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Abstract. In the present paper we consider the identi�cation of an obstacle or

void of di�erent conductivity included in a three-dimensional domain by mea-

surements of voltage and currents at the boundary. We reformulate the given

identi�cation problem as a shape optimization problem. Since the Hessian is com-

pact at the given hole we apply a regularized Newton scheme as developed in [14].

All information of the state equation required for the optimization algorithm can

be derived by boundary integral equations which we solve numerically by a fast

wavelet Galerkin scheme. Numerical results con�rm that the proposed regular-

ized Newton scheme yields a powerful algorithm to solve the considered class of

problems.

Introduction

Let D � R
3 denote a bounded domain with boundary @D = � and assume the

existence of a simply connected subdomain S � D, consisting of material with

constant conductivity, essentially di�erent from the likewise constant conductivity

of the material in the subregion 
 = D n S. We consider the identi�cation problem

of this inclusion if the Cauchy data of the electrical potential u are measured at the

boundary � , i.e., if a single pair f = uj� and g = (@u=@n)j� is known.

The problem under consideration is a special case of the general conductivity re-

construction problem and is severely ill-posed. It has been intensively investigated

as an inverse problem. We refer for example to Hettlich and Rundell [22] and

Chapko and Kress [4] for numerical algorithms and to Friedmann and Isakov [15] as

well as Alessandrini, Isakov and Powell [1] for particular results concerning unique-

ness. Moreover, we refer to Br�uhl and Hanke [2, 3] for methods using the complete

Dirichlet{to{Neumann operator at the outer boundary. We emphasize that we focus

in the present paper on exact measurements and do not consider noisy data.

In [24], Roche and Sokolowski have been introduced a formulation as shape optimiza-

tion problem. However, we have proven in [14] that the shape Hessian degenerates

at the optimal domain. Nevertheless, using second order information in terms of a

regularized Newton scheme yieled promising results in comparison to gradient based

methods. In particular, the method converges faster and provides higher accuracy.

The present paper intends to extent these results to three dimensions.

We employ boundary integral representations of the shape functional, its gradient

and its Hessian. After transforming the state equation to a boundary integral equa-

tion, we are able to perform all computations just on the boundary of the domain

under consideration. To obtain a �nite dimensional optimization problem we assume

the inclusion starshaped and discretize its boundary by spherical harmonics. The
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boundary integral equations are solved eÆciently by a fast wavelet Galerkin scheme

which computes the approximate solutions within linear complexity [6, 21, 25].

The present paper is organized as follows. In Section 1 we present the physical

model and reformulate the identi�cation problem as shape optimization problem.

We compute the gradient and the Hessian of the given shape functional and show

how to use boundary integral equations to compute them. In Section 2 we discretize

the boundary of the inclusion and replace the in�nite dimensional optimization

problem by �nite dimensional one. Moreover, we propose a wavelet based fast

boundary element method to compute the shape functional as well as its gradient

and Hessian. In Section 3, we present a numerical experiment in which we compare

the regularized Newton method with a quasi Newton method.

1. Shape problem formulation

1.1. The physical model. Let D 2 R3 be a simply connected domain with bound-

ary � = @D and assume that an unknown simply connected inclusion S with regular

boundary � = @S is located inside the domain D satisfying dist(�;�) > 0, cf. Fig-

ure 1.1. To determine the inclusion S we measure for a given current distribution

g 2 H�1=2(�)=R the voltage distribution f 2 H1=2(�) at the boundary �. Hence, we

are seeking a domain 
 := D n S and an associated harmonic function u, satisfying

the system of equations

�u = 0 in 
;

u = 0 on �;

u = f on �;

@u

@n
= g on �:

This system denotes an overdetermined boundary value problem which admits a

solution only for the true inclusion S.

Following Sokolowski and Roche [24], we introduce the auxiliary harmonical func-

tions v and w satisfying

�v = 0 �w = 0 in 
;

v = 0 w = 0 on �;(1.1)

@v

@n
= g w = f on �;

and consider the following shape optimization problem

(1.2) J(
) =

Z



kr(v �w)k2dx =

Z
�

�
g �

@w

@n

�
(v � f)d� ! inf :
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Σ Ω Γ

Figure 1.1. The domain 
 and its boundaries � and �.

Herein, the in�mum has to be taken over all domains including a void with suÆ-

ciently regular boundary. We refer to Roche and Sokolowski [24] for the existence

of optimal solutions with respect to this shape optimization problem.

1.2. Shape calculus. For sake of clearness in representation, we repeat the shape

calculus concerning the problem under consideration by means of boundary varia-

tions. The shape calculus is in complete analogy to the two-dimensional one in [14].

For a survey on the shape calculus based on the material derivative concept, we

refer the reader to Sokolowski and Zolesio [26] and Delfour and Zolesio [9] and the

references therein.

