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Abstract. We consider a mode approximation model for the longitudinal dy-

namics of a multisection semiconductor laser which represents a slow-fast system

of ordinary di�erential equations for the electromagnetic �eld and the carrier den-

sities. Under the condition that the number of active sections q coincides with

the number of critical eigenvalues we introduce a normal form which admits to

establish the existence of invariant tori. The case q = 2 is investigated in more

detail where we also derive conditions for the stability of the quasiperiodic regime.

1. Introduction

Semiconductor lasers play a crucial role in many areas of modern technology. Espe-

cially in photonic networks they are used for fast data regeneration. Typically, these

devices possess a non-stationary working regime, and their behavior is characterized

by a multi-scale dynamics and by occurring of instabilities of higher co-dimension.

The construction of semiconductor lasers with several sections allows to control these

nonlinear e�ects.

Under certain physical conditions, the longitudinal dynamics of edge emitting mul-

tisection semiconductor lasers can be characterized by the temporal behavior of the

electro-magnetic �eld E and the e�ective carrier density N within the active zone

of the device. The corresponding mathematical model is referred to as traveling

wave model (see [5, 6] and references therein). In this model, the time evolution of

the state variables is described by the following di�erential system in some Banach

space

dE

dt
= H(N)E;

dNj

dt
= "(fj(N)� ETgj(N)E�); j = 1; :::; k:

(1.1)

Here, E is a complex vector depending on time t and on the one-dimensional space

variable z characterizing the longitudinal direction of the laser, E� represents the
complex conjugate of E, and N = (N1; :::; Nk)

T is a real vector whose components

describe the spatially section-wise averaged carrier density in the k active sections.

Hence, the variablesN1; :::; Nk depend on time only. H(N) is a �rst order di�erential

operator with respect to z such that the �rst subsystem in (1.1) represents a linear

hyperbolic system of partial di�erential equations. ETgj(N)E� is a Hermitian form

implying the symmetry of (1.1) with respect to rotation of the complex variable E
(phase shift of the electromagnetic �eld). Thus, system (1.1) couples a linear system

of partial di�erential equations (PDEs) for E with a system of ordinary di�erential

equations (ODEs) forN . The crucial fact that the variables E andN act on di�erent

time-scales is expressed by the presence of the small parameter " which is the ratio

between the averaged lifetime of a photon and the averaged lifetime of a carrier (in

applications, " � 10�2, or often smaller [2, 4, 5]).

The slow-fast structure of (1.1) permits to derive conditions ensuring the existence

of a �nite-dimensional invariant manifold such that the PDE-ODE system (1.1) can
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be reduced to an ODE model. For this purpose we need the following assumption

(see [8, 5]):

Assumption: there exist a negative number � and a simply connected compact set

K � R
k such that for all N 2 K the spectrum of H(N) can be decomposed as

specH(N) = �cH(N) [ �sH(N);

where

Re�cH(N) = 0; Re�sH(N) < � < 0:

According to this splitting, to any N in some small neighborhood of K there exist

spectral projections Pc(N) and Ps(N). We assume that �cH(N) consists of a �nite

number q of eigenvalues. Let the column vectors of the q � q-matrix B(N) form

a basis for the space ImPc(N), and let Ec be the coordinates in this basis, i.e.

E = B(N)Ec for E 2 ImPc(N). In [5] it has been proven that for suÆciently

small " there exists a �nite-dimensional, exponentially attracting smooth invariant

manifold with the representation E = "�(Ec; N; "), where � is a smooth bounded

function de�ned for N in some neighborhood of the set K.

