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Abstract

We consider a control constrained optimal control problem governed by a
semilinear elliptic equation with nonlocal interface conditions. These conditions
occur during the modeling of diffuse-gray conductive-radiative heat transfer. The
problem arises from the aim to optimize the temperature gradient within crystal
growth by the physical vapor transport (PVT) method. Based on a minimum
principle for the semilinear equation as well as L°°-estimates for the weak solution,
we establish the existence of an optimal solution as well as necessary optimality
conditions. The theoretical results are illustrated by results of numerical compu-
tations.

1 Introduction

In this paper, we investigate an optimal control problem related to the sublimation
growth of silicon carbide single crystals (SiC) by the physical vapor transport (PVT)
method. The semiconductor material SiC is used in numerous industrial applications,
e.g. the production of optoelectronic devices such as blue and green LEDs and lasers.
For the PVT method, polycrystalline SiC powder is placed under a low-pressure inert
gas atmosphere at the bottom of a cavity inside a graphite crucible. The crucible is
heated up to temperatures between 2000 and 3000 K by induction. Due to the high
temperatures and the low pressure, the SiC powder sublimates and crystallizes at a
single-crystalline SiC seed located at the cooled top of the cavity, such that the single
crystal grows into the reaction chamber. See [7, 8] for more details.

Here, we neglect the electromagnetic induction problem and focus on the conductive-
radiative heat transfer in the growth apparatus. Therefore, we consider a simplified
setup of the growth apparatus, shown in Fig. 1, where ()5 denotes the domain of the
solid graphite crucible, whereas €2, is the domain of gas phase inside.

Qg p, 0
0

I
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Figure 1: 2-dimensional section through an exemplary domain for nonlocal radiative
heat transfer.



A very important determining factor for the crystal’s quality and growth rate are the
temperature distribution in the gas phase and, especially, the temperature gradient close
to the surface of the growing crystal [12]. Since we do not consider the electromagnetic
induction, we will optimize the temperature gradient in the gas phase {2, by directly
controlling the heat source u in €.

The temperature y inside the growth apparatus arises as the solution of the conductive-
radiative heat transfer problem in the growth apparatus. Accounting for radiative con-
tributions is essential owing to the high temperatures. Thus, the problem is described
by the stationary heat equation with radiation interface and boundary conditions on
I, and Ty, respectively. We take 5 to be entirely opaque, whereas {2, represents a
transparent medium which does not interact with radiation. Furthermore, the radia-
tive surfaces [y := 0Q and I, := QN ﬁg are presumed to be diffuse-gray, i.e. the
emissivity € is independent of both the direction and the wavelength of the radiation.
In particular, the local radiative heat exchange on I'y can be modeled by the Boltzmann
radiation condition with an external temperature yy. Due to the heat exchange between
points on I'}, we obtain an additional radiative heat flux on I';, denoted by g..

In addition to the stationary semilinear heat equation with radiation interface and
boundary conditions, we consider box constraints for the control function w. Thus, the
optimal control problem, considered here, reads as follows:

( minimize  J(y,u) = %/ Vy — 2| dx + g/ u? dx
A 5

subject to —div(ks Vy) = u in Qg
—div(kg Vy) =0 in

() K Oy — K Oy = onT
g Onr . S anr . qr r

0
ms—y +eolylPy =eoyy on Ty

8%0

\ and  u, <wu(x) <wup, ae in

where ng is the outward unit normal on I'y, and n, is the unit normal on I'; facing out-
ward with respect to € (cf. Fig. 1). Furthermore, z denotes the desired temperature
gradient and v > 0 is a Tikhonov regularization parameter. In the state equation, o rep-
resents the Boltzmann radiation constant, and ks, k., denote the thermal conductivities
in €, €, respectively.

In contrast to the boundary condition on I'y, the radiative heat transfer on I'; is nonlocal.
The corresponding mathematical model used here is described in detail, e.g., in [11, 14].
It provides the additional radiative heat flux ¢. on I'. given by

¢ = (I - K)I-(1-e)K) colyfy:=GolyPy, (1.1)

where K is an integral operator representing the irradiation on I'.. The nonlocal oper-
ators K and G will be specified in Section 3.1. The nonlocal radiation on I, represents
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the main characteristic of our problem, since the nonlinearity in the state equation in
(P) is in general not monotone due to nonpositivity of G' (see Section 3 and [14]).

The state equation in (P) is of semilinear elliptic type. Therefore, the optimal control
problem can be viewed as a semilinear elliptic optimal control problem. The list of
publications in this field is already quite extensive. We only mention Casas [3] or
Bonnans and Casas [2], who consider the Pontryagin principle, or Casas, Troltzsch
and Unger [5], Bonnans [1], Casas and Mateos [4], who consider different aspects of
second-order sufficient optimality conditions. This list might be extended considerably
by including associated papers on different aspects of numerical analysis.

Our paper differs from all these contributions by the interface conditions containing the
nonmonotone and nonlocal operator G. Therefore, our boundary value problem is of
nonmonotone type so that special techniques must be applied.

The paper is organized as follows: After stating the mathematical setting in Section 2,
we provide auxiliary results on the nonlocal operator GG as well as a general boundedness
result for a class of nonlinear equations, see Section 3. In Section 4, we prove a weak
maximum principle for the semilinear state equation and an L*°-estimate for its solu-
tions, followed by the existence of an optimal solution in Section 5. Section 6 is devoted
to the existence and boundedness of a solution to the linearized equation. In Section
7, we establish first order necessary optimality conditions based on the differentiability
of the solution operator associated with the semilinear equation. The corresponding
adjoint state is introduced at the end of Section 7. Finally, Section 8 presents some
numerical results.

2 The mathematical setting

Throughout this paper, we assume the following conditions (A1) — (A3) on the domain
2 and on the quantities and functions occurring in (P):

(A1) We assume that 2 C R? is a bounded simply connected domain with Lipschitz
boundary I'y. The boundary of the simply connected subdomain ﬁg C €, denoted
by T}, is assumed to be a closed Lipschitz surface that is piecewise C9. Notice
that the distance of ', to Ty is positive. Then, () is defined by Qg = Q\Q, (cf.
Fig. 1).

