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Abstract

We consider a control constrained optimal control problem governed by a
semilinear elliptic equation with nonlocal interface conditions. These conditions
occur during the modeling of diffuse-gray conductive-radiative heat transfer. The
problem arises from the aim to optimize the temperature gradient within crystal
growth by the physical vapor transport (PVT) method. Based on a minimum
principle for the semilinear equation as well as L∞-estimates for the weak solution,
we establish the existence of an optimal solution as well as necessary optimality
conditions. The theoretical results are illustrated by results of numerical compu-
tations.

1 Introduction

In this paper, we investigate an optimal control problem related to the sublimation
growth of silicon carbide single crystals (SiC) by the physical vapor transport (PVT)
method. The semiconductor material SiC is used in numerous industrial applications,
e.g. the production of optoelectronic devices such as blue and green LEDs and lasers.
For the PVT method, polycrystalline SiC powder is placed under a low-pressure inert
gas atmosphere at the bottom of a cavity inside a graphite crucible. The crucible is
heated up to temperatures between 2000 and 3000 K by induction. Due to the high
temperatures and the low pressure, the SiC powder sublimates and crystallizes at a
single-crystalline SiC seed located at the cooled top of the cavity, such that the single
crystal grows into the reaction chamber. See [7, 8] for more details.

Here, we neglect the electromagnetic induction problem and focus on the conductive-
radiative heat transfer in the growth apparatus. Therefore, we consider a simplified
setup of the growth apparatus, shown in Fig. 1, where Ωs denotes the domain of the
solid graphite crucible, whereas Ωg is the domain of gas phase inside.
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Figure 1: 2-dimensional section through an exemplary domain for nonlocal radiative
heat transfer.
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A very important determining factor for the crystal’s quality and growth rate are the
temperature distribution in the gas phase and, especially, the temperature gradient close
to the surface of the growing crystal [12]. Since we do not consider the electromagnetic
induction, we will optimize the temperature gradient in the gas phase Ωg by directly
controlling the heat source u in Ωs.

The temperature y inside the growth apparatus arises as the solution of the conductive-
radiative heat transfer problem in the growth apparatus. Accounting for radiative con-
tributions is essential owing to the high temperatures. Thus, the problem is described
by the stationary heat equation with radiation interface and boundary conditions on
Γr and Γ0, respectively. We take Ωs to be entirely opaque, whereas Ωg represents a
transparent medium which does not interact with radiation. Furthermore, the radia-
tive surfaces Γ0 := ∂Ω and Γr := Ωs ∩ Ωg are presumed to be diffuse-gray, i.e. the
emissivity ε is independent of both the direction and the wavelength of the radiation.
In particular, the local radiative heat exchange on Γ0 can be modeled by the Boltzmann
radiation condition with an external temperature y0. Due to the heat exchange between
points on Γr, we obtain an additional radiative heat flux on Γr, denoted by qr.
In addition to the stationary semilinear heat equation with radiation interface and
boundary conditions, we consider box constraints for the control function u. Thus, the
optimal control problem, considered here, reads as follows:

(P)





minimize J(y, u) :=
1

2

∫

Ωg

|∇y − z|2 dx +
ν

2

∫

Ωs

u2 dx

subject to −div(κs∇y) = u in Ωs

−div(κg∇y) = 0 in Ωg

κg

(
∂y

∂nr

)

g

− κs

(
∂y

∂nr

)

s

= qr on Γr

κs
∂y

∂n0

+ εσ |y|3y = εσ y4
0 on Γ0

and ua ≤ u(x) ≤ ub a.e. in Ω,

where n0 is the outward unit normal on Γ0, and nr is the unit normal on Γr facing out-
ward with respect to Ωs (cf. Fig. 1). Furthermore, z denotes the desired temperature
gradient and ν > 0 is a Tikhonov regularization parameter. In the state equation, σ rep-
resents the Boltzmann radiation constant, and κs, κg denote the thermal conductivities
in Ωs, Ωg, respectively.

In contrast to the boundary condition on Γ0, the radiative heat transfer on Γr is nonlocal.
The corresponding mathematical model used here is described in detail, e.g., in [11, 14].
It provides the additional radiative heat flux qr on Γr given by

qr = (I −K)(I − (1− ε)K)−1ε σ|y|3y := Gσ|y|3y, (1.1)

where K is an integral operator representing the irradiation on Γr. The nonlocal oper-
ators K and G will be specified in Section 3.1. The nonlocal radiation on Γr represents
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the main characteristic of our problem, since the nonlinearity in the state equation in
(P) is in general not monotone due to nonpositivity of G (see Section 3 and [14]).

The state equation in (P) is of semilinear elliptic type. Therefore, the optimal control
problem can be viewed as a semilinear elliptic optimal control problem. The list of
publications in this field is already quite extensive. We only mention Casas [3] or
Bonnans and Casas [2], who consider the Pontryagin principle, or Casas, Tröltzsch
and Unger [5], Bonnans [1], Casas and Mateos [4], who consider different aspects of
second-order sufficient optimality conditions. This list might be extended considerably
by including associated papers on different aspects of numerical analysis.

Our paper differs from all these contributions by the interface conditions containing the
nonmonotone and nonlocal operator G. Therefore, our boundary value problem is of
nonmonotone type so that special techniques must be applied.

The paper is organized as follows: After stating the mathematical setting in Section 2,
we provide auxiliary results on the nonlocal operator G as well as a general boundedness
result for a class of nonlinear equations, see Section 3. In Section 4, we prove a weak
maximum principle for the semilinear state equation and an L∞-estimate for its solu-
tions, followed by the existence of an optimal solution in Section 5. Section 6 is devoted
to the existence and boundedness of a solution to the linearized equation. In Section
7, we establish first order necessary optimality conditions based on the differentiability
of the solution operator associated with the semilinear equation. The corresponding
adjoint state is introduced at the end of Section 7. Finally, Section 8 presents some
numerical results.

2 The mathematical setting

Throughout this paper, we assume the following conditions (A1) – (A3) on the domain
Ω and on the quantities and functions occurring in (P):

(A1) We assume that Ω ⊂ R3 is a bounded simply connected domain with Lipschitz
boundary Γ0. The boundary of the simply connected subdomain Ωg ⊂ Ω, denoted
by Γr, is assumed to be a closed Lipschitz surface that is piecewise C1,δ. Notice
that the distance of Γr to Γ0 is positive. Then, Ωs is defined by Ωs = Ω\Ωg (cf.
Fig. 1).

(A2) The Boltzmann radiation constant is assumed to be positive, i.e. σ ∈ R+. For the
thermal conductivity, we assume κ ∈ L∞(Ω) with

κ(x) =

{
κs(x) in Ωs

κg(x) in Ωg

and κ(x) ≥ κmin > 0 a.e. on Ω. Furthermore, the emissivity ε ∈ L∞(Γ0 ∪ Γr) is
bounded by 1 ≥ ε ≥ εmin > 0 a.e. on Γ0 ∪ Γr.
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(A3) The desired temperature gradient z is given in L2(Ωg) and ν is a positive constant.
For the box constraints, we assume ua, ub ∈ L∞(Ωs) and 0 ≤ ua(x) < ub(x) a.e.
in Ωs.