On this invariant manifold, system (1.1) takes the form [4, 5, 8]

dEc

dt
=
�
Hc(N)� "�(N)F (Ec; N) +O("2)

�
Ec;

dN

dt
= "F (Ec; N) +O("2);

(1.2)

where Ec 2 C
q , N 2 R

k , and

Hc(N) := B(N)�1H(N)B(N);

�(N) := B(N)�1Pc(N)@NB(N);

F (Ec; N) :=
�
f1(N)� (B(N)Ec)

Tg1(N)(B(N)Ec)
�; :::;

fk(N)� (B(N)Ec)
Tgk(N)(B(N)Ec)

�� :
(1.3)

In what follows we use the q � q-matrices Gj(N), which are de�ned by

Gj(N) := B(N)T gj(N)B(N)�; j = 1; :::; q;(1.4)

such that we can represent F (Ec; N) in the form

F (Ec; N) :=
�
f1(N)� ET

c G
1(N)E�

c ; :::; fk(N)� ET
c G

k(N)E�
c

�T
:(1.5)

If we drop in (1.2) the O("2)-terms in (1.2), then we get the system

dEc

dt
= [Hc(N)� "�(N)F (Ec; N)]Ec;

dN

dt
= "F (Ec; N);

(1.6)

which is called mode approximation model. That model is in some sense an implicit

system of ordinary di�erential equations because the functions Hc(N) and �(N)

usually are known only implicitly via the solution of the characteristic equation for
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H. Mode approximations have been proven to be extremely useful for numerical

and analytical investigations of longitudinal e�ects in multi-section semiconductor

lasers since the dimension of system (1.6) is typically low (q is often either 1 or 2;

see, e.g.,[1, 7, 3, 4]). In fact, using speci�c information about the eigenvalues of

Hc(N), it is often possible to make further signi�cant simpli�cation of system (1.2).

The goal of this note is to consider the case when for N 2 K the q eigenvalues of

Hc(N) are all di�erent. Moreover, we assume that the number of active sections

is also q (that is k = q) such that the set K is, typically, a single point in the N -

space. In that case we will transform system (1.2) into some normal form which, in

particular, permits to establish the existence of invariant tori for system (1.6). The

case q = 2 will be studied in more detail.

We note that the normal forms we obtain can be viewed as small (of order O(
p
"))

perturbations of some conservative systems. In the case q = 2, for example, the

conservative \nucleus" of the normal form (see equation (3.9)) can be written as a

Lagrangian system with two degrees of freedom, given by the Lagrangian

L = a1

�du1
dt

�2
+ a2

�du2
dt

�2
+
du1

dt

du2

dt
� eu1 � eu2 + b1u1 + b2u2

with certain constants a1; a2, b1; b2. Clearly, the dynamics of small dissipative per-

turbations of such systems is not exhausted by invariant tori only. Therefore, further

analysis of our normal forms can provide more insight into the dynamics of multi-

section lasers.

2. Transformation to a normal form

We consider system (1.2), where we drop the index c, under the following assump-

tions:

(A1): There exists N
0 2 Rq, q � 2, such that the q�q - matrixH(N0) has q di�erent

eigenvalues on the imaginary axis.

(A2): There is a neighborhood N of N0 in Rq such that the matrices H and Gj, and

the functions fj, j = 1; 2; :::; q, depend smoothly on N for N 2 N .

We denote by �j(N) = �j(N) + i!j(N) the eigenvalues of H(N) for N 2 N . By

assumption (A1) we have

�j(N
0) = 0 for j = 1; : : : ; q; !l(N

0) 6= !m(N
0) for l 6= m:(2.1)

We also assume

(A3): For any di�erent pairs (l; s) and (j; p) of indices it holds

!l(N
0)� !s(N

0) 6= !j(N
0)� !p(N

0):

Using the eigenvectors of H(N) as column vectors forming the matrix B(N) we have

the representation Hc(N) =M(n) + i
(n) with the diagonal matrices

M(n) = diag(�1(N); : : : ; �q(N)); 
(n) = diag(!1(N); : : : ; !q(N)):
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Thus, system (1.2) can be rewritten in the form

dE

dt
=
�
M(N) + i
(N)� "�(N)F (E;N) +O("2)

�
E;

dN

dt
= "F (E;N) +O("2);