(A2) The Boltzmann radiation constant is assumed to be positive, i.e. ¢ € R*. For the
thermal conductivity, we assume x € L>(Q2) with

() = {/{s(x) in €

Kg(x) in

and k() > Kmin > 0 a.e. on Q. Furthermore, the emissivity e € L>(Iy UT),) is
bounded by 1 > ¢ > g, > 0 a.e. on 'y UT,.



(A3) The desired temperature gradient z is given in L*(
For the box constraints, we assume u,, up € L(
in Q.

;) and v is a positive constant.
Q) and 0 < u,(z) < wp(z) ace.
NoTATION. For a given p with 1 < p < oo, an operator B : LP(T',) — LP(T,) is
said to be positive, if v € LP(I',) and v > 0 a.e. on I', imply Bv > 0 a.e. on I.
Furthermore, 1 denotes the function e(x) = 1 a.e., and [ is the identity operator in the
respective function spaces. We introduce the set of admissible controls by U,q := {u €
L) | ua(x) < u(z) < up(z) a.e. in Qg}r. The measure of a certain set A C R”, n > 1
is denoted by |A|, and 7, denotes the trace operator on I';, whereas 7y is the trace on
['y. Throughout this paper, ¢ is a generic constant.

Let W be a Banach space with its dual space W*. Then, for f € W and g € W*, (f, g)
denotes the associated pairing.

3 Auxiliary results

In Section 3.1, we present some properties of the nonlocal radiation operator . Since
G is in general not positive, the nonlinearity in the semilinear state equation is non-
monotone. However, G still has sufficiently benign properties such that the nonlinear
parts in the state equation are pseudomonotone (see [10]). These properties of G are
also used to prove the boundedness of the solution in Section 4 below.

In Lemma 3.7 of Section 3.2, we will prove the boundedness of the solution y for a
general class of nonlinear equations that applies to both the semilinear case and its
linearized version.

3.1 The nonlocal radiation operator

The operators K and G arising from the nonlocal radiation on I', were investigated
in detail by Laitinen and Tiihonen [10, 14, 15]. We recall some of their results for
convenience:

Definition 3.1. The wntegral operator K, representing the irradiation on ', is given
by

(K y)(z) = / w(z, 2) y(2) ds. (3.1)

with a symmetric kernel w which is, in the two-dimensional case, defined by

72 (2) - (2 = 2)][ne(2) - (2 — )]

w(z, z) = E(x, 2) o — 1 , (3.2a)
and, in the three-dimensional case, defined by
= [ (2) - (z = 2)|[ma(2) - (2 — )]
CL)(Q?,Z) * “<x72) W’Z—$|4 ’ (32b>



where x, z denote two points on Iy, and n.(x) is the unit normal at x facing outward
with respect to Qs (see Fig. 1). Here, = represents the visibility factor which is given by

- O ifTENQ £ 0,
“(x"z)_{l if 72NQ, = 0.

In [15], it is proven that w(x,z) can have a singularity at x of type |z — z|~0=9 in
the two-dimensional and |z — z|72(!79) in the three-dimensional case, which is, in both
cases, integrable. This is the key point to the following lemma also derived in [15].

Lemma 3.2. (i) K maps LP(T,) to LP(T,) for all 1 < p < oc.

(ii) If Ty is a closed Lipschitz surface that is piecewise C1°, then K1 = 1 holds a.e.
on I'..

(i1i) The operator I — (1 —e)K : LP(I'y) — LP(T',) is invertible.

With the help of Lemma 3.2, Tiithonen and Laitinen proved the following properties of
G=(I—-K)I—-(1-¢)K) e (cf. [14, Lemma 6] and [10, Lemma 8§]).

Lemma 3.3. (i) G is a bounded linear operator from LP(I'y) to itself for every 1 <
p < 0.

(i) G can be written as G = I — H with a positive operator H.

(i) For ally € L*(Ty), [ G(oly|*y)yds > 0 holds true.

Iy
Here, we show another property of G that we will use subsequently:

Lemma 3.4. For every function v(x) = k = const. a.e. on 'y, we have G* v = 0.

Proof: Since K has a symmetric kernel, K is formally self-adjoint, i.e. (v, K w) =
(Kv,w) forallv € LP(I'y) and w € LY(I'y), 1/p+1/q = 1. Thus, together with Lemma
3.2, (71), we obtain K*1 =1 a.e. on I',. Therefore, with the definition of G, we find

Gv=el-K(1-¢e) ' I-KYWw=ec(I-K(1—-¢) ' (k—k)=0. =

3.2 Boundedness for a nonlinear equation

We have to show the boundedness of the solution of the semilinear state equation and
its linearization. To unify the proofs, we first prove an auxiliary result for a nonlinear
equation of the form

(F(y),v)=(f,v) VYoeW, (3.3)



where F' : W — W™ is a certain mapping, and y is a given solution in a space W C
H(Q). Tt will be shown that, under suitable assumptions, a solution y belongs to the
function space

Ve = HY Q)N L®(Q), (3.4)

equipped with the norm
[ollvee = Nlvllmr (@) + [0l

Remark 3.5. If y € V™, then 1,y € L>=(I'y), and 1oy € L>(I'y).

This is an immediate consequence of the following Lemma 3.6 that follows from Propo-
sition 5.2, part (ii) in [6].

Lemma 3.6. For a bounded Lipschitz domain Q2 C R", n € N, the trace operator
T HY(Q) — HY?(0Q) is positive, i.e. Tv > 0 a.e. on 9 for v >0 a.e. on (2.

To show the boundedness of a solution to (3.3), we use the following hypotheses:

HYPOTHESES FOR THE NONLINEAR EQUATION (3.3):

(H1) (Regularity of the inhomogeneity): The right-hand side of (3.3) can be expressed

as
v>:/fgvdx+/frvd$+/fovds,
Q Ty To

where fq, f;, and fy satisfy fo € LP(Q), f, € LP*(T,), and fy € LP?(T'y), with
pr=6/(5—5),pp=4/(3—s)and 1 < s < 3.

