0.073 | -0.903
PL(10) NP-GARCH -1.745 | 1.474 | 1.397 | 1.470 | 0.145 | -0.816
PL(10) SP-GARCH -1.735 | 1.481 | 1.449 | 1.517 | 0.213 | -0.737
PL(10) Local Const -1.724 | 1.511 | 1.493 | 1.558 | 0.252 | -0.710
100Pgyar (0.01,10) GARCH 1.45 1.86 2.70 2.62 2.84 3.00

100ﬁEVaR(0.01, 10) NP-GARCH 1.54 1.81 2.30 2.27 2.62 2.70
100Pgyar (0.01,10) SP-GARCH 1.31 1.59 1.97 2.00 2.18 2.29
IOOﬁEVaR(O.Ol, 10) Local Const 1.38 1.48 1.82 1.82 2.11 2.25

MVaR(0.01,10) GARCH 7.21 2.07 | 2.12 2.02 3.75 6.04
MVaR(0.01,10) NP-GARCH 7.20 2.10 2.18 2.08 3.82 6.17
MVaR(0.01,10) SP-GARCH 7.33 2.12 2.22 2.11 3.88 6.32
MVaR(0.01, 10) Local Const 7.28 2.11 2.19 2.09 3.85 6.24

e Let the Value at Risk (VaR) at level 6 and time horizon k be defined as

k
VaR,(8,k) = —a5 > Xyt (18)
s=1

with g5 denoting the d-quantile of the standard Gaussian distribution. We
report an estimate of the mean probability Pgv.r(d, k) of exceeding VaR at
level § and time horizon k

n—k t+k

1

Povar(6 k)= —— S° P R, < — VaRy(6, k 19
)= g S P( 3 v om

obtained from the simulations. This value should be possibly close to the
nominal level 4.

e Finally we provide a mean VaR at level § and time horizon k as

n—k

> " VaR,(6, k) (20)

t=251

1
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again obtained from our simulations, c¢f. Fan and Gu (2003). This value
characterizes the cost required to secure the asset.

Results of the simulations are summarized in Table 1. The results lead to the

following conclusions:

6

The GARCH model applied to data following a change point GARCH model
leads to a misspecification with a large value of the estimated parameter .

The fully nonparametric GARCH model did not succeed to get a reasonable
estimate of the varying parameter 3. Again, the estimated Bt is in mean
much larger than the true value in Examples 2 to 4, while the semiparametric
GARCH model seems to be much more successful in handling the change point
models considered in our examples.

The local constant model provides the best prediction quality for the 10 days
forecasting horizon for all examples. The GARCH model leads to the worst
results in almost all examples, while the semiparametric model is typically at
the second place.

The excess probability for the predicted VaR-quantiles is again optimized by
the local constant estimate while for examples 5 and 6 the semiparametric
model shows slightly better results. However, all the models provide a reason-
able fit of the 1%-quantile.

The averaged value of the VaR-quantile is in most cases minimized by the
GARCH-model. In combination with the excess probability results one can
judge that the GARCH-model tends to underestimate the VaR. This probably
explains why GARCH models are so popular in risk management.

Applications to financial time series

We now apply our methodology to two time series, the German DAX index (August
1991 to July 2003) and the USD/GBP exchange rate (January 1990 to December
2000). Similarly to the simulation study, we compare four methods: the paramet-
ric GARCH(1,1), the non- and semiparametric GARCH(1,1) models and the local
constant volatility model from Polzehl and Spokoiny (2003). We show up to which

extend the four methods can explain phenomena observed for financial time series

like heavy tails and long range dependence.

We investigate the predictive performance of the methods by estimating the pre-

dictive empirical likelihood risk PEL(k) at different time horizons k ranging from 2
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DAX : Logarithmic returns
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Figure 3: DAX: Logarithmic returns (top) and estimated volatility processes. Given
are global estimates (dashed line) and sequential estimates (obtained from the last
500 observations, solid line) by parametric GARCH(1,1), AWS for nonparametric
GARCH(1,1), AWS for semiparametric GARCH(1,1) and the local constant volatil-
ity model (from top to bottom).

weeks to half a year:

n—k k
1 ~ R2
PEL(k) = — log Xypss + —15 21
Q (n—k—500)k22<0g TR > 2!