(2.2)

where the complex vector E has the components E1; : : : ; Eq. It can be shown (see

[8]) that every bounded orbit of system (2.2) must stay in a region of the phase

space, where the variable N is close to N0, i.e., where �j(N) is small for any j. For
the sequel, it turns out to be useful to scale the variable N as N = N0+

p
"n. Then,

system (2.2) takes the form

dE

dt
=

�
M(N0 +

p
"n) + i
(N0 +

p
"n)

�"�(N0 +
p
"n)F (E;N0 +

p
"n) +O("2)

�
E;(2.3)

dn

dt
=

p
"F (E;N0 +

p
"n) +O("3=2):

From the de�nition of �(N) and Gj(N) in (1.3) and (1.4) respectively, it follows

that system (2.3) can be rewritten component-wise as

dEl

dt
= �l(N)El

� "
X

1�p;j�q
�
j
lp(N)

 
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

!
Ep

+O(jEj"2); l = 1; : : : ; q;

dnj

dt
=
p
"

 
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

!
+O("3=2);

j = 1; : : : ; q:

(2.4)

where jEj denotes the Euclidean norm. The following transformation aims to elimi-

nate the terms related to the o�-diagonal elements of Gj
ms(N

0 +
p
"n) on the right-

hand side of dnj=dt. We apply the transformation

~nj = nj +
p
"
X
m6=s

EmE
�
s

Gj
ms(N)

�m(N) + �s
�(N)

;(2.5)

where N = N0 +
p
"n. The relations Gj

ms(N) = Gj
sm(N)� and !m(N

0) 6= !s(N
0)

for m 6= s imply that this transformation is real and non-degenerate for suÆciently

small ". From (2.5) and (2.2), (2.4) we obtain

d~nj

dt
=

dnj

dt
+
p
"
X
m6=s

�dEm

dt
E�

s +
dE�

m

dt
Es

� Gj
ms(N)

�m(N) + �s
�(N)

+O("3=2)

=
p
"
�
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

�
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+
p
"
X
m6=s

Gj
ms(N)

�m(N) + �s
�(N)

�
�m(N) + �s

�(N)
�
EmE

�
s +O("3=2)

=
p
"
�
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

�

+
p
"
X
m 6=s

Gj
ms(N)EmE

�
s +O("3=2):

Thus, we have

d ~nj

dt
=

p
"
�
fj(N)�

X
1�s�q

Gj
ss(N)jEsj2

�
+O("3=2):(2.6)

We recall that N is de�ned by N = N0 +
p
"n. It can be easily veri�ed that the

right hand side of (2.6) keeps its form if we replace N by N0 +
p
" ~n.

For the �eld E the same relations hold as in (2.4), but if we replace N by N0+
p
"~n,

then we have to consider the �rst term separately. For this purpose, we rewrite the

transformation (2.5) in the form

~nj = nj +
p
" hj(N

0 +
p
"n; E;E�);(2.7)

where hj is de�ned by

hj(N
0 +

p
" n; E;E�) :=

X
m6=s

EmE
�
s

Gj
ms(N)

�m(N) + �s
�(N)

:

Let h(N0+
p
" n; E;E�) be the column-vector with the components hj(N

0+
p
" n; E;E�).

Then (2.5) can be represented in the form

n = ~n�
p
" h(N0; E; E�) +O("):

By means of that relation we get

�l(N) = �l(N
0 +

p
" n) = �l(N

0 +
p
" ~n� "h(N0; E; E�) +O("3=2));

so that we have

�l(N
0 +

p
"n) = �l(N

0 +
p
" ~n)� "Ml(N

0)h(N0; E; E�) +O("3=2);

where Ml(N) is the row-vector de�ned by

(2.8) Ml(N) + iWl(N) :=
@�l(N)

@N
:

Thus, in the new variables, system (2.4) takes the form
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dEl

dt
= �l(N

0 +
p
" ~n)El � "Ml(N

0)h(N0; E; E�)El

� "
X

1�j;p�q
�
j
lp(N)