Notation. For a given p with 1 ≤ p ≤ ∞, an operator B : Lp(Γr) → Lp(Γr) is
said to be positive, if v ∈ Lp(Γr) and v ≥ 0 a.e. on Γr imply B v ≥ 0 a.e. on Γr.
Furthermore, 1 denotes the function e(x) ≡ 1 a.e., and I is the identity operator in the
respective function spaces. We introduce the set of admissible controls by Uad := {u ∈
L∞(Ωs) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}. The measure of a certain set A ⊂ Rn, n ≥ 1
is denoted by |A|, and τr denotes the trace operator on Γr, whereas τ0 is the trace on
Γ0. Throughout this paper, c is a generic constant.
Let W be a Banach space with its dual space W ∗. Then, for f ∈ W and g ∈ W ∗, 〈f , g〉
denotes the associated pairing.

3 Auxiliary results

In Section 3.1, we present some properties of the nonlocal radiation operator G. Since
G is in general not positive, the nonlinearity in the semilinear state equation is non-
monotone. However, G still has sufficiently benign properties such that the nonlinear
parts in the state equation are pseudomonotone (see [10]). These properties of G are
also used to prove the boundedness of the solution in Section 4 below.
In Lemma 3.7 of Section 3.2, we will prove the boundedness of the solution y for a
general class of nonlinear equations that applies to both the semilinear case and its
linearized version.

3.1 The nonlocal radiation operator

The operators K and G arising from the nonlocal radiation on Γr were investigated
in detail by Laitinen and Tiihonen [10, 14, 15]. We recall some of their results for
convenience:

Definition 3.1. The integral operator K, representing the irradiation on Γr, is given
by

(K y)(x) =

∫

Γr

ω(x, z) y(z) dsz (3.1)

with a symmetric kernel ω which is, in the two-dimensional case, defined by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

2|z − x|3 , (3.2a)

and, in the three-dimensional case, defined by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

π|z − x|4 , (3.2b)
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where x, z denote two points on Γr, and nr(x) is the unit normal at x facing outward
with respect to Ωs (see Fig. 1). Here, Ξ represents the visibility factor which is given by

Ξ(x, z) =

{
0 if xz ∩ Ωg 6= ∅,
1 if xz ∩ Ωg = ∅.

In [15], it is proven that ω(x, z) can have a singularity at x of type |x − z|−(1−δ) in
the two-dimensional and |x− z|−2(1−δ) in the three-dimensional case, which is, in both
cases, integrable. This is the key point to the following lemma also derived in [15].

Lemma 3.2. (i) K maps Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞.

(ii) If Γr is a closed Lipschitz surface that is piecewise C1,δ, then K 1 = 1 holds a.e.
on Γr.

(iii) The operator I − (1− ε)K : Lp(Γr) → Lp(Γr) is invertible.

With the help of Lemma 3.2, Tiihonen and Laitinen proved the following properties of
G = (I −K)(I − (1− ε)K)−1ε (cf. [14, Lemma 6] and [10, Lemma 8]).

Lemma 3.3. (i) G is a bounded linear operator from Lp(Γr) to itself for every 1 ≤
p ≤ ∞.

(ii) G can be written as G = I −H with a positive operator H.

(iii) For all y ∈ L5(Γr),
∫
Γr

G(σ|y|3y)y ds ≥ 0 holds true.

Here, we show another property of G that we will use subsequently:

Lemma 3.4. For every function v(x) ≡ k = const. a.e. on Γr, we have G∗ v = 0.

Proof: Since K has a symmetric kernel, K is formally self-adjoint, i.e. 〈v , K w〉 =
〈K v , w〉 for all v ∈ Lp(Γr) and w ∈ Lq(Γr), 1/p+1/q = 1. Thus, together with Lemma
3.2, (ii), we obtain K∗ 1 = 1 a.e. on Γr. Therefore, with the definition of G, we find

G∗v = ε(I −K∗(1− ε))−1(I −K∗)v = ε(I −K∗(1− ε))−1(k − k) = 0.

3.2 Boundedness for a nonlinear equation

We have to show the boundedness of the solution of the semilinear state equation and
its linearization. To unify the proofs, we first prove an auxiliary result for a nonlinear
equation of the form

〈F (y) , v〉 = 〈f , v〉 ∀ v ∈ W, (3.3)
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where F : W → W ∗ is a certain mapping, and y is a given solution in a space W ⊆
H1(Ω). It will be shown that, under suitable assumptions, a solution y belongs to the
function space

V ∞ := H1(Ω) ∩ L∞(Ω), (3.4)

equipped with the norm

‖v‖V∞ = ‖v‖H1(Ω) + ‖v‖L∞(Ω).

Remark 3.5. If y ∈ V ∞, then τr y ∈ L∞(Γr), and τ0 y ∈ L∞(Γ0).

This is an immediate consequence of the following Lemma 3.6 that follows from Propo-
sition 5.2, part (ii) in [6].

Lemma 3.6. For a bounded Lipschitz domain Ω ⊂ Rn, n ∈ N, the trace operator
τ : H1(Ω) → H1/2(∂Ω) is positive, i.e. τv ≥ 0 a.e. on ∂Ω for v ≥ 0 a.e. on Ω.

To show the boundedness of a solution to (3.3), we use the following hypotheses:

Hypotheses for the nonlinear equation (3.3):

(H1) (Regularity of the inhomogeneity): The right-hand side of (3.3) can be expressed
as

〈f , v〉 =

∫

Ω

fΩ v dx +

∫

Γr

fr v ds +

∫

Γ0

f0 v ds,

where fΩ, fr, and f0 satisfy fΩ ∈ Lp1(Ω), fr ∈ Lp2(Γr), and f0 ∈ Lp2(Γ0), with
p1 = 6/(5− s), p2 = 4/(3− s) and 1 < s < 3.

(H2) (Coercivity): There is a constant k0 ≥ 0 such that, for the given solution y ∈ W
and for each k > k0, the functions

ϕk(x) :=





y(x)− k , y(x) ≥ k,
0 , |y(x)| < k,

y(x) + k , y(x) ≤ −k,
(3.5)

are elements of W , and there is a constant c > 0 such that the nonlinearity in
(3.3) satisfies, for each k > k0:

〈F (y) , ϕk〉 ≥ c ‖ϕk‖2
H1(Ω).