(H2) (Coercivity): There is a constant ko > 0 such that, for the given solution y € W
and for each k > kg, the functions

y(x) =k, y(z)
() = 0 ]y(x

)
ya) +k, ylx)

are elements of W, and there is a constant ¢ > 0 such that the nonlinearity in
(3.3) satisfies, for each k > ky:

9

>k
< k, (3.5)
S k;

(F), er) = cllenllin )

Lemma 3.7. Suppose that Q C R? satisfies (A1), that y € W is a solution to (3.3)
and that the Hypotheses (H1) and (H2) are fulfilled. Then y € V°°, and there exists a
constant ¢y only depending on €2 such that

Nyl o) + |yl Lo (roure) < co(ko + [ fallzer @) + || fell o2y + [ foll o2 o) ) (3.6)

holds true.



Proof: The proof is based on a technique introduced by Stampacchia and Kinderlehrer
[6, 13] in the linear case. For given k > ko, we define Aq(k) :== {x € Q| |y(z)| > k}
and introduce A,(k) and Ay(k) analogously. Our aim is to show that there is a k > 0
with |Aq (k)| = |Ac(k)| = |Ao(k)| = 0. We start with Hypothesis (H2), that yields

(F(y), px) > c H%H?{l(@) > C(H@k“%fi(m + H%H%qrr) + H%H%Al(ro))

> e ([ tol=wrae) " (] Qol=mtas) " (] ol mtas) ]

Aq(k) Ar (k) Ao (k)

since ¢y equals 0 on Q\ Aqg(k), on I'y \ A,(k), and on I'g \ Ag(k), respectively. If
h >k > ko >0, then A(h) C A(k), where A stands generally for Ag, A,, and Ap, and
we have for an arbitrary m € N:

([ t=nmar)™ = ([ = ryman)™ = b - wppamprm
Alk) Alh)
Defining
w(h) = [Aa()]'"? + | Aa(M)['2 + [Au(h)], (3.7)
one obtains
Il > e (h — R)(h). (38)

Now, we investigate the right-hand side in (3.3). Hypothesis (H1), Hélder’s inequality,
and embedding theorems imply

(f, or) < ||fQ||L6/5(AQ(k))||90k||L6(Q) + ||fr||L4/3(Ar(k))||90k||L4(Fr)
+ [ foll Lars cag e 1okl L2 (o)
<c <||fﬂ||L6/5(AQ(k)) + ||fr||L4/3(Ar(k)) + ||f0||L4/3(AO(k)))||90k||H1(Q)-

Applying (H2), (3.3), and Young’s inequality, we obtain

ekl < € <||fQ||%6/5(AQ(k)) + ||fr||%4/3(Ar(k)) + ||f0||i4/3(A0(k)))‘ (3.9)

Using again Hoélder’s inequality, the first norm on the right-hand side can be estimated
by

6/5 5/3 6/5 s 5/3
([ #a)” < (18 N anon Aai) )
Aq(k)

< |l foll 7o o)l Aa (k) (3.10)

with p1 =6/(5 —s) and 1 < s < 3 as defined above. Similarly, we derive

4/3 1 3/2 < 2
fehdx > ||fr||LP2(Fr)

Ar (k)

A (k)2 (3.11)




with po = 4/(3 — s) (and analogously on Ay).

Due to the Taylor expansion, we have for three abritrary real nonnegative numbers
a,b, and ¢ that (a® +b* +¢*) < (a + b+ c)® for all s > 1. Choosing a = |Aq(k)|"/?,
b=|A.(K)|*/2, and ¢ = |Ag(k)|*/2, combining (3.10), (3.11), and (3.9) yields

lerllF o) < cop(k)?,

with oy = ||fQ||%p1 + ||f,f||Lp2 )+ I foll 0 (rgy» and 1 as defined in (3.7). Together
with (3.8), it follows that

w(h) < ﬁw( ), for h >k > ko > 0. (3.12)

Stampacchia proved in [13] that each nonnegative and nonincreasing function ¢ = ) (t)
satisfying (3.12) with some s > 1, has a zero at some t = d, d > 0 where

d = ko + 27D (el (ko) )2 /ey,
and, in our case, |¢(ko)| = (ko) can be estimated by
(ko) < ¥(0) = [Q"* + |To|/2 + [TV

(see also Kinderlehrer and Stampacchia [6, Lemma B.1]). Due to the definition of ¢ in
(3.7), this implies |y(x)| < d a.e. on ©Q and on I', UTy. Thus, with the definition of oy,
we obtain

Iyl + ylleeory < 24
<2 (ko + 2/ (el ()2 27)
< e (ko + /IFall2on @) + 15 oy + 1ol ragry)
< co (ko + lfallLr@) + 1 fell Loz oy + Nl foll Loz roy)

by the equivalence of the Euclidian and the L'-norm in R3. ]

Remark 3.8. Due to the positivity of the trace operator (cf. Lemma 3.6), in Lemma
3.7, it would have sufficed to prove the boundedness of y on 2. However, this would not
have simplified the proof, as we still needed the direct estimates of the inhomogeneities
on 'y and I'; as carried out above.

4 The semilinear equation

Before we apply Lemma 3.7 to the semilinear equation in (P), we will introduce the
variational form of the state equation and recall a theorem of Laitinen and Tiihonen
[10] that covers its solvability.



With the help of Lemma 3.3, Section 3.1, we are now able to derive the weak formulation
of the state equation in (P). To fix G, we specify p in Lemma 3.3, (7), by p = 5/4 and
obtain G : L>4(T;) — L>*(T';). Then, formal integration by parts over I'; and T, yields

/ﬁ:Vy-Vvdx—ir/G(J|y]3y)vds+/ea\y]3yvds

Q I o

:/uvda:—l—/saygvds YveV,

Qs To

(4.1)

with V = {v € HY(Q) | v € L*(I'}), 7ov € L°(Ty)}. Clearly, due to G : L>4(T,) —
L>4(T,), we have G(ol|y|*y)v € LY(T,) for all y,v € V. The state space V is equipped
with the norm

[ollv = llvlla @ + vl + o]z wo)-

A function y € V is said to be a weak solution of the state equation in (P), if (4.1) is
fulfilled for every v € V.