�
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

�
Ep

+O(jEj"2); l = 1; : : : ; q;

d~nj

dt
=
p
"

 
fj(N

0 +
p
" ~n)�

X
1�m�q

jEmj2Gj
mm(N

0 +
p
" ~n)

!
+O("3=2);

l = 1; : : : ; q; j = 1; : : : ; q:

(2.9)

In the following step we eliminate the term

"Ml(N
0)h(N0; E; E�)El = " El

X
j;m6=s

M
j
l G

j
msEmE

�
s

in (2.9) by means of the transformation

(2.10) ~El = El + "El

X
j;m6=s

M
j
l

Gj
msEmE

�
s

(�m + ��s)
2
:

Di�erentiating (2.10) and taking into account (2.9) we get

d ~El

dt
=

dEl

dt
+ " El

X
j;m6=s

M
j
l G

j
msEmE

�
s

�m + ��s + �l

(�m + ��s)
2

= �lEl � " El

X
j;m6=s

M
j
l G

j
msEmE

�
s�

� "
X

1�j;p�q
�
j
lp(N)

�
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

�
Ep

+ " El

X
j;m 6=s

M
j
l G

j
msEmE

�
s

�m + ��s + �l

(�m + ��s)
2

+O(jEj"2)

= �lEl + " El

X
j;m6=s

M
j
l G

j
msEms�

� "
X

1�j;p�q
�
j
lp(N)

�
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

�
Ep

+O(jEj"2);

= �l ~El � "
X

1�j;p�q
�
j
lp(N)

�
fj(N)�

X
1�m;s�q

Gj
ms(N)EmE

�
s

�
Ep

+O(jEj"2); l = 1; : : : ; q:

(2.11)

By means of the next transformation we eliminate all terms on the right-hand side of

(2.11) which depend on the optical phase and are of order ". We apply the following
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transformation with respect to the ~El; l = 1; : : : ; q;

El = ~El + "
X
s6=l

qX
j=1

�
j
ls(N

0)fj(N
0)

~Es

�s(N0)� �l(N0)

� "

qX
j=1

X
s;m;p

�
j
lp(N

0)Gj
ms(N

0)
~Em

~E�
s
~Ep

�m(N0) + ��s(N
0) + �p(N0)� �l(N0)

;

(2.12)

where the last sum is taken over all triples of the indices s, m and p, ranging from

1 to q, excluding those for which m = l and s = p or p = l and m = s. By (A3),

the denominator �m(N
0) + ��s(N

0) + �p(N
0)� �l(N

0) is non-zero for these indices.

Thus, the coordinate transformation (2.12) is well-de�ned. Di�erentiating (2.12) we

get

dEl

dt
=

d ~El

dt
+ "

X
s6=l

qX
j=1

�
j
ls(N

0)fj(N
0)

Es�s(N
0)

�s(N0)� �l(N0)
+O(j ~Ej"3=2)

�"
qX

j=1

X
s;m;p

�
j
lp(N

0)Gj
ms(N

0)
~Em

~E�
s
~Ep(�m(N

0) + ��s(N
0) + �p(N

0))

�m(N0) + ��s(N
0) + �p(N0)� �l(N0)

:

If we substitute for
d ~El

dt
the expression on the right hand side of (2.11), we get

dEl

dt
= �l(N)El � "El

X
j

�
j
ll(N

0)fj(N
0) + " El

X
j;s

�
j
ll(N

0)Gj
ss(N

0)jEsj2

+ " El

X
j;s6=l

�
j
ls(N

0)G
j
ls(N

0)jEsj2 +O(jEj"3=2):
(2.13)

For the following we denote by Rl and Il the real and the imaginary parts of the

factor of "El in (2.13), respectively:

Rl(N
0; E; E

�
) + iIl(N

0; E; E
�
) :=

X
j

�
j
ll(N

0)fj(N
0)