Lemma 3.7. Suppose that Ω ⊂ R3 satisfies (A1), that y ∈ W is a solution to (3.3)
and that the Hypotheses (H1) and (H2) are fulfilled. Then y ∈ V ∞, and there exists a
constant c0 only depending on Ω such that

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0(k0 + ‖fΩ‖Lp1 (Ω) + ‖fr‖Lp2(Γr) + ‖f0‖Lp2 (Γ0) ) (3.6)

holds true.
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Proof: The proof is based on a technique introduced by Stampacchia and Kinderlehrer
[6, 13] in the linear case. For given k > k0, we define AΩ(k) := {x ∈ Ω | |y(x)| ≥ k}
and introduce Ar(k) and A0(k) analogously. Our aim is to show that there is a k > 0
with |AΩ(k)| = |Ar(k)| = |A0(k)| = 0. We start with Hypothesis (H2), that yields

〈F (y) , ϕk〉 ≥ c ‖ϕk‖2
H1(Ω) ≥ c (‖ϕk‖2

L6(Ω) + ‖ϕk‖2
L4(Γr)

+ ‖ϕk‖2
L4(Γ0))

≥ c




( ∫

AΩ(k)

(|y| − k)6dx
)1/3

+
( ∫

Ar(k)

(|y| − k)4ds
)1/2

+
( ∫

A0(k)

(|y| − k)4ds
)1/2


 ,

since ϕk equals 0 on Ω \ AΩ(k), on Γr \ Ar(k), and on Γ0 \ A0(k), respectively. If
h > k > k0 ≥ 0, then A(h) ⊆ A(k), where A stands generally for AΩ, Ar, and A0, and
we have for an arbitrary m ∈ N:

( ∫

A(k)

(|y| − k)mdx
)2/m

≥
( ∫

A(h)

(h− k)mdx
)2/m

= (h− k)2|A(h)|2/m.

Defining

ψ(h) := |AΩ(h)|1/3 + |A0(h)|1/2 + |Ar(h)|1/2, (3.7)

one obtains

‖ϕk‖2
H1(Ω) ≥ c (h− k)2ψ(h). (3.8)

Now, we investigate the right-hand side in (3.3). Hypothesis (H1), Hölder’s inequality,
and embedding theorems imply

〈f , ϕk〉 ≤ ‖fΩ‖L6/5(AΩ(k))‖ϕk‖L6(Ω) + ‖fr‖L4/3(Ar(k))‖ϕk‖L4(Γr)

+ ‖f0‖L4/3(A0(k))‖ϕk‖L4(Γ0)

≤ c
(‖fΩ‖L6/5(AΩ(k)) + ‖fr‖L4/3(Ar(k)) + ‖f0‖L4/3(A0(k))

)‖ϕk‖H1(Ω).

Applying (H2), (3.3), and Young’s inequality, we obtain

‖ϕk‖2
H1(Ω) ≤ c

(‖fΩ‖2
L6/5(AΩ(k)) + ‖fr‖2

L4/3(Ar(k)) + ‖f0‖2
L4/3(A0(k))

)
. (3.9)

Using again Hölder’s inequality, the first norm on the right-hand side can be estimated
by

( ∫

AΩ(k)

f
6/5
Ω dx

)5/3

≤
(
‖f 6/5

Ω ‖L5/(5−s)(AΩ(k))|AΩ(k)|s/5
)5/3

≤ ‖fΩ‖2
Lp1 (Ω)|AΩ(k)|s/3 (3.10)

with p1 = 6/(5− s) and 1 < s < 3 as defined above. Similarly, we derive

( ∫

Ar(k)

f 4/3
r dx

)3/2

≤ ‖fr‖2
Lp2 (Γr)|Ar(k)|s/2 (3.11)
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with p2 = 4/(3− s) (and analogously on A0).
Due to the Taylor expansion, we have for three abritrary real nonnegative numbers
a, b, and c that (as + bs + cs) ≤ (a + b + c)s for all s > 1. Choosing a = |AΩ(k)|1/3,
b = |Ar(k)|1/2, and c = |A0(k)|1/2, combining (3.10), (3.11), and (3.9) yields

‖ϕk‖2
H1(Ω) ≤ c %f ψ(k)s,

with %f = ‖fΩ‖2
Lp1 (Ω) + ‖fr‖2

Lp2 (Γr)
+ ‖f0‖2

Lp2 (Γ0), and ψ as defined in (3.7). Together

with (3.8), it follows that

ψ(h) ≤ c %f

(h− k)2
ψ(k)s, for h > k > k0 ≥ 0. (3.12)

Stampacchia proved in [13] that each nonnegative and nonincreasing function ψ = ψ(t)
satisfying (3.12) with some s > 1, has a zero at some t = d, d > 0 where

d = k0 + 2s/(s−1)(c|ψ(k0)|s−1)1/2√%f ,

and, in our case, |ψ(k0)| = ψ(k0) can be estimated by

ψ(k0) ≤ ψ(0) = |Ω|1/3 + |Γ0|1/2 + |Γr|1/2

(see also Kinderlehrer and Stampacchia [6, Lemma B.1]). Due to the definition of ψ in
(3.7), this implies |y(x)| ≤ d a.e. on Ω and on Γr ∪ Γ0. Thus, with the definition of %f ,
we obtain

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ 2 d

≤ 2
(
k0 + 2s/(s−1)(c|ψ(0)|s−1)1/2√%f

)

≤ c
(
k0 +

√
‖fΩ‖2

Lp1 (Ω) + ‖fr‖2
Lp2(Γr)

+ ‖f0‖2
Lp2 (Γ0)

)

≤ c0

(
k0 + ‖fΩ‖Lp1 (Ω) + ‖fr‖Lp2 (Γr) + ‖f0‖Lp2 (Γ0)

)
,

by the equivalence of the Euclidian and the L1-norm in R3.

Remark 3.8. Due to the positivity of the trace operator (cf. Lemma 3.6), in Lemma
3.7, it would have sufficed to prove the boundedness of y on Ω. However, this would not
have simplified the proof, as we still needed the direct estimates of the inhomogeneities
on Γ0 and Γr as carried out above.

4 The semilinear equation

Before we apply Lemma 3.7 to the semilinear equation in (P), we will introduce the
variational form of the state equation and recall a theorem of Laitinen and Tiihonen
[10] that covers its solvability.
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With the help of Lemma 3.3, Section 3.1, we are now able to derive the weak formulation
of the state equation in (P). To fix G, we specify p in Lemma 3.3, (i), by p = 5/4 and
obtain G : L5/4(Γr) → L5/4(Γr). Then, formal integration by parts over Γ0 and Γr yields

∫

Ω

κ∇y · ∇v dx +

∫

Γr

G(σ|y|3y)v ds+

∫

Γ0

εσ |y|3y v ds

=

∫

Ωs

u v dx +

∫

Γ0

εσ y4
0v ds ∀ v ∈ V,

(4.1)

with V = {v ∈ H1(Ω) | τr v ∈ L5(Γr) , τ0 v ∈ L5(Γ0)}. Clearly, due to G : L5/4(Γr) →
L5/4(Γr), we have G(σ|y|3y)v ∈ L1(Γr) for all y, v ∈ V . The state space V is equipped
with the norm

‖v‖V = ‖v‖H1(Ω) + ‖v‖L5(Γr) + ‖v‖L5(Γ0).

A function y ∈ V is said to be a weak solution of the state equation in (P), if (4.1) is
fulfilled for every v ∈ V .

Theorem 4.1. [10, Theorem 2] For every u ∈ H1(Ωs)
∗ and y0 ∈ L5(Γ0), the semilinear

equation (4.1) admits a unique solution in V .

The proof is mainly based on Brezis’ theorem [16, Theorem 27.A] for pseudomonotone
operators. Laitinen and Tiihonen showed in [10] that the semilinear differential operator
defined by the left-hand side in (4.1) fulfills all assumptions of Brezis’ theorem, i.e. it is
pseudomonotone, bounded, and coercive on V . Thus, (4.1) admits at least one solution
in V . The uniqueness then follows from a comparison principle [10, Theorem 4].