Theorem 4.1. [10, Theorem 2| For every u € H'(€)* and yo € L>(Ty), the semilinear
equation (4.1) admits a unique solution in V.

The proof is mainly based on Brezis’ theorem [16, Theorem 27.A] for pseudomonotone
operators. Laitinen and Tiithonen showed in [10] that the semilinear differential operator
defined by the left-hand side in (4.1) fulfills all assumptions of Brezis’ theorem, i.e. it is
pseudomonotone, bounded, and coercive on V. Thus, (4.1) admits at least one solution
in V. The uniqueness then follows from a comparison principle [10, Theorem 4].

Next, we show the boundedness of solutions to (4.1). This result has been obtained by
Tiithonen and Laitinen (see [10, Theorem 5]) in a slightly different setting by another
method. Here, we need it for the nonlinear equation (4.1) as well as for its linearized
version (see Section 6). In both cases, Lemma 3.7 can be applied.

Theorem 4.2. Assume thatu € L*() and yo € L*%(Ty). Then, there exists a constant
co only depending on €2 such that

yllz=c@) + [1Yllzoepoure) < co(L+ llull 2 + ol z1e(ry) ) (4.2)

1s valid.

Proof: To apply Lemma 3.7, we have to verify the Hypotheses (H1) and (H2). Here, we
choose the state space V' C H(Q) for the space W. Since yo € L'%(T'y) by assumption,
we have y; € L*(Ty), and thus together with the assumed regularity of u, (H1) is
satisfied with s = 2. To verify (H2), we show

/Wy-Vsokder/ G(Uly\?’y)wkdﬁ/60|yl3ys0kd826Hsokll?ql(m (4.3)
Iy

To
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for each & > 1, which we will use in the estimate of the ['g-term. At first, we show the
positivity of the radiation term on T',. To this aim, we split ¢ = ¢} + ¢, with

I (ZL’) —k ) ($) Z k? — R (I) + k’ (*T) S _k7
(@)= {y 0 ) <k W er@) = {y 0y >k

Hence, one obtains

[ cloliPuecds = [ GlolyPueias+ [ Gollveds gy

Iy Iy Iy

Due to the linearity of GG, the first integral on the right-hand side can be expressed by

[ clolifueias= [ cewgtast [ G is (45)
where
_ Jy@)* y(@) >k, _fo L y(z) >k,
() "{/«* y(x) <k, o4 V@ '—{|y<x>|3y<x>—k4,y<x><k.

This partition is necessary since G is nonlocal. Notice that ® + ¥ = |y[3y and ¥(z) <0
on I',. For the first addend in (4.5), we have, with yx(x) := max{y(x), k},

/G(a@)@fgds:/G(Uy,‘i)(yk—k)d(s:/G(ay,ﬁ)ykds—/aykG*kds>0

Iy

because of Lemma 3.3, (4ii), and Lemma 3.4. Due to G = I — H and the positivity of
H (see Lemma 3.3, (i )) the second integral in (4.5) results in

/G(J‘If)gpzds:a/ dS+O/H W), ds > 0,

Iy

since ¥ (z) # 0 implies ¢} (z) =0 and =, ¢ > 0 holds on T,.
Similarly, we prove the positivity of the second integral on the right-hand side of (4.4)
with yg(z) := min{y(z), —k}, defining

ly(x)Py(z) , y(z) < —k, o L y(z) < —k,
le) = {yk e > —k, ol Y@ "{|y<x>|3y<x>+k4,§<x>>—k.

It remains to analyze the other integrals in (4.3). The first integral is estimated by

/ kVy -V dr > K/minHvSOkH%?(Q)
Q

since Vi (z) =0 if Vy(x) # Vg(x). On Iy, using k > ko := 1, we obtain

/ ea [ylPy pr ds > emino kBHSDkH%%AO(k)) 2 Emin0 ||<PkH%2(F0)>
To

10



as y o = (sign o) (|ox] + k) > @3 is valid on Ag(k) = {x € Q | pr(x) # 0}.
Due to the positivity of fl“r G(oly|*y)pr ds, we finally have

//{Vy-Vgokder/G’(a|y|3y)<,0kds+/ea|y|3yg0kds

Q Iy To
> c([IVerllzz) + el F2rg) = ¢ llrllFn )

Therefore, we can apply Lemma 3.7, and estimate (3.6) gives with s = 2, ky = 1,
fo=wu, and fo =y;

1Yl oo @) + Iyl Lo (rrur) < o (14 lJull o) + 190l e(ro))
< co (1+ ull e + Iyollbrory) -

For the discussion of the linearized equation, see Section 6, we need another property
of the semilinear solution, namely the following maximum principle:

Theorem 4.3. Suppose that u(z) > 0 a.e. in Qs and yo(x) > 9 >0 a.e. on Ty. Ify is
the solution of (4.1), then y(x) > 9 holds a.e. on  and a.e. on T', UT.

Proof: This time, we use the following test function in (4.1):

pol) = {‘3 @) > 0

Furthermore, we define Q= = {x € Q | y(z) < ¥} and introduce analogous definitions

for O, I'; and I';. Thus, we have py|o\o- = 0, and (4.1) reads

//@Vy.Vpﬁdx—f—/ G(oly>y)ps ds

Q- Iy

+/€U(|yl3y—y§) po ds = /upﬁd:v.