Let the underlying variation �eldsV be suÆciently smooth such that C2;�-regularity

is preserved for all perturbed domains. Moreover, for sake of simplicity, we assume

in addition that the outer boundary and the measurements are suÆciently regular

such that the state functions v = v(
) and w = w(
) satisfy

(1.3) v;w 2 C2;�(
):

Then, a formal di�erentiation of (1.2) in terms of local derivatives yields immediately

dJ(
)[V] =

Z
�

hV;nikr(v �w)k2d� + 2

Z



hr(v � w);r(dv � dw)idx;

where the local shape derivatives dv = dv[V] and dw = dw[V] satisfy

�dv = 0 �dw = 0 in 
;

dv = �hV;ni
@v

@n
dw = �hV;ni

@w

@n
on �;(1.4)

@dv

@n
= 0 dw = 0 on �:
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The boundary integral representation of the shape gradient is now obtained via

repeated integration by parts

dJ(
)[V] =

Z
�

hV;nifkrvk2 � krwk2gd�

=

Z
�

hV;ni

"�
@v

@n

�2

�

�
@w

@n

�2
#
d�;(1.5)

cf. [14, 24]. The identity rv
��
�
= @v=@n, and likewise for w, issues from the homo-

geneous Dirichlet boundary condition of the state equation (1.1). Moreover, note

that, as an immediate consequence of the shape calculus, (1.5) implies an simpli�ed

�rst order necessary condition

(1.6)
@v

@n
=

@w

@n
on �:

In the case of a hole S which is starshaped with respect to a certain pole p, the

boundary � = @S can be parametrized by a radial function r living on the sphere

with radius one around the pole. Without loss of generality we assume throughout

this paper this pole to be 0. Then, each point x 2 � is represented uniquely by

x = r(bx) � bx, where
bx :=

x

kxk
2 S:= fx 2 R

3 : kxk = 1g:

As one readily veri�es, the outer normal of 
 at the point x 2 � is given by

(1.7) n(x) =
rSr(bx)� r(bx) � bxp
r2(bx) + krSr(bx)k2

where the surface gradient rSwith respect to the sphere is de�ned as

rSr(bx) = rr(bx)� hbx;rr(bx)i � bx:
Note that there holds in particular hrSr(bx); bxi = 0.

We choose the perturbation �eld V such that V(x) = dr(bx) � bx. Thus, the shape

gradient (1.5) can be expressed equivalently in local coordinates as

(1.8) dJ(
)[dr] =

Z
S

dr(bx) r2(bx)"�@w
@n

�2

�

�
@v

@n

�2
#
d�;

where the minus sign issues from the fact that hbx;ni = �r=
p
r2 + krSrk2 according

to (1.7).
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Lemma 1.1. The shape Hessian is given by

d2J(
)[dr1; dr2] =

Z
S

2r dr1 dr2

"�
@v

@n

�2

�

�
@w

@n

�2
#

(1.9)

+r2 dr1 dr2
@

@bx �krwk2 � krvk2
	

+2r2 dr1

�
@w

@n

@dw[dr2]

@n
�

@v

@n

@dv[dr2]

@n

�
d�;

where all data have to be understood as traces on the boundary �.

Proof. The existence of a shape Hessian is provided by means of standard theory,

cf. [9, 26]. To derive the explicit structure, we proceed similar to [10, 11] by dif-

ferentiating the shape gradient (1.8). The domain 
 respective boundary � can be

identi�ed with its parametrization, i.e., with the function r : S! �. Similarly,

we can identify the perturbed domain 
" respective boundary �" with the function

r" = r + "dr2. Therefore, we �nd

dJ(
")[dr1]� dJ(
")[dr1]

=

Z
S

dr1

(
r2"

"�
@w"

@n"

�2

�

�
@v"

@n"

�2
#
� r2

"�
@w

@n

�2

�

�
@v

@n

�2
#)

d�;

where v" and w" are the solutions of the state equation with respect to the perturbed

domain 
" and n" is the outer normal of 
" at �". Using Taylor's expansion

r2" = r2 + 2" r dr2 +O("2)

yields

dJ(
")[dr1]� dJ(
")[dr1]

=

Z
S

dr1

(
2r"dr2

"�
@w"

@n"

�2

�

�
@v"

@n"

�2
#
+O("2)

)
d�

+

Z
S

dr1r
2

("�
@w"

@n"

�2

�

�
@v"

@n"

�2
#
� r2

"�
@w

@n

�2

�

�
@v

@n

�2
#)

d�:

The �rst term in this expression will give the �rst term in (1.9). Hence, it remains

to consider the di�erence�
@v"

@n"

�2

�

�
@v

@n

�2

= hrv"
��
�"
;rv"

��
�"
i � hrv

��
�
;rv

��
�
i;

since the corresponding term for w is treated in complete analogy. Observing r" =

r + "dr2, we conclude by Taylor's expansion

hrv"
��
�"
;rv"

��
�"
i = hrv"