�
X
j;s

�
j
ll(N

0)Gj
ss(N

0)jEsj2 �
X
j;s6=l

�
j
ls(N

0)G
j
ls(N

0)jEsj2(2.14)

:=

qX
j=1

~�lj(fj(N
0)�

qX
s=1

Gj
ss(N

0)jEsj2)�
X
s6=l

�lsjEsj2;

where we use the notation

~�lj = �
j
ll(N

0)

�ls =
Pq

j=1[�
j
ll(N

0)Gj
ss(N

0) + �
j
ls(N

0)G
j
ls(N

0)]:

From (2.13) and (2.9) we obtain the system
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dEl

dt
= �l(N)El � " El

�
Rl(N

0; E; E
�
) + iIl(N

0; E; E
�
)
�
+O(jEj"3=2);

d~nj

dt
=
p
"

 
fj(N

0 +
p
"~n)�

X
1�m�q

jEmj2Gj
mm(N

0 +
p
"~n)

!
+O("3=2);

l = 1; : : : ; q; j = 1; : : : ; q:

(2.15)

Our next goal is to eliminate the term " ElRl(N
0; E; E

�
) on the right hand side of

dEl=dt. For this purpose we require:

(A4). The matrix M(N0) consisting of the row-vectors de�ned in (2.8) is invertible.

Under the assumption (A4) we can introduce the new coordinate n implicitly by the

system of equations (l = 1; : : : ; q):

�l(N
0 +

p
" n) = �l(N

0 +
p
" ~n)� "Rl(N

0; E; E
�
):(2.16)

Let R be the column vector with the components R1; : : : ; Rq and � be the column

vector with the components �1; : : : ; �q. Under the assumption (A4) we get from

(2.16)

n = ~n +
p
"(M(N0))�1(M00~n~n�M00nn� R +O(

p
"));(2.17)

where M00 is the bilinear form de�ned by

M00NN :=
@2�

@N2
(N0)NN:

Substituting (2.17) into M00nn we get

M00~n ~n�M00nn = O(
p
"):

Thus, we have by (2.17)

n = ~n�
p
"M(N0)�1R + O(");

or

nj = ~nj �
p
"

qX
l=1

M jlRl +O(");

where we denote by M jl the entries of the matrix M(N0)�1. Using the above

formulas, and taking into account (2.16) we obtain from (2.15)
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dEl

dt
= El

�
�l(N

0 +
p
" n) + i!l(N

0 +
p
" n+ "M(N0)�1R)� i"Il)

�
+O("3=2jEj);

dnj

dt
=
p
"
�
fj(N

0 +
p
" n)�

X
1�m�q

jEmj2Gj
mm(N

0 +
p
" n)�

�
qX

l=1

M jl d

dt
Rl

�
+O("3=2);

l = 1; : : : ; q; j = 1; : : : ; q:

(2.18)

Introducing the notation (see (2.14))

��lj := Im~�lj �
qX

s=1

WlsRe~�sj; ��ls := Im�ls �
qX

p=1

WlpRe�ps;

�Gjm(N
0 +

p
"�n) := Gj

mm(N
0 +

p
"�n)� 2
jm�m(N

0 +
p
"�n);


jm :=

qX
p=1

"
qX

l=1

M jlRe~�
p
lG

p
mm(N

0) +
X
l 6=m

M jlRe�
p
lm

#
;

whereWls denotes the entries of the matrixW (N0)M(N0)�1, we may rewrite system

(2.18) as follows (note that the corrections 2
jm�m to the coeÆcients Gj
mm are of

order
p
" because �(N0) = 0 by assumption):

dEl

dt
= El

�
�l(N

0 +
p
" n) + i

h
!l(N

0 +
p
" n)�

p
"

qX
j=1

��lj

d

dt
�nj

� "
X
s6=l

��lsjEsj2
i�

+O("3=2jEj);

dnj

dt
=
p
"
�
fj(N

0 +
p
" n)�

X
1�m�q

jEmj2 �Gjm(N
0 +

p
" n)

�
+O("3=2);

l = 1; : : : ; q; j = 1; : : : ; q:

(2.19)

Summarizing our investigations we have the result:

Theorem 1. Under the assumptions (A1) � (A4), to any compact region of the

phase space of system (2.4) there is a suÆciently small "0 such that for 0 < " � "0
system (2.4) is mapped into system (2.19) by a coordinate transformation, which is

O(
p
") close to identity in the given region.