Iy Q5

(4.6)

Next, as in the proof of Theorem 4.2, one can show the positivity of the integral over
I', by decomposition:

[ clolsfupsds = [ Gowpads+ [ Glovip s

Fr 1—‘r FT

11



Therefore, (4.6) results in
/50 (yé — |y]3y) py ds > //QVy - Vpydr — /upﬁ dr >0, (4.7)
Ly Q- Q5

since Vpy = Vy on 27, py < 0 by definition, and v > 0 by assumption. On I';, we
also have y — 9 < 0 implying ya — |y|>y > 0. Thus, we obtain

0< /60 (o — lyl*y) po ds = /60 (o — |y’y)(y — ) ds <0,

Ty Ty

and, consequently, |I'y| = 0 or y = yo or y = 9 a.e. on Iy, which, in each case, yields
the assertion on T'y. Therefore, we have py € H} ().
Now, from (4.7), it follows that

Kmin || Vo || £2(0) < /80' (o — |yI*y) po d8+/uw dx <0,

Ty Q5

since Vpy = 0 in Q\Q7. Hence [|[Vpy|lz2@) = [[pvllap) = 0 (notice that we have
already shown py = 0 a.e. on I'g). Thus py = 0 a.e. in 2. Thus, we have shown y > o
a.e. on both €2 and I'y, and Lemma 3.6 then ensures y > 1 a.e. on I',. "

5 Existence of an optimal solution

With the results of Section 4 at hand, the proof of existence of an optimal solution for
the optimal control problem (P) is rather standard. We start with the following lemma:

Lemma 5.1. Let u € L%°(8), yo € L'/3(Ty) be given and assume that the hypotheses
of Theorem 4.3 are fulfilled. Then a constant ¢y exists only depending on € with

Iyllen oy < er (llullzorsqay + Iollfuorsry) ) -

Proof: Using the solution y as a test function in (4.1) yields
/ K| Vy|? dm+/ G(U|y\3y)yds+/£a|y|3y2 ds = / uydx—l—/ e0 Yy ds.
Q Fr F() Qs FO
Owing to Lemma 3.3, (74), and the maximum principle in Theorem 4.3, we have
/ K| Vy|? dx—f—/ G(olylPy)y ds + / o ly|*y* ds
I

Q
> Kin | VYllz2(0) + €min 0 Pyl 20e) = ¢ |0ll7n )

To
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Therefore, by trace and embedding theorems,

Iwﬁmnéct/uww+/?0%wk

s To

< ¢ (llullorsan)

yllzs ) + 19l s oy 19l Lro))
< (Jlullsorsiony + ol oy ) I9llm e,
which establishes the case. "

Theorem 5.2. Assume that u, > 0, yo € L°(T), and yo > 9 > 0. Then there exists
a solution (u,y) € L®(y) x V= to (P).

Proof: As mentioned above, the proof follows standard arguments. We start with a
sequence {(un,y,)}%, converging to the infimum J > 0 of the objective functional
in (P), i.e. J(tn,y,) — J. We will now show the convergence of a subsequence of
{(tn, yn)}22; to an optimal solution (u, 7).

The box constraints ensure that u is bounded in L?(£)). Thus, we can select a weakly
converging subsequence, w.l.o.g. again denoted by wu,, u, — u. Since U,q is a closed
and convex subset of L?(€)), we have @ € U,g.

In addition to the boundedness, the u,, are also nonnegative because of u, > 0. Together
with the assumptions on yo, this yields the boundedness of ||y, 1 (o) thanks to Lemma
5.1. Hence, we can select a weakly converging subsequence and w.l.o.g. vy, itself, i.e.
Yn — ¥, n — oo, in H'(Q). The trace theorem and the compact embedding of Hl/Q(FrU
[y) in L*(T, UTy) then give

TYp — 7Y, n — oo in L*(T, UTy).

Now, the convergence of the nonlinearities can be derived on I', and I'y. Since u,,,
n € N, is uniformly bounded in L*(€), and y, € L'®(T'y) by assumption, Theorem 4.2
ensures that a constant d exists with |y(z)| < d a.e. in Q and a.e. in I', UTy. One can
easily verify that the Nemytskii operator ®(y) := |y|>y satisfies

12 (yn) = @Yl 2(vc0ro) < L) Y0 = Yol L2(r.0r) (5.1)

for all Y, ym € {y € L®(ToUTLY)||y(x)|] < da.e. on Ty UT,}. Since this set is closed
in L?(T, UTy), also |y(z)| < d holds true, and the convergence in L*(T', UT) together
with (5.1) yields

7Yl *Tyn — ITgPry in LT UTY). (5.2)

Consider now the variational equation (4.1) when passing to the limit. For (u,,y,), it
reads

//-@Vyn-Vvdx—l—/G(a|yn|3yn)vds+/6a|yn\3ynvds:
Iy

1)
/unvdx—l—/eaygvds.
O, T
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Due to y, — ¢ in H'(Q), the first integral on the left-hand side converges to fQ kVY -
Vuvdz. The boundary integrals on the left-hand side converge because of (5.2) and
the continuity of G. Finally, the inhomogeneity converges owing to u, — @ in L?(€)).
Therefore, the limit (@, y) satisfies the weak formulation (4.1).

The optimality of (y,u) follows in a standard way by the lower semicontinuity of J. u

6 The linearized equation

In this section, we investigate the linearization of the state equation (4.1) at a fixed refer-
ence pair (y,u) € V> x L*(Q) *. The linearized equation arises from the differentiation
of the solution operator associated with the semilinear state equation S : L?(€) — V'™
mapping v to y. This derivative of S at (g, u) appears in the variational inequality (see
Section 7). More precisely, we consider the linearized equation with a more general
inhomogeneity, i.e. in the form

—div(kVy) = fo  inQ

9y Iy 13
_ 4 = r
= (52) “g(anr)j Glolgiy) = f  onT, o
I{S@ +deoly)Py = fo on I'y
8710

with § = Su € V™ and arbitrary functions (fq, fr, fo) in L?(Q) x L*(T';) x L*(Ty).
In the next section, we will show that S is indeed Fréchet differentiable and that its
derivative y = S’(u)u corresponds to the solution of (6.1) with fo = u, f, = 0, and
fo = 0. However, we first focus on (6.1), and, in the present section, prove the existence
of a unique solution in V*°. The existence theory is based on the theory of Fredholm
operators and has to account for eigenvalues. This is due to the fact that the Lax-
Milgram lemma cannot directly be applied because of the lack of coercivity, caused by
the radiation operator GG in the linearized case. The boundedness of the solution is
again shown by Lemma 3.7.