��
�
;rv"

��
�
i + 2"dr2

@

@bxhrv"���� ;rv"����i;
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where �� is de�ned via the radial function r� = r + �dr2, 0 < � < ". Inserting now

the local shape derivative (1.4)

rv"
��
�
= rv

��
�
+ "dr2rdv[dr2]

��
�
+O("2);

we arrive at �
@v"

@n

�2

�

�
@v

@n

�2

= 2"dr2
@

@bxhrv"���� ;rv"����i
+ 2"dr2hrdv[dr2]

��
�
;rv

��
�
i +O("2):

Computing now lim"!0fdJ(
")[dr1]� dJ(
")[dr1]g=" proves the assertion due to

hrdv[dr2]
��
�
;rv

��
�
i =

@v

@n
hrdv[dr2]

��
�
;ni =

@v

@n

@dv[dr2]

@n
:

�

We like to stress that we have proven in [14] that the shape Hessian at the optimal

domain 
? is a compact mapping H1=2(�?)! H�1=2(�?), i.e., in its natural energy

space. This issues from the fact that it holds @v=@n = @w=@n on �? due to the

necessary condition (1.6). Hence, the �rst two terms in (1.9) cancel out and only

the third term remains containing the di�erence @dv[dr]=@n � @dw[dr]=@n. This

di�erence yields the compactness since the local shape derivatives di�er only from the

boundary conditions on �, cf. (1.4). As a main consequence, the known illposedness

of the identi�cation problem in EIT is strongly related to the illposedness of the

optimization problem (1.1), (1.2). We refer the reader to [14] for the details.

1.3. Reformulating the shape Hessian. This subsection is intended to transform

the second term of the shape Hessian (1.9) such that it is computable. For sake of

brevity, we formulate the next results only with respect to v. But, of course, the

equivalent results are valid also with respect to w.

Lemma 1.2. Let the normalized tangent t in the point x = r(bx) � bx 2 � be de�ned

by

t =
n� (bx� n)

kn� (bx� n)k
=

krSr(bx)k2bx+ rrSr(bx)
krSr(bx)kpr2(bx) + krSr(bx)k2 :

Then, on � there holds the identity

@

@bxkrvk2 = 2
@v

@n

�
krSr(bx)kp

r2(bx) + krSr(bx)k2 @2v

@n@t

�
r(bx)p

r2(bx) + krSr(bx)k2 @
2v

@n2

�
;

where @2v=@n2 := hr2v � n;ni and @2v=(@n@t) := hr2v � n; ti.
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Proof. We decompose the spatial directions into the normal n in the point x 2 �

and two orthonormal tangential directions

s =
bx� n

kbx� nk
; t =

n� (bx� n)

kn� (bx� n)k
:

Note that

n� (bx� n) = bx� hbx;ni � n =
krSr(bx)k2bx+ rrSr(bx)
r2(bx) + krSr(bx)k2 ;

kn� (bx� n)k =
krSr(bx)kp

r2(bx) + krSr(bx)k2 ;
and hence

t =
krSr(bx)k2bx+ rrSr(bx)

krSr(bx)kpr2(bx) + krSr(bx)k2 :
The ansatz bx = �n+ �s+ 
t

leads to

� = �
r(bx)p

r2(bx) + krSr(bx)k2 ; 
 =
krSr(bx)kp

r2(bx) + krSr(bx)k2 ;
and � = 0 since bx ? bx� n. Consequently, we �nd

@

@bxkrvk2 = hrkrvk2; bxi = 2hr2v � bx;rvi = 2
@v

@n
hr

2v � n; bxi
= 2

@v

@n

�
krSr(bx)kp

r2(bx) + krSr(bx)k2 @2v

@n@t

�
r(bx)p

r2(bx) + krSr(bx)k2 @
2v

@n2

�
:

�

Hence, we have reduced the second term of the shape Hessian (1.9) to second order

derivatives of the states. The next lemma shows how to compute the second order

normal derivative.

Lemma 1.3. We denote by H the mean curvature. Then, on � there holds the

identity

(1.10)
@2v

@n2
= 2H

@v

@n

provided that v 2 C2(
).
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Proof. Since v 2 C2(
), the Laplace equation holds up to the boundary �. It might

be written as (see [26], for example)

�v =
@2v

@n2
� 2H

@v

@n
+��v = 0;

where �� denotes the Laplace-Beltrami operator with respect to �. The homogenous

Dirichlet condition on � implies��v = 0 which yields immediately the assertion. �

Throughout the remainder of this paper we shall assume that the boundary manifold

@
 is given as a parametric surface consisting of smooth patches. More precisely, let

� := [0; 1]2 denote the unit square. The manifold @
 = � [ � 2 R3 is partitioned

into a �nite number of patches

(1.11) @
 =

M[
i=1

�i; �i = 
i(�); i = 1; 2; : : : ;M;

where each 
i : � ! �i de�nes a di