Remark. System (2.19) is our wanted normal form.
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3. The truncated system

If we omit the O("3=2)- terms in (2.19) we get the truncated system

dEl

dt
= El

�
�l(N

0 +
p
" n) + i

h
!l(N

0 +
p
" n)

�
p
"

qX
j=1

��lj

d

dt
�nj ��"

X
s6=l

��lsjEsj2
i�
;

dnj

dt
=
p
"

 
fj(N

0 +
p
" n)�

X
1�s�q

jEsj2 �Gjs(N
0 +

p
" n)

!
:

(3.1)

The following theorem gives an answer to the question about the deviation of the

trajectories of system (2.19) from the trajectories of the truncated system (3.1).

Theorem 2. Let the hypotheses (A1)� (A4) to be valid. Then the trajectories of the

systems (2.19) and (3.1) starting at the same initial point are uniformly O(")-close

on a time interval of order O(
p
1=").

Proof. We write system (3.1) and system (2.19) in the form

(3.2)
dz

dt
= �(z; ");

dw

dt
= �(w; ") +O("3=2)

respectively, where z; w 2 C
2q . We denote by (�; �) the usual scalar product in C

2q

and introduce by kvk =
p
(v; v) a norm in C

2q . Let C be some compact convex

region in C
2q . We denote by Z(z; ") the derivative of �(z; ") with respect to z and

by �(") the maximal eigenvalue of 1
2
(Z(z; ") + Z(z; ")�

>

) for z 2 C. In our case, the

relation � � �0
p
" can be easily veri�ed.

Let z(t; ") and w(t; ") be the solutions of the corresponding systems in (3.2) satisfying

z(0) = w(0), and let Æ(t) = z(t; ")� w(t; "). Under our assumptions we have

d

dt
kÆ(t)k �

((z(t; "); ")� (w(t; "); ") +O("3=2); Æ(t))

2kÆ(t)k

+
(Æ(t); (z(t; "); ")� (w(t; "); ") +O("3=2))

2kÆ(t)k

=
((Z + Z�

>

)Æ(t); Æ(t))

2kÆ(t)k
+O("3=2)

� �0
p
"kÆ(t)k+O("3=2):

Taking into account Æ(0) = 0 we obtain from this inequality

kÆ(t)k � O(")e�0
p
"t;

which implies the result claimed in the theorem. �

If we represent El(t), l = 1; :::; q; in the form

El(t) =
p
Sl(t)e

i'l(t);(3.3)
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then we get from (3.1) the system

d'l

dt
= !l(N

0 +
p
" n)�

p
"

qX
j=1

��lj

d

dt
�nj � "

X
s 6=l

��lsSs;

dSl

dt
= 2�l(N

0 +
p
"n)Sl;

dnl

dt
=
p
"
�
fj(N

0 +
p
"n)�

X
s

�Gjs(N
0 +

p
"n)Ss

�
;

l = 1; :::; q:

(3.4)

Let S and f be the column-vectors with the components S1; :::; Sq and f1; :::; fq,

respectively, let �G be the matrix with the entries �Gjs; 1 � s; j � q. Then the

amplitude system to (3.4) can be represented in the form

dSl

dt
= 2�l(N

0 +
p
"n)Sl;

dn

dt
=
p
"
�
f(N0 +

p
"n)� �G(N0 +

p
"n)S

�
:

(3.5)

Using the scaling � =
p
" t, ~�l = �l=

p
", we get from (3.5)

dSl

d�
= 2~�l(N

0 +
p
"n)Sl; l = 1; : : : ; q

dn

d�
= f(N0 +

p
" n)� �G(N0 +

p
" n)S:

(3.6)

According to �(N0) = 0 we obtain ~�(N0+
p
"n) = M(N0)n+O(

p
"). Since M(N0)

is invertible by assumption (A4), we can implicitly introduce new variables �1; ::; �q
by �j = ~�j(N

0 +
p
" n).