The variational equation of (6.1) reads

/fiVy~Vvdx+/4€a|y|3yvds

“ (6.2)

:/vada:+/(fr—4G(a|g|3y))vds+/fgvds Vo e HY(Q).
Q To

Iy

In view of g € V> and y > 9 > 0 (Theorem 4.3), the bilinear form defined by the
left-hand side of (6.2) is bounded and coercive in H*(§2). Therefore, the Lax-Milgram

Here and in the following, we will denote a fixed solution of the semilinear equation as well as an
optimal solution by (@, 7).
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lemma yields continuous linear operators Bq : L*(Q) — H'(Q), B, : L*(T',) — H'(Q),
and By : L*(Ty) — H'(Q) such that, with § := 7, y:

Yy = BQ fQ +Br (fr _4G<0-|Trg|3g)) +B0 f0~ (63>

We are now in a position to formulate the existence theorem for (6.1):

Theorem 6.1. Assume y € V=, 4y > 9 > 0, and that A = 1 is not an eigenvalue
of B(y)(+) := -1 B:(4G(o|ny|® -) with B(y) : L*(T,) — L*(T). Then, to every
(fa, fr; fo) € L3(Q) x L*(T,) x L*(Ty), there erists a unique solution y of (6.1) in
H().

Proof: In the following, we will suppress the dependency of B on ¥, since ¥ is fixed.
Thus, we simply write B instead of B(y). Applying the trace operator 7, to both sides,
(6.3) it results in

(I = B)y = §+nB:(4G(0|ngl’y)) = 7 (Ba fo + By fr + Bo fo). (6.4)

Since B, : L*(T;) — H'(Q), and § € V> by assumption, and, thus, .y € L>=(T,), it
follows that B maps all § € L*(T,) to H*/?(T,). Due to the compact embedding, B is a
compact operator from L*(T,) to L*(T,). Therefore, A = 1 is either one of the countably
many eigenvalues of B, or (I — B) is continuously invertible. Thus, we obtain a unique
solution ¢ € L?(T;) of (6.4) prescribed that A = 1 is not an eigenvalue of B.

Furthermore, for every g € L*(T';), we have G(o|ng|*y) € L*(T;) by means of § € V>,
and, hence, (6.3) admits a unique solution in H*(2). "

Theorem 6.2. Suppose that the assumptions of Theorem 6.1 hold true. Then, for all
fao € L*(Q), f. € L*(Ty), and fo € LY(T,), there exists a constant co only depending on
Q such that

lyll o) + 1Yl zomure) < 2 (I fallz) + [ fllzaany + | follzams)) (6.5)

holds true.

Proof: Again, we use Lemma 3.7 to prove the boundedness, this time with W = H'(Q).
We apply it to (6.2) for F' defined by

(F(y), v) = / kVy - Voudz +/ deo|ylPyvds.

Q o

Hypothesis (H2) clearly holds with kg = 0, owing to the coercivity of the bilinear form.
Now, Hypothesis (H1), i.e. the regularity of the right-hand side is the critical point,
since the inhomogeneity on I'; in (6.2) depends on the solution y. As before, we choose
s = 2in (H1), and, thus, the required regularities coincide with the assumptions on fq,

fr, and fo.
The part of the inhomogeneity depending on y and ¥ is given by —4 G(a|y|?y).
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belongs to L*(T';), since y € H'(Q), and, therefore, 7,y € L*(T',) in addition to i € V.
Consequently, also (H1) is satisfied, and Lemma 3.7 can be applied.

It remains to verify that a bound exists that is independent of y. With ky = 0, estimate
(3.6) on page 6 gives

191l () + 1Yl o= (rro)

) (6.6)
< o (Ilfallzz@) + I fellzawn + 14 GlgPy) | s, + 1 foll o)) -
We estimate the term with y by
IG5yl sy < ellGllewaway 07 1911 H1 () (6.7)

With (6.3) and the continuity of Bg, B;, and By, we obtain because of the boundedness
of y:
1yl ) < ||Ba fa + Br fi + Bo follm o)
+ Bl ecee v @p IGl ez ap 10l 2os oo 171 2
< c([lfellzz@) + [ fell ey + [ follae) + N9l 22cm,))- (6.8)
Due to (6.4), ||#|lz2(r,) is bounded by

N9l 2y < (2= B) lewey - 1Ba fa + B fr + Bo foll 2y

< c(l[fall2@) + I felloaany + L foll o)), (6.9)
where Fredholm theory grants ||(I — B)™'||z(z2(r,)) < oo. Combing (6.7) ~ (6.9) yields
IG (7Y ary) < €l fallze) + el + I follLawe)) (6.10)

with a constant ¢ only depending on €). Inserting (6.10) in (6.6) finally gives

9l @) + 1Yl rure) < co(1+ ) (| fallrz@ + 1 fellzaay + [l follzay))
< ¢ (| fallz@) + 1 fellzaany + I follLacs)) - .

7 First order necessary optimality conditions

With the results of Sections 4 and 6, we are now able to show the Fréchet differentiability
of the semilinear PDE solution operator S : u + y from L*(€) to V>, see Sec. 7.1.
Defining J(y,u) = J(Su,u) =: j(u), a standard argument then yields the variational
inequality for the optimal pair (u,g):

jl(a)(u—1u) = (Vy—2,Vy) 2, + (1, (u—1u))2@0) >0 Yu € U, (7.1)
with g = Su and y = S’(u)(u — u). The latter relation means that y satisfies the PDE
—div(ks Vy) =u—1u  in £,

—div(kg Vy) =0 in Q,
i (29 Z k(22 4 ac(olify) =0 on T, (7.2)
on, ), ®\on, . ’
KS@ +4deol|ylPy =0 on I'y.
(9710
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Note that (7.2) constitutes a special case of (6.1).
In Section 7.2, we transform the variational inequality (7.1) into the standard projection
formula depending on the adjoint state p.