=501 s=1 t+s|t

where )A(Hs‘t denotes the predicted volatility at time ¢ + s based on the estimated

process using observations up to time t. We also provide estimates for the excess
probability (19) of VaR and the mean VaR (20).

The top of Figure 3 shows the logarithmic returns of the DAX series, emphasizing
strong variations in volatility. Additionally global and sequential estimates of the
square root of the volatility obtained by the four methods under consideration are
provided. Note that in principle all methods capture the same volatility structure
over time. Similar results are observed for the USD/GBP exchange rate series.
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Table 2: DAX and USD/GBP: Mean values for the nonlinear parameter.

GARCH | NP-GARCH | SP-GARCH
DAX | 0.862 0.609 0.250
USD/GBP | 0.777 0.411 0.227

Table 3: DAX and USD/GBP: Tail index of absolute logarithmic returns and stan-
dardized residuals (using sequential estimates). Critical values for Gaussian distri-

butions with same sample size: 0.193 (.95), 0.202 (.99).

log residuals residuals residuals residuals
returns | GARCH | NP-GARCH | SP-GARCH | Local Const
DAX | 0.324 0.225 0.195 0.190 0.188
USD/GBP | 0.310 0.232 0.166 0.148 0.171

Cointegration in DAX and USD/GBP: fact or artifact?

In Table 2 we provide the mean estimate of the parameter 8 obtained using the
parametric GARCH(1,1) model and its non- and semiparametric generalizations.
Exactly as in our simulation study, for both time series, the estimated value of
parameter 3 for the scrolling parametric GARCH(1,1) is close to one, while the
results for the semiparametric model (given in boldface) indicate that this IGARCH
effect can be artifact of nonstationarity of the time series.

DAX and USD/GBP: Persistent ACF and Long Range Dependence Phe-
nomenon

The autocorrelation function (ACF) of squared log returns R? and of squared stan-
dardized residuals €2 = R?/52 obtained for the four estimates are provided in
Figure 4. The ACF of the log returns clearly indicates persistency, however, all
four models under consideration, despite their quite different structure, allow to
successfully explain the dependence structure. Hence, the long range dependence
phenomenon in financial returns can be easily explained by nonstationarity of the
financial market.

DAX and USD/GBP: Tail index behavior of the returns

To investigate the phenomenon of heavy tails we estimate the tail index of logarith-
mic returns R; and standardized residuals £; obtained by the four methods. We use
the AWS tail index estimate proposed in Polzehl and Spokoiny (2003). Results are
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Figure 4: DAX and USD/GBP: ACF of squared log returns and squared standard-
ized residuals (using sequential estimates) obtained for the four methods for DAX
(top) and USD/GBP (bottom) volatility estimates, respectively.

Table 4: DAX and USD/GBP: Mean predictive empirical likelihood risk for different
forecast horizons. The best result for each time horizon in boldface.

Method two weeks one month three months six months
DAX USD/GBP | DAX USD/GBP | DAX USD/GBP | DAX USD/GBP

GARCH | 7.54 9.44 7.42 9.40 7.02 9.31 6.73 9.22

NP-GARCH | 7.54 9.31 7.47 9.25 7.28 8.57 7.15 8.47

SP-GARCH | 7.53 8.46 7.49 7.65 7.35 7.68 7.26 7.70

Local Const | 7.56 9.46 7.52 9.45 7.39 9.40 7.3 9.35

provided in Table 3. Note that the estimated parameter for the standard normal
random sample of the same size should be below 0.193 with probability 0.95 and
below 0.202 with probability 0.99.

The estimated tail index for
Note that the use of the
parametric GARCH(1,1) model only partly explains the heavy tail effect while the
other methods succeeded to eliminate the heavy tails in the standardized returns.