Taking into account n =M(N0)�1� +O(
p
") we get from (3.6) the system

dSj

d�
= 2�jSj; j = 1; : : : ; q;

d�

d�
= f̂(N0 +

p
"�)� Ĝ(N0 +

p
"�)S +O(");

(3.7)

where f̂ =M0f , Ĝ = M0
~G.

For " = 0 the amplitude system (3.7) has the form

dSj

d�
= 2�jSj; j = 1; : : : ; q

d�

d�
= F̂ (N0)� Ĝ(N0)S:

(3.8)
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This system is conservative and reversible: setting Sj = euj we get from (3.8)

(3.9)
d2u

d� 2
= F̂ (N0)� Ĝ(N0)

0
@ eu1

...

euq

1
A :

Thus, the amplitude system (3.7) belongs to the class of conservative systems with a

small (of order O(
p
")) dissipation. In particular, if this system has an exponentially

stable equilibrium or a periodic orbit, its Lyapunov exponents must be of order

O(
p
") or less, i.e. the stability is rather weak.

4. Existence of invariant tori

By Theorem 2, system (3.4) and therefore also system (3.7) provides a good de-

scription of the dynamics of the original system (2.2). For example, the equilibria

of (3.7) with non-negative Sj correspond to invariant tori of system (3.1): the di-

mension of the torus equals q minus the number of zero components of the vector S.
Periodic orbits of system (3.7) lying in the region where all Sj are non-negative also

correspond to invariant tori of (3.1) with the dimension (q+1) minus the number of

identically vanishing Sj. By the O(")-closeness of system (3.1) to the original system

(2.2) it follows that if the invariant torus is normally-hyperbolic with the transverse

Lyapunov exponent of order O(
p
") at least (i.e. if the characteristic exponents of

the corresponding equilibrium or the periodic orbit of the amplitude system (3.7) lie

on a distance of order at least O(
p
") from the imaginary axis), then this invariant

torus persists in the original system for all small ".

In what follows we investigate the case q = 2 in more detail. The amplitude system

(3.7) is written here as

dS1

dt
= �1S1;

dS2

dt
= 2�2S2;

d�1

dt
= F1(N

0 +
p
"�)�G11(N

0 +
p
"�)S1 �G12(N

0 +
p
"�)S2 +O(");

d�2

dt
= F2(N

0 +
p
"�)�G21(N

0 +
p
"�)S1 �G22(N

0 +
p
"�)S2 +O(");

(4.1)

where we removed the "hat"-signs from F and G. In the general case, for " = 0

system (4.1) has a unique equilibrium satisfying S1 6= 0; S2 6= 0, namely

�1 = �2 = 0;

S1 = S�1 = (F1(N
0)G22(N

0)� F2(N
0)G12(N

0))=�;

S2 = S�2 = (F2(N
0)G11(N

0)� F1(N
0)G21(N

0))=�;

(4.2)

where

� = G11(N
0)G22(N

0)�G12(N
0)G21(N

0):
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Thus, system (4.2) has an equilibrium with positive S1 and S2 if and only if

(F1(N
0)G22(N

0)� F2(N
0)G12(N

0))� > 0;

(F2(N
0)G11(N

0)� F1(N
0)G21(N

0))� > 0:
(4.3)

Such equilibrium corresponds to a two-dimensional invariant torus of system (3.4),

or, in other words, to a family (parametrized by two initial phases) of two-frequency

solutions of (3.4) with frequencies close to !1(N
0) and !2(N

0).