7.1 Differentiability of the control-to-state operator

We show the differentiability of S by the implicit function theorem. To that end, let us
introduce an auxiliary operator 7', such that S is implicitly defined by T'(u, S(u)) = 0.
Preparing the definition of T, we consider the following equation that is equivalent to
the weak formulation of the semilinear PDE (4.1):

//@Vy-Vvdx—l—/)\yvds

Q To

= —/ G(a|y|3y)vds+/()\y+5ayé‘—5J\y]3y)vds+/uvdx,

Iy Ty Qs

(7.3)

with a fixed A > 0. Due to the positivity of A, the left-hand side in (7.3) represents a
bounded, coercive bilinear form in H'(Q). Thus, for every right-hand side in H'(Q)*,
we have a unique solution in H'(f2). Furthermore, similar to the proof of Theorem
6.2, it follows that this solution is bounded if the right-hand side is sufficiently regular,
ie. in L*(Q) x LYT,) x L*(I'y). Thus, continuous operators Bq, : L*(€) — V™,
By : LMI'y) — V*°, and B, : LX(I',) — V™ exist with

y = Ba,u— B, (G(oly[’y)) + Bo Ay +eoyy — o [yl*y),
and our auxiliary operator is given by
T(u,y) =y — Bo,u+ B, (G(olyl’y)) = Bo(\y +coyy —eo lyy),  (74)
with T : L3(Q) x V™ — V™,

Theorem 7.1. Assume that u, > 0, yo € L'S(Ty), yo > 9 > 0 and A = 1 is not an
eigenvalue of B, where B = B(y) is as defined in Theorem 6.1. Then, S : L*(Q) — V>
is Fréchet differentiable at (u,y), and y := S'(u)(u — u) is given by the solution of the
linearized equation (7.2).

Proof: According to the definition of 7" in (7.4) and because of Theorems 4.1 and 4.2,
y = S(u) if, and only if, T'(u,y) = T(u, S u) = 0, since this equation corresponds to the
semilinear equation (4.1). To prove the differentiability of S, it thus suffices to verify
the hypotheses of the implicit function theorem for 7.

The Nemytskii operator ®(y) = |y|>y is continuously Fréchet differentiable from L>(T',U
[y) to L>(I',UTY), see [9]. The other operators in the definition of 7" are all continuous
and linear operators, and, thus, trivially continuously Fréchet differentiable on their
particular spaces, i.e. G from L®(T,) to L>(I}), Bg, from L*(Q) to V*®°, B, from
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L>(T,) to V=, and B, from L>(T,) to V*°. By the chain rule, T is continuously
Fréchet differentiable from L?(Q,) x V> to V>, and, in particular, continuous.

It remains to show the invertibility of g_:g(ﬂ’ y). For a given f € V', we have to prove
the existence of a unique y € V*° satisfying g—g(ﬂ, y)y = f, i.e., in view of (7.4),

y + 4B, (G(o|y)*y)) = f + Bo (\y — 4ea |g)’y).

With the substitution y = f —w € V. this is equivalent to the following weak
formulation

/ﬁVw-Vvdx—i—/4G(0|§|3w)vds+/460|g|3wvds

Iy o
:/4G(a|gj|3f)vds—/(A—4w|y‘]3)fvds Vo e HY(Q),
Iy To

whose bilinear form coincides with the one of (6.2). Here, the inhomogeneity is given
by fo =0, fo == (eo |y’ = N)f € L®(Io), and f, := 4G(o]yf’f) € L>(I\). Thus,
it fulfills the hypotheses of Theorems 6.1 and 6.2. We therefore have w € V>, and,
hence, to every f € V°°, there exists a unique solution y € V°°, that yields the desired
bijectivity of g—ig(a, 7).

Now, since all hypotheses are satisfied, we can apply the implicit function theorem to
(7.4) and obtain, as derivative of S,

y=S@u-0=- (5 @n) 5@ (75)

Finally, a straightforward computation shows that y satisfies (7.5) if, and only if, y is
the solution of the linearized equation (7.2). ]
7.2 The adjoint equation

A standard technique formally gives the following adjoint equation associated with (P)

div(kg Vp) = Ay —divz  in Q,

div(ks Vp) =0 in €
dp dp 3w Oy
K (anr)s — Ky (3nr)g + 4o |g)PG*p = o z-n, onl, (7.6)
0
/is—p+4sa|g|3p: 0 on [y.
8’[10
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Formal integration by parts, also on the right-hand side, yields the corresponding weak
formulation of (7.6):

//pr-Vvda:—l-ll/a|g\3G*(p)vds+4/€a|g7\3pvds
Q r, To

:/(Vg—z)-Vvdx:: (w,v) VYve H(Q)

Qg

(7.7)

with w € H*(Q)*, since § € V> and z € L*(Q) by assumption (A3).

To show the existence of a unique solution to (7.7), we use a similar technique as for
the linearized equation (6.1) based on the Fredholm alternative (see Section 6).
To that end, we transform (7.7) into

//{Vp-Vvd:E+4/6J|y|3pvds:(w,v)—4/a|y|3G*(p)vds.

Q I'o Iy

Due to the positivity of g, the bilinear form defined by the left-hand side is bounded and
coercive in H'(€). Thus, we again obtain linear continuous operators Bq : H'(Q)* —
HY(Q) and B, : L*(T',) — H'(Q) such that

p=Bow+ B (—40lg]’ G*(p))

(similar to (6.3), p. 15). Now we can argue as in the proof of Theorem 6.1 and, thus,
obtain the following result:

Theorem 7.2. Assume y € V=, y > 9 > 0, and that A = 1 is not an eigenvalue
of B(y)(-) := —n B:(4oly|> G*(-)) with B(y) : L*(T,) — L*(T.). Then, to every
w € HY(Q)*, there exists a unique solution of (7.7) in HY(Q).