The logarithmic returns clearly show heavy tails.
the standardized residuals is smaller for all methods.

DAX and USD/GBP: Out-of-sample performance

Table 4 provides estimates of the predictive empirical likelihood risk (21) for four
different time horizons ranging from two weeks to half a year. We observe, with
respect to this criterion, that the local constant forecast significantly improves on

the other three methods.
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Table 5: DAX and USD/GBP: Probability to exceed the Value at Risk at 10 trading
days. The best result in boldface.

Level GARCH NP-GARCH SP-GARCH Local Const

DAX  USD/GBP | DAX USD/GBP | DAX  USD/GBP DAX  USD/GBP
0.01 | 0.0118 0.0173 | 0.0133 0.0168 | 0.0129  0.0230 | 0.0137 0.0149
0.05 | 0.0556  0.0542 | 0.0551 0.0561 | 0.0594 0.0571 | 0.0480 0.0538

Table 6: DAX and USD/GBP: Value at Risk at 10 trading days. The best result in
boldface.

Level GARCH NP-GARCH SP-GARCH Local Const

DAX USD/GBP | DAX  USD/GBP | DAX  USD/GBP | DAX  USD/GBP
0.01 | 0.1021 0.0402 | 0.1057  0.0405 | 0.1070  0.0401 | 0.1056 0.0400
0.05 | 0.0722 0.0284 | 0.0748 0.0286 | 0.0757  0.0283 | 0.0747 0.0283

DAX and USD/GBP: Value-at-Risk performance

In Table 5 we provide estimates of the probability to exceed the VaR (18), defined
at a 1% and 5% level using quantiles of a standard Gaussian distribution. The time
horizon is two weeks. One can see that all the methods succeeded in forecasting the
VaR-quantiles with, in most cases, best results for the local constant model.

Table 6 provides the mean (over time) VaR (20) assigned by the four methods. This
value characterizes the cost required to secure the asset. Here all four methods
demonstrate a similar performance with a small benefit of using the parametric
GARCH(1,1) model for the DAX series and of the local constant modeling for the
USD/GBP series.

DAX and USD/GBP: Conclusion

Overall we see an advantage in using the local constant volatility model. It seems
preferable with respect to risk management and also provides a better explanation
for heavy tails, long range dependence and many other stylized facts of the financial
time series.

7 Conclusion and Outlooks

The paper shows that the parametric GARCH(1,1) modeling has serious problems
if the assumption of stationarity is violated. In particular, the IGARCH effect
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in the GARCH(1,1) model seems to be an artifact of nonstationarity. An inte-
grated GARCH performs essentially as an exponential smoothing filter. This yields
a very good short term ahead forecasting performance. However, an application
of the estimated model to long term prediction is questionable because of possible
model misspecification. More arguments and a similar conclusion can be found in
Starica (2004).

Two new procedures are suggested which allow to model the nonstationarity in the
observed financial time series via varying coefficient GARCH modeling. The method
of estimation of time varying GARCH-models suggested in this paper as an extension
of the Adaptive Weights idea from Polzehl and Spokoiny (2003) is very general
in nature and can be easily extended to GARCH(p, q¢), or to EGARCH(p, q) and
TGARCH(p, q) models. The both methods demonstrate a reasonable performance,
compared to the parametric GARCH(1,1) model. Especially the semiparametric
model can be useful for the analysis of the integrated GARCH effect. However, the
simulated results and applications to real data demonstrated that a more simple
local constant model delivers better results in term of short time forecasting and
applications to risk management.

We do not investigate the asymptotic properties and the rate of estimation deliv-
ered by the two proposed procedures. Although some properties can be established
similarly to Polzehl and Spokoiny (2002), particularly, the important propagation
condition. The main reason is that the obtained numerical results are mostly dis-
couraging and do not motivate a rigorous theoretical study.

The general approach proposed in this paper and based on the adaptive weights
idea seems to be applicable to many other models like hidden Markov chains, and
can be very powerful in that area. This can be viewed as a topic of further research.
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