From (1.5) it follows that the original system (2.2) has the following symmetry: if

(E(t); n(t)) is a solution of (2.2) than also (E(t)e'; n(t)) is a solution, where ' is

any real number. This symmetry implies that the phase-space can be factorized by

identifying all points (E1; E2) having the same values of jE1j2, jE2j2 and E1E
�
2 . The

truncated system (3.1) has the same symmetry. In order to prove that the torus,

which corresponds to equilibrium (4.2), persists also for small ", we note that the

quasiperiodic solutions which �ll it are relative periodic, i.e., they become periodic

in the factorized state space.

Since systems (2.2) and (3.4) are close to each other (in the sense of Theorem 2), sys-

tem (2.2) will have a relative periodic solution close to the relative periodic solution

of (3.4), for all suÆciently small ", provided the latter has no zero multipliers. This

condition is equivalent to the requirement that the equilibrium of the amplitude

system (4.1) has no zero characteristic root.

The characteristic equation for the equilibrium (4.2) of system(4.1) can be written

as

�4 �
p
"(p11 + p22)�

3 + �2(2S�1g11 + 2S�2g22)+

+ "(p11p22 � p21p12))+

+
p
"
�
2S�1(g21p12 + g11p22) + 2S�2(g12p21 � g22p11)

�
�+ 4S�1S

�
2�+O(") = 0;

(4.4)

where we use the notation gij = Gij(N
0), pij = @(Fi � Gi1S

�
1 � Gi2S

�
2)=@NjjN=N0 .

In case " = 0, where (4.4) can be reduced to the quadratic equation

%2 � 2(S�1g11 + S�2g22)%+ 4S�1S
�
2� = 0(4.5)

the condition S�1S
�
2� 6= 0 implies that no root of (4.5) vanishes, and, therefore, also

no root of (4.4) for suÆciently small ". Thus, we arrive at the following result.

Theorem 3. For suÆciently small ", system (2.2) with q = 2 has a unique two-

dimensional invariant torus, that is a family of two-frequency solutions with frequen-

cies close to !1(N
0) and !2(N

0) if and only if the conditions (4.3) are ful�lled.

The corresponding invariant torus will be stable if all roots of the characteristic

equation (4.4) are located in the left half plane and have a distance of order larger

than O(") to the imaginary axis. As we mentioned above, system (4.1) is O(
p
")-

close to a conservative system. Therefore, in order to ensure stability, the real parts

of the characteristic roots (which tend to zero as " ! 0) must be of order at least
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O(
p
") for non-zero ". So, we make an ansatz � = i� �

p
"� in the characteristic

equation (4.4), and get the following equation:

�4 � 2�2(S�1g11 + S�2g22) + 4S�1S
�
2�+

+i�
p
"[(p11 + p22 + 4�)�2 � 4�(S�1g11 + S�2g22)+

+(S�1(g21p12 � g11p22) + S�2(g12p21 � g22p11))] +O(") = 0:

In the limit " = 0, this yields

�4 � 2�2(S�1g11 + S�2g22) + 4S�1S
�
2� = 0;

(p11+ p22+4�)�2 = 4�(S�1g11+S�2g22) + 2S�1(g11p22� g21p12) + 2S�2(g22p11� g12p21):

Thus, the stability condition for small " requires that all solutions �2 and � of

these equations must be real and positive. A routine computation shows that this

requirement is equivalent to the following set of inequalities:

S�1g11 + S�2g22 > 2
p
S�1S

�
2�; p11 + p22 < 0;

jS�1(g11p22 � g21p12) + S�2(g22p11 � g12p21) + jp11 + p22j(S�1g11 + S�2g22)j <

< jp11 + p22j
p
(S�1g11 + S�2g22)

2 � 4S�1S
�
2�:

(4.6)

Hence, we have the following result.

Theorem 4. The two-dimensional invariant torus established in Theorem 3 is

asymptotically stable for suÆciently small " provided the inequalities (4.6) hold.
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