Next, we show the boundedness of solutions to (4.1). This result has been obtained by
Tiihonen and Laitinen (see [10, Theorem 5]) in a slightly different setting by another
method. Here, we need it for the nonlinear equation (4.1) as well as for its linearized
version (see Section 6). In both cases, Lemma 3.7 can be applied.

Theorem 4.2. Assume that u ∈ L2(Ωs) and y0 ∈ L16(Γ0). Then, there exists a constant
c0 only depending on Ω such that

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0(1 + ‖u‖L2(Ωs) + ‖y0‖4
L16(Γ0) ) (4.2)

is valid.

Proof: To apply Lemma 3.7, we have to verify the Hypotheses (H1) and (H2). Here, we
choose the state space V ⊂ H1(Ω) for the space W . Since y0 ∈ L16(Γ0) by assumption,
we have y4

0 ∈ L4(Γ0), and thus together with the assumed regularity of u, (H1) is
satisfied with s = 2. To verify (H2), we show

∫

Ω

κ∇y · ∇ϕk dx +

∫

Γr

G(σ|y|3y)ϕk ds +

∫

Γ0

εσ |y|3y ϕk ds ≥ c ‖ϕk‖2
H1(Ω) (4.3)
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for each k ≥ 1, which we will use in the estimate of the Γ0-term. At first, we show the
positivity of the radiation term on Γr. To this aim, we split ϕk = ϕ+

k + ϕ−k with

ϕ+
k (x) :=

{
y(x)− k , y(x) ≥ k,

0 , y(x) < k,
and ϕ−k (x) :=

{
y(x) + k , y(x) ≤ −k,

0 , y(x) > −k.

Hence, one obtains
∫

Γr

G(σ|y|3y)ϕk ds =

∫

Γr

G(σ|y|3y)ϕ+
k ds +

∫

Γr

G(σ|y|3y)ϕ−k ds. (4.4)

Due to the linearity of G, the first integral on the right-hand side can be expressed by
∫

Γr

G(σ|y|3y)ϕ+
k ds =

∫

Γr

G(σΦ)ϕ+
k ds +

∫

Γr

G(σΨ)ϕ+
k ds, (4.5)

where

Φ(x) :=

{
y(x)4 , y(x) ≥ k,
k4 , y(x) < k,

and Ψ(x) :=

{
0 , y(x) ≥ k,
|y(x)|3y(x)− k4 , y(x) < k.

This partition is necessary since G is nonlocal. Notice that Φ+Ψ = |y|3y and Ψ(x) ≤ 0
on Γr. For the first addend in (4.5), we have, with yk(x) := max{y(x), k},

∫

Γr

G(σΦ)ϕ+
k ds =

∫

Γr

G(σ y4
k)(yk − k) ds =

∫

Γr

G(σ y4
k)yk ds−

∫

Γr

σ y4
kG

∗k ds ≥ 0

because of Lemma 3.3, (iii), and Lemma 3.4. Due to G = I −H and the positivity of
H (see Lemma 3.3, (ii)), the second integral in (4.5) results in

∫

Γr

G(σΨ)ϕ+
k ds = σ

∫

Γr

Ψϕ+
k ds + σ

∫

Γr

H(−Ψ)ϕ+
k ds ≥ 0,

since Ψ(x) 6= 0 implies ϕ+
k (x) = 0 and −Ψ, ϕ+

k ≥ 0 holds on Γr.
Similarly, we prove the positivity of the second integral on the right-hand side of (4.4)
with yk(x) := min{y(x),−k}, defining

Φ(x) :=

{ |y(x)|3y(x) , y(x) ≤ −k,
−k4 , y(x) > −k,

and Ψ(x) :=

{
0 , y(x) ≤ −k,
|y(x)|3y(x) + k4 , y(x) > −k.

It remains to analyze the other integrals in (4.3). The first integral is estimated by
∫

Ω

κ∇y · ∇ϕk dx ≥ κmin‖∇ϕk‖2
L2(Ω),

since ∇ϕk(x) = 0 if ∇y(x) 6= ∇ϕk(x). On Γ0, using k ≥ k0 := 1, we obtain
∫

Γ0

εσ |y|3y ϕk ds ≥ εminσ k3‖ϕk‖2
L2(A0(k)) ≥ εminσ ‖ϕk‖2

L2(Γ0),
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as y ϕk = (sign ϕk)(|ϕk|+ k)ϕk ≥ ϕ2
k is valid on A0(k) = {x ∈ Ω | ϕk(x) 6= 0}.

Due to the positivity of
∫
Γr

G(σ|y|3y)ϕk ds, we finally have

∫

Ω

κ∇y · ∇ϕk dx +

∫

Γr

G(σ|y|3y)ϕk ds +

∫

Γ0

εσ |y|3y ϕk ds

≥ c (‖∇ϕk‖2
L2(Ω) + ‖ϕk‖2

L2(Γ0)) ≥ c ‖ϕk‖2
H1(Ω).

Therefore, we can apply Lemma 3.7, and estimate (3.6) gives with s = 2, k0 = 1,
fΩ = u, and f0 = y4

0

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0

(
1 + ‖u‖L2(Ωs) + ‖y4

0‖L4(Γ0)

)

≤ c0

(
1 + ‖u‖L2(Ωs) + ‖y0‖4

L16(Γ0)

)
.

For the discussion of the linearized equation, see Section 6, we need another property
of the semilinear solution, namely the following maximum principle:

Theorem 4.3. Suppose that u(x) ≥ 0 a.e. in Ωs and y0(x) ≥ ϑ > 0 a.e. on Γ0. If y is
the solution of (4.1), then y(x) ≥ ϑ holds a.e. on Ω and a.e. on Γr ∪ Γ0.

Proof: This time, we use the following test function in (4.1):

ρϑ(x) :=

{
y(x)− ϑ , y(x) ≤ ϑ,
0 , y(x) > ϑ.

Furthermore, we define Ω− = {x ∈ Ω | y(x) ≤ ϑ} and introduce analogous definitions
for Ω−

s , Γ−0 and Γ−r . Thus, we have ρϑ|Ω\Ω− = 0, and (4.1) reads

∫

Ω−

κ∇y · ∇ρϑ dx+

∫

Γr

G(σ|y|3y)ρϑ ds

+

∫

Γ−0

εσ(|y|3y − y4
0) ρϑ ds =

∫

Ω−s

u ρϑ dx.
(4.6)

Next, as in the proof of Theorem 4.2, one can show the positivity of the integral over
Γr by decomposition:

∫

Γr

G(σ|y|3y)ρϑ ds =

∫

Γr

G(σΦ)ρϑ ds +

∫

Γr

G(σΨ)ρϑ ds,

with

Φ(x) =

{ |y(x)|3y(x) , y(x) ≤ ϑ,
ϑ4 , y(x) > ϑ,

and Ψ(x) =

{
0 , y(x) ≤ ϑ,
|y(x)|3y(x)− ϑ4 , y(x) > ϑ.

11



Therefore, (4.6) results in

∫

Γ−0

εσ (y4
0 − |y|3y) ρϑ ds ≥

∫

Ω−

κ∇y · ∇ρϑ dx−
∫

Ω−s

u ρϑ dx ≥ 0,
(4.7)

since ∇ρϑ = ∇y on Ω−, ρϑ ≤ 0 by definition, and u ≥ 0 by assumption. On Γ−0 , we
also have y − ϑ ≤ 0 implying y4

0 − |y|3y ≥ 0. Thus, we obtain

0 ≤
∫

Γ−0

εσ (y4
0 − |y|3y) ρϑ ds =

∫

Γ−0

εσ (y4
0 − |y|3y)(y − ϑ) ds ≤ 0,

and, consequently, |Γ−0 | = 0 or y = y0 or y = ϑ a.e. on Γ0, which, in each case, yields
the assertion on Γ0. Therefore, we have ρϑ ∈ H1

0 (Ω).
Now, from (4.7), it follows that

κmin‖∇ρϑ‖L2(Ω) ≤
∫

Γ−0

εσ (y4
0 − |y|3y) ρϑ ds +

∫

Ω−s

u ρϑ dx ≤ 0,

since ∇ρϑ = 0 in Ω\Ω−. Hence ‖∇ρϑ‖L2(Ω) = ‖ρϑ‖H1
0 (Ω) = 0 (notice that we have

already shown ρϑ = 0 a.e. on Γ0). Thus ρϑ = 0 a.e. in Ω. Thus, we have shown y ≥ ϑ
a.e. on both Ω and Γ0, and Lemma 3.6 then ensures y ≥ ϑ a.e. on Γr.

5 Existence of an optimal solution

With the results of Section 4 at hand, the proof of existence of an optimal solution for
the optimal control problem (P) is rather standard. We start with the following lemma:

Lemma 5.1. Let u ∈ L6/5(Ωs), y0 ∈ L16/3(Γ0) be given and assume that the hypotheses
of Theorem 4.3 are fulfilled. Then a constant c1 exists only depending on Ω with

‖y‖H1(Ω) ≤ c1

(
‖u‖L6/5(Ωs) + ‖y0‖4

L16/3(Γ0)

)
.

Proof: Using the solution y as a test function in (4.1) yields

∫

Ω

κ|∇y|2 dx +

∫

Γr

G(σ|y|3y)y ds +

∫

Γ0

εσ |y|3y2 ds =

∫

Ωs

u y dx +

∫

Γ0

εσ y4
0y ds.

Owing to Lemma 3.3, (iii), and the maximum principle in Theorem 4.3, we have

∫

Ω

κ|∇y|2 dx +

∫

Γr

G(σ|y|3y)y ds +

∫

Γ0

εσ |y|3y2 ds

≥ κmin ‖∇y‖L2(Ω) + εmin σ ϑ3‖y‖L2(Γ0) ≥ c ‖y‖2
H1(Ω).
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Therefore, by trace and embedding theorems,

‖y‖2
H1(Ω) ≤ c




∫

Ωs

u y dx +

∫

Γ0

εσ y4
0y ds




≤ c
(‖u‖L6/5(Ωs)‖y‖L6(Ωs) + ‖y4

0‖L4/3(Γ0)‖y‖L4(Γ0)

)

≤ c1

(
‖u‖L6/5(Ωs) + ‖y0‖4

L16/3(Γ0)

)
‖y‖H1(Ω),

which establishes the case.

Theorem 5.2. Assume that ua ≥ 0, y0 ∈ L16(Γ0), and y0 ≥ ϑ > 0. Then there exists
a solution (ū, ȳ) ∈ L∞(Ωs)× V ∞ to (P).

Proof: As mentioned above, the proof follows standard arguments. We start with a
sequence {(un, yn)}∞n=1 converging to the infimum J̄ ≥ 0 of the objective functional
in (P), i.e. J(un, yn) → J̄ . We will now show the convergence of a subsequence of
{(un, yn)}∞n=1 to an optimal solution (ū, ȳ).
The box constraints ensure that u is bounded in L2(Ωs). Thus, we can select a weakly
converging subsequence, w.l.o.g. again denoted by un, un ⇀ ū. Since Uad is a closed
and convex subset of L2(Ωs), we have ū ∈ Uad.
In addition to the boundedness, the un are also nonnegative because of ua ≥ 0. Together
with the assumptions on y0, this yields the boundedness of ‖yn‖H1(Ω) thanks to Lemma
5.1. Hence, we can select a weakly converging subsequence and w.l.o.g. yn itself, i.e.
yn ⇀ ȳ, n →∞, in H1(Ω). The trace theorem and the compact embedding of H1/2(Γr∪
Γ0) in L2(Γr ∪ Γ0) then give

τyn → τ ȳ, n →∞ in L2(Γr ∪ Γ0).

Now, the convergence of the nonlinearities can be derived on Γr and Γ0. Since un,
n ∈ N, is uniformly bounded in L2(Ωs), and y0 ∈ L16(Γ0) by assumption, Theorem 4.2
ensures that a constant d exists with |y(x)| ≤ d a.e. in Ω and a.e. in Γr ∪ Γ0. One can
easily verify that the Nemytskii operator Φ(y) := |y|3y satisfies

‖Φ(yn)− Φ(ym)‖L2(Γr∪Γ0) ≤ L(d)‖yn − ym‖L2(Γr∪Γ0) (5.1)

for all yn, ym ∈ {y ∈ L∞(Γ0 ∪ Γr) | |y(x)| ≤ d a.e. on Γ0 ∪ Γr}. Since this set is closed
in L2(Γr ∪ Γ0), also |ȳ(x)| ≤ d holds true, and the convergence in L2(Γr ∪ Γ0) together
with (5.1) yields

|τyn|3τyn → |τ ȳ|3τ ȳ in L2(Γr ∪ Γ0). (5.2)

Consider now the variational equation (4.1) when passing to the limit. For (un, yn), it
reads ∫

Ω

κ∇yn · ∇v dx +

∫

Γr

G(σ|yn|3yn)v ds+

∫

Γ0

εσ |yn|3yn v ds =

∫

Ωs

un v dx +

∫

Γ0

εσ y4
0v ds.
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Due to yn ⇀ ȳ in H1(Ω), the first integral on the left-hand side converges to
∫
Ω

κ∇ȳ ·
∇v dx. The boundary integrals on the left-hand side converge because of (5.2) and
the continuity of G. Finally, the inhomogeneity converges owing to un ⇀ ū in L2(Ωs).
Therefore, the limit (ū, ȳ) satisfies the weak formulation (4.1).

The optimality of (ȳ, ū) follows in a standard way by the lower semicontinuity of J .

6 The linearized equation

In this section, we investigate the linearization of the state equation (4.1) at a fixed refer-
ence pair (ȳ, ū) ∈ V ∞×L2(Ωs)

1. The linearized equation arises from the differentiation
of the solution operator associated with the semilinear state equation S : L2(Ωs) → V ∞

mapping u to y. This derivative of S at (ȳ, ū) appears in the variational inequality (see
Section 7). More precisely, we consider the linearized equation with a more general
inhomogeneity, i.e. in the form

−div(κ∇y) = fΩ in Ω

κs

(
∂y

∂nr

)

s

− κg

(
∂y

∂nr

)

g

+ 4 G(σ|ȳ|3y) = fr on Γr

κs
∂y

∂n0

+ 4 εσ|ȳ|3y = f0 on Γ0

(6.1)

with ȳ = S ū ∈ V ∞ and arbitrary functions (fΩ, fr, f0) in L2(Ω) × L2(Γr) × L2(Γ0).
In the next section, we will show that S is indeed Fréchet differentiable and that its
derivative y = S ′(ū)u corresponds to the solution of (6.1) with fΩ = u, fr = 0, and
f0 = 0. However, we first focus on (6.1), and, in the present section, prove the existence
of a unique solution in V ∞. The existence theory is based on the theory of Fredholm
operators and has to account for eigenvalues. This is due to the fact that the Lax-
Milgram lemma cannot directly be applied because of the lack of coercivity, caused by
the radiation operator G in the linearized case. The boundedness of the solution is
again shown by Lemma 3.7.

The variational equation of (6.1) reads

∫

Ω

κ∇y · ∇v dx +

∫

Γ0

4 εσ |ȳ|3y v ds

=

∫

Ω

fΩ v dx +

∫

Γr

(fr − 4 G(σ|ȳ|3y)) v ds +

∫

Γ0

f0 v ds ∀ v ∈ H1(Ω).

(6.2)

In view of ȳ ∈ V ∞ and ȳ ≥ ϑ > 0 (Theorem 4.3), the bilinear form defined by the
left-hand side of (6.2) is bounded and coercive in H1(Ω). Therefore, the Lax-Milgram

1Here and in the following, we will denote a fixed solution of the semilinear equation as well as an
optimal solution by (ū, ȳ).
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lemma yields continuous linear operators BΩ : L2(Ω) → H1(Ω), Br : L2(Γr) → H1(Ω),
and B0 : L2(Γ0) → H1(Ω) such that, with ỹ := τr y:

y = BΩ fΩ + Br (fr − 4 G(σ|τrȳ|3ỹ)) + B0 f0. (6.3)

We are now in a position to formulate the existence theorem for (6.1):

Theorem 6.1. Assume ȳ ∈ V ∞, ȳ ≥ ϑ > 0, and that λ = 1 is not an eigenvalue
of B(ȳ)( · ) := −τr Br(4 G(σ|τrȳ|3 · ) with B(ȳ) : L2(Γr) → L2(Γr). Then, to every
(fΩ, fr, f0) ∈ L2(Ω) × L2(Γr) × L2(Γ0), there exists a unique solution y of (6.1) in
H1(Ω).

Proof: In the following, we will suppress the dependency of B on ȳ, since ȳ is fixed.
Thus, we simply write B instead of B(ȳ). Applying the trace operator τr to both sides,
(6.3) it results in

(I −B)ỹ = ỹ + τrBr(4 G(σ|τrȳ|3ỹ)) = τr (BΩ fΩ + Br fr + B0 f0). (6.4)

Since Br : L2(Γr) → H1(Ω), and ȳ ∈ V ∞ by assumption, and, thus, τrȳ ∈ L∞(Γr), it
follows that B maps all ỹ ∈ L2(Γr) to H1/2(Γr). Due to the compact embedding, B is a
compact operator from L2(Γr) to L2(Γr). Therefore, λ = 1 is either one of the countably
many eigenvalues of B, or (I −B) is continuously invertible. Thus, we obtain a unique
solution ỹ ∈ L2(Γr) of (6.4) prescribed that λ = 1 is not an eigenvalue of B.
Furthermore, for every ỹ ∈ L2(Γr), we have G(σ|τrȳ|3ỹ) ∈ L2(Γr) by means of ȳ ∈ V ∞,
and, hence, (6.3) admits a unique solution in H1(Ω).

Theorem 6.2. Suppose that the assumptions of Theorem 6.1 hold true. Then, for all
fΩ ∈ L2(Ω), fr ∈ L4(Γr), and f0 ∈ L4(Γr), there exists a constant c2 only depending on
Ω such that

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c2

(‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)

)
(6.5)

holds true.

Proof: Again, we use Lemma 3.7 to prove the boundedness, this time with W = H1(Ω).
We apply it to (6.2) for F defined by

〈F (y) , v〉 =

∫

Ω

κ∇y · ∇v dx +

∫

Γ0

4 εσ |ȳ|3y v ds.

Hypothesis (H2) clearly holds with k0 = 0, owing to the coercivity of the bilinear form.
Now, Hypothesis (H1), i.e. the regularity of the right-hand side is the critical point,
since the inhomogeneity on Γr in (6.2) depends on the solution y. As before, we choose
s = 2 in (H1), and, thus, the required regularities coincide with the assumptions on fΩ,
fr, and f0.
The part of the inhomogeneity depending on y and ȳ is given by −4 G(σ|ȳ|3y). It
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belongs to L4(Γr), since y ∈ H1(Ω), and, therefore, τry ∈ L4(Γr) in addition to ȳ ∈ V ∞.
Consequently, also (H1) is satisfied, and Lemma 3.7 can be applied.

It remains to verify that a bound exists that is independent of y. With k0 = 0, estimate
(3.6) on page 6 gives

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0)

≤ c0

(‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖4 G(σ|ȳ|3y)‖L4(Γr) + ‖f0‖L4(Γ0)

)
.

(6.6)

We estimate the term with y by

‖G(σ|ȳ|3y)‖L4(Γr) ≤ c‖G‖L(L4(Γr)) ‖ȳ‖3
L∞(Γr) ‖y‖H1(Ω). (6.7)

With (6.3) and the continuity of BΩ, Br, and B0, we obtain because of the boundedness
of ȳ:

‖y‖H1(Ω) ≤ ‖BΩ fΩ + Br fr + B0 f0‖H1(Ω)

+ c ‖Br‖L(L2(Γr),H1(Ω))‖G‖L(L2(Γr))‖ȳ‖3
L∞(Γr)‖ỹ‖L2(Γr)

≤ c (‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0) + ‖ỹ‖L2(Γr)). (6.8)

Due to (6.4), ‖ỹ‖L2(Γr) is bounded by

‖ỹ‖L2(Γr) ≤ ‖(I −B)−1‖L(L2(Γr)) · ‖BΩ fΩ + Br fr + B0 f0‖L2(Γr)

≤ c(‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)), (6.9)

where Fredholm theory grants ‖(I −B)−1‖L(L2(Γr)) < ∞. Combing (6.7) – (6.9) yields

‖G(σ|ȳ|3y)‖L4(Γr) ≤ c̃ (‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)) (6.10)

with a constant c̃ only depending on Ω. Inserting (6.10) in (6.6) finally gives

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0(1 + c̃)
(‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)

)

≤ c2

(‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)

)
.

7 First order necessary optimality conditions

With the results of Sections 4 and 6, we are now able to show the Fréchet differentiability
of the semilinear PDE solution operator S : u 7→ y from L2(Ωs) to V ∞, see Sec. 7.1.
Defining J(y, u) = J(S u, u) =: j(u), a standard argument then yields the variational
inequality for the optimal pair (ū, ȳ):

j′(ū)(u− ū) = (∇ȳ − z,∇y)L2(Ωg) + ν(ū, (u− ū))L2(Ωs) ≥ 0 ∀u ∈ Uad, (7.1)

with ȳ = S ū and y = S ′(ū)(u− ū). The latter relation means that y satisfies the PDE

−div(κs∇y) = u− ū in Ωs,

−div(κg∇y) = 0 in Ωg,

κs

(
∂y

∂nr

)

s

− κg

(
∂y

∂nr

)

g

+ 4 G(σ|ȳ|3y) = 0 on Γr,

κs
∂y

∂n0

+ 4 εσ|ȳ|3y = 0 on Γ0.

(7.2)
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Note that (7.2) constitutes a special case of (6.1).
In Section 7.2, we transform the variational inequality (7.1) into the standard projection
formula depending on the adjoint state p.

7.1 Differentiability of the control-to-state operator

We show the differentiability of S by the implicit function theorem. To that end, let us
introduce an auxiliary operator T , such that S is implicitly defined by T (u, S(u)) = 0.
Preparing the definition of T , we consider the following equation that is equivalent to
the weak formulation of the semilinear PDE (4.1):

∫

Ω

κ∇y · ∇v dx +

∫

Γ0

λ y v ds

= −
∫

Γr

G(σ|y|3y)v ds +

∫

Γ0

(λ y + εσ y4
0 − εσ |y|3y) v ds +

∫

Ωs

u v dx,

(7.3)

with a fixed λ > 0. Due to the positivity of λ, the left-hand side in (7.3) represents a
bounded, coercive bilinear form in H1(Ω). Thus, for every right-hand side in H1(Ω)∗,
we have a unique solution in H1(Ω). Furthermore, similar to the proof of Theorem
6.2, it follows that this solution is bounded if the right-hand side is sufficiently regular,
i.e. in L2(Ω) × L4(Γr) × L4(Γ0). Thus, continuous operators B̃Ωs : L2(Ωs) → V ∞,
B̃0 : L4(Γ0) → V ∞, and B̃r : L4(Γr) → V ∞ exist with

y = B̃Ωs u− B̃r (G(σ|y|3y)) + B̃0 (λ y + εσ y4
0 − εσ |y|3y),

and our auxiliary operator is given by

T (u, y) := y − B̃Ωs u + B̃r (G(σ|y|3y))− B̃0 (λ y + εσ y4
0 − εσ |y|3y), (7.4)

with T : L2(Ωs)× V ∞ → V ∞.

Theorem 7.1. Assume that ua ≥ 0, y0 ∈ L16(Γ0), y0 ≥ ϑ > 0 and λ = 1 is not an
eigenvalue of B, where B = B(ȳ) is as defined in Theorem 6.1. Then, S : L2(Ωs) → V ∞

is Fréchet differentiable at (ū, ȳ), and y := S ′(ū)(u− ū) is given by the solution of the
linearized equation (7.2).

Proof: According to the definition of T in (7.4) and because of Theorems 4.1 and 4.2,
y = S(u) if, and only if, T (u, y) = T (u, S u) = 0, since this equation corresponds to the
semilinear equation (4.1). To prove the differentiability of S, it thus suffices to verify
the hypotheses of the implicit function theorem for T .
The Nemytskii operator Φ(y) = |y|3y is continuously Fréchet differentiable from L∞(Γr∪
Γ0) to L∞(Γr∪Γ0), see [9]. The other operators in the definition of T are all continuous
and linear operators, and, thus, trivially continuously Fréchet differentiable on their
particular spaces, i.e. G from L∞(Γr) to L∞(Γr), B̃Ωs from L2(Ωs) to V ∞, B̃r from
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L∞(Γr) to V ∞, and B̃0 from L∞(Γr) to V ∞. By the chain rule, T is continuously
Fréchet differentiable from L2(Ωs)× V ∞ to V ∞, and, in particular, continuous.

It remains to show the invertibility of ∂T
∂y

(ū, ȳ). For a given f ∈ V ∞, we have to prove

the existence of a unique y ∈ V ∞ satisfying ∂T
∂y

(ū, ȳ)y = f , i.e., in view of (7.4),

y + 4B̃r (G(σ|ȳ|3y)) = f + B̃0 (λ y − 4εσ |ȳ|3y).

With the substitution y = f − w ∈ V ∞, this is equivalent to the following weak
formulation

∫

Ω

κ∇w · ∇v dx +

∫

Γr

4 G(σ|ȳ|3w)v ds +

∫

Γ0

4 εσ |ȳ|3w v ds

=

∫

Γr

4 G(σ|ȳ|3f)v ds−
∫

Γ0

(λ− 4 εσ |ȳ|3)f v ds ∀ v ∈ H1(Ω),

whose bilinear form coincides with the one of (6.2). Here, the inhomogeneity is given
by fΩ = 0, f0 := (εσ |ȳ|3 − λ)f ∈ L∞(Γ0), and fr := 4 G(σ|ȳ|3f) ∈ L∞(Γr). Thus,
it fulfills the hypotheses of Theorems 6.1 and 6.2. We therefore have w ∈ V ∞, and,
hence, to every f ∈ V ∞, there exists a unique solution y ∈ V ∞, that yields the desired
bijectivity of ∂T

∂y
(ū, ȳ).

Now, since all hypotheses are satisfied, we can apply the implicit function theorem to
(7.4) and obtain, as derivative of S,

y := S ′(ū)(u− ū) = −
(

∂T

∂y
(ū, ȳ)

)−1
∂T

∂u
(ū, ȳ)(u− ū). (7.5)

Finally, a straightforward computation shows that y satisfies (7.5) if, and only if, y is
the solution of the linearized equation (7.2).

7.2 The adjoint equation

A standard technique formally gives the following adjoint equation associated with (P)

div(κg∇p) = ∆ȳ − div z in Ωg

div(κs∇p) = 0 in Ωs

κs

(
∂p

∂nr

)

s

− κg

(
∂p

∂nr

)

g

+ 4σ |ȳ|3G∗p =
∂y

∂nr

− z · nr on Γr

κs
∂p

∂n0

+ 4εσ |ȳ|3p = 0 on Γ0.

(7.6)
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Formal integration by parts, also on the right-hand side, yields the corresponding weak
formulation of (7.6):

∫

Ω

κ∇p · ∇v dx + 4

∫

Γr

σ |ȳ|3 G∗(p) v ds + 4

∫

Γ0

εσ |ȳ|3 p v ds

=

∫

Ωg

(∇ȳ − z) · ∇v dx =: 〈w, v〉 ∀ v ∈ H1(Ω)
(7.7)

with w ∈ H1(Ω)∗, since ȳ ∈ V ∞ and z ∈ L2(Ωg) by assumption (A3).

To show the existence of a unique solution to (7.7), we use a similar technique as for
the linearized equation (6.1) based on the Fredholm alternative (see Section 6).
To that end, we transform (7.7) into

∫

Ω

κ∇p · ∇v dx + 4

∫

Γ0

εσ |ȳ|3 p v ds = 〈w, v〉 − 4

∫

Γr

σ |ȳ|3 G∗(p) v ds.

Due to the positivity of ȳ, the bilinear form defined by the left-hand side is bounded and
coercive in H1(Ω). Thus, we again obtain linear continuous operators BΩ : H1(Ω)∗ →
H1(Ω) and Br : L2(Γr) → H1(Ω) such that

p = BΩ w + Br (−4 σ|ȳ|3 G∗(τrp))

(similar to (6.3), p. 15). Now we can argue as in the proof of Theorem 6.1 and, thus,
obtain the following result:

Theorem 7.2. Assume ȳ ∈ V ∞, ȳ ≥ ϑ > 0, and that λ = 1 is not an eigenvalue
of B(ȳ)( · ) := −τr Br(4 σ|ȳ|3 G∗( · )) with B(ȳ) : L2(Γr) → L2(Γr). Then, to every
w ∈ H1(Ω)∗, there exists a unique solution of (7.7) in H1(Ω).

Now, if we choose v = p as test function in the weak formulation of the linearized
equation (7.2), we obtain

∫

Ω

κ∇y · ∇p dx + 4

∫

Γr

G(σ |ȳ|3y)p ds + 4

∫

Γ0

εσ |ȳ|3 y p ds =

∫

Ωs

(u− ū)p dx.

On the other hand, we insert v = y in the weak formulation of the adjoint equation:
∫

Ω

κ∇p · ∇y dx + 4

∫

Γr

σ |ȳ|3 y G∗(p) ds + 4

∫

Γ0

εσ |ȳ|3 p y ds =

∫

Ωg

(∇ȳ − z) · ∇y dx.

Substracting one equation from the other yields (∇ȳ−z,∇y)L2(Ωg) = (u− ū, p)L2(Ωs) for
the first expression in the variational inequality (7.1) . Thus, (7.1) can be transformed
into

j′(ū)(u− ū) =

∫

Ωs

(u− ū)(p + νū) dx ≥ 0 ∀u ∈ Uad,
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and, finally, a standard pointwise discussion leads to the projection formula

ū(x) = P[ua,ub]

{
−1

ν
p(x)

}
, (7.8)

where P[ua,ub] denotes the pointwise projection operator on [ua, ub].

8 Numerical tests

In this section, we report on some two-dimensional numerical tests. For the compu-
tational domain, we chose the square presented in Figure 1, p. 1, which is naturally
academic. In contrast to this, the material parameters were chosen to approximate the
realistic distributions given in [11]. Two different temperature levels were investigated
in our calculations. At the lower level, the temperature in the gas phase amounts to
about 450 K, whereas, at the higher level, it constitutes approximately 2000 K and, thus,
is sufficiently high for the PVT method mentioned in Section 1. In the low-temperature
example, the thermal conductivity2 in the gas phase is fixed at κg ≡ 0.03 and, having in
mind a graphite crucible, at κs ≡ 35.0 in the solid. At the higher temperatures, we ob-
tain κg ≡ 0.08 and κs ≡ 24.0. The emissivity is set to ε ≡ 0.65 at the lower temperature
level and ε ≡ 0.8 in the high temperature case. In all cases, the Boltzmann radiation
constant3 is given by σ = 5.6696 · 10−8 and the external temperature by y0 = 293.0 K.

As this paper is concerned with first order sensitivity analysis, we implemented a gradi-
ent type method to be consistent with the theory. More precisely, we used a projected
gradient method with a line search according to the Armijo rule. Although the projected
gradient method needs a quite large number of iterations, each step is comparatively
cheap and fast. The only time-consuming part of each iteration is to solve the semilinear
equation which was done by the Newton method. The linearized PDE and the adjoint
equation were approximated by linear finite elements. The integral operators G and K
arising from the nonlocal radiation condition on Γr were discretized by a summarized
midpoint rule.

We present three numerical examples. In the first example, at the lower temperature
level, the optimal temperature profile nearly reaches the desired temperature gradient.
The other two examples refer to the higher temperature level. In these cases, the
desired temperature gradient is hardly been achieved. This applies especially to the last
example, where the optimal control is almost bang-bang, since the desired temperature
gradient is quite large compared to the bounds ua and ub.

In the first example, the desired temperature gradient4 was given by z = (0, 20)T , and
we took ua = 2000, and ub = 8000 for the control constraints5. To compensate for the
comparatively large values of the control, we choose a small Tikhonov regularization

2in W/(mK)
3in W/(m2K4)
4in K/m
5in W/m3
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parameter ν = 5 ·10−7. Because of the bounds for the heat sources, the average temper-
ature in the gas phase is significantly lower than in the other examples. The pictures
2–5 show the optimal control, state, and adjoint state, calculated by the projected gra-
dient method. The optimal control shown in Fig. 2 is only defined in the solid parts
Ωs, and, therefore, its graph shows a hole in the inner square, where the gas phase is
located.
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Figure 2: Control u in the first example.
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Figure 3: Adjoint state p in the first exam-
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Figure 4: State y in the first example.
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Figure 5: Isotherms in the gas phase Ωg.

As one can see in Fig. 5, the desired temperature gradient is nearly reached. Further-
more, the control u possesses peaks in the corners of the inner boundary Γr. As we
observed the same behavior in calculations on two different meshes with 2705 and 16474
grid points, respectively, this does not seem to show a numerical effect. A possible ex-
planation is that the temperature tends to decrease in the corners, as one can see in the
other two examples, where the optimal temperature gradient differs significantly from
the desired one. Since a constant temperature distribution in the x1-direction is re-
quired, the optimal control must increase in the corners to compensate for the decrease
of the temperature.
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To deal with higher temperatures in the gas phase, we now set ua = 125000 and ub =
725000. Accordingly, the Tikhonov regularization parameter is reduced to ν = 3 · 10−9.
As in the first example, the desired temperature gradient is given by z = (0, 20)T . The
following pictures show the optimal control and state in the gas phase for this setting.
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Figure 6: Control u in the second example.
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Figure 7: Isotherms in the gas phase Ωg.

In this example, the optimal temperature distribution in the gas phase differs consid-
erably from the desired temperature gradient. The difference between the temperature
at x2 = 0.5 and x2 = 1.5 amounts to about 14 K and, thus, is significantly smaller than
the desired value of 20 K. Furthermore, the temperature is no longer constant in the
x1-direction.

This behavior especially occurs in the corners,
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Figure 8: State y in the second exam-
ple.

although we again obtain the peaks of the con-
trol u in these corners, as one can see in Fig.
6. A possible explanation for this result is the
strong cooling effect due to the relatively low
external temperature. Because of the compar-
atively large difference of about 1700 K be-
tween the temperature in the gas phase and
the external temperature outside the crucible,
one obtains quite steep gradients in the solid
part Ωs, as one can see in Fig. 8. Therefore,
it is no longer possible to generate a temper-
ature distribution that is constant in the x1-
direction.

This behavior is even more pronounced in the third example, as one can see in Fig. 10.
In this example, we set ua = 200000, ub = 300000, and z = (0, 100)T . As indicated at
the beginning of this section, the desired x2-derivative z2 is comparatively steep and,
therefore, cannot be achieved with these bounds on the control. Thus, the optimal
control is almost bang-bang, as Fig. 9 shows.
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Figure 9: Control u in the third example.
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Figure 10: Isotherms in the gas phase Ωg.
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