Now, if we choose v = p as test function in the weak formulation of the linearized
equation (7.2), we obtain

/ kVy - Vpdr + 4/ G(o\gj]?’y)pds—l—él/ eo|y)Pypds = /(u —a)pdz.
Q Ty T'o Qs
On the other hand, we insert v = y in the weak formulation of the adjoint equation:
/ kVp-Vydr + 4/ o |yl>y G*(p) ds +4/ eo |ylPpyds = / (Vy — z) - Vydzx.
Q T, T'o Qg

Substracting one equation from the other yields (VY — 2, Vy)12(q,) = (4 —1u, p) 12(q,) for
the first expression in the variational inequality (7.1) . Thus, (7.1) can be transformed
into

== [ (w=n)+vde 20 Yue U
Qs
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and, finally, a standard pointwise discussion leads to the projection formula

() = Pt { = 00) | (78)

where P, 4, denotes the pointwise projection operator on [ug, us).

8 Numerical tests

In this section, we report on some two-dimensional numerical tests. For the compu-
tational domain, we chose the square presented in Figure 1, p. 1, which is naturally
academic. In contrast to this, the material parameters were chosen to approximate the
realistic distributions given in [11]. Two different temperature levels were investigated
in our calculations. At the lower level, the temperature in the gas phase amounts to
about 450 K, whereas, at the higher level, it constitutes approximately 2000 K and, thus,
is sufficiently high for the PVT method mentioned in Section 1. In the low-temperature
example, the thermal conductivity? in the gas phase is fixed at kg = 0.03 and, having in
mind a graphite crucible, at ks = 35.0 in the solid. At the higher temperatures, we ob-
tain k, = 0.08 and ks = 24.0. The emissivity is set to € = 0.65 at the lower temperature
level and € = 0.8 in the high temperature case. In all cases, the Boltzmann radiation
constant? is given by o = 5.6696 - 107® and the external temperature by 3, = 293.0 K.

As this paper is concerned with first order sensitivity analysis, we implemented a gradi-
ent type method to be consistent with the theory. More precisely, we used a projected
gradient method with a line search according to the Armijo rule. Although the projected
gradient method needs a quite large number of iterations, each step is comparatively
cheap and fast. The only time-consuming part of each iteration is to solve the semilinear
equation which was done by the Newton method. The linearized PDE and the adjoint
equation were approximated by linear finite elements. The integral operators G and K
arising from the nonlocal radiation condition on I', were discretized by a summarized
midpoint rule.

We present three numerical examples. In the first example, at the lower temperature
level, the optimal temperature profile nearly reaches the desired temperature gradient.
The other two examples refer to the higher temperature level. In these cases, the
desired temperature gradient is hardly been achieved. This applies especially to the last
example, where the optimal control is almost bang-bang, since the desired temperature
gradient is quite large compared to the bounds u, and u,.

In the first example, the desired temperature gradient was given by z = (0,20)7, and
we took u, = 2000, and u, = 8000 for the control constraints®. To compensate for the
comparatively large values of the control, we choose a small Tikhonov regularization

2in W/(mK)
3in W/(m?K*)
4in K/m

in W/m3
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parameter v = 5-1077. Because of the bounds for the heat sources, the average temper-
ature in the gas phase is significantly lower than in the other examples. The pictures
2-5 show the optimal control, state, and adjoint state, calculated by the projected gra-
dient method. The optimal control shown in Fig. 2 is only defined in the solid parts
Q, and, therefore, its graph shows a hole in the inner square, where the gas phase is
located.

8000 0.015

7000 0.01

6000
0.005

5000
4000
—0.005

3000+
-0.01

2000-
2 -0.015
2

Figure 2: Control u in the first example. Figure 3: Adjoint state p in the first exam-
ple.

05 1 15

1

Figure 4: State y in the first example.  Figure 5: Isotherms in the gas phase €2,.

As one can see in Fig. 5, the desired temperature gradient is nearly reached. Further-
more, the control u possesses peaks in the corners of the inner boundary I',. As we
observed the same behavior in calculations on two different meshes with 2705 and 16474
grid points, respectively, this does not seem to show a numerical effect. A possible ex-
planation is that the temperature tends to decrease in the corners, as one can see in the
other two examples, where the optimal temperature gradient differs significantly from
the desired one. Since a constant temperature distribution in the x;-direction is re-
quired, the optimal control must increase in the corners to compensate for the decrease
of the temperature.
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To deal with higher temperatures in the gas phase, we now set u, = 125000 and u, =
725000. Accordingly, the Tikhonov regularization parameter is reduced to v = 3-107Y.
As in the first example, the desired temperature gradient is given by z = (0,20)7. The
following pictures show the optimal control and state in the gas phase for this setting.

0_8\ /

0.7\N/’
06

1891.
0.5 1 15

X4

Figure 6: Control u in the second example. Figure 7: Isotherms in the gas phase €,.

In this example, the optimal temperature distribution in the gas phase differs consid-
erably from the desired temperature gradient. The difference between the temperature
at ro = 0.5 and x5 = 1.5 amounts to about 14 K and, thus, is significantly smaller than
the desired value of 20 K. Furthermore, the temperature is no longer constant in the
x1-direction.

This behavior especially occurs in the corners,
although we again obtain the peaks of the con-
trol u in these corners, as one can see in Fig.
6. A possible explanation for this result is the
strong cooling effect due to the relatively low
external temperature. Because of the compar-
atively large difference of about 1700 K be-
tween the temperature in the gas phase and
the external temperature outside the crucible,
one obtains quite steep gradients in the solid
part €, as one can see in Fig. 8. Therefore,
it is no longer possible to generate a temper-
ature distribution that is constant in the ;-
direction.

Figure 8: State y in the second exam-
ple.

This behavior is even more pronounced in the third example, as one can see in Fig. 10.
In this example, we set u, = 200000, u; = 300000, and 2z = (0,100)7. As indicated at
the beginning of this section, the desired xo-derivative zo is comparatively steep and,
therefore, cannot be achieved with these bounds on the control. Thus, the optimal
control is almost bang-bang, as Fig. 9 shows.
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Figure 9: Control u in the third example.
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Figure 10: Isotherms in the gas phase (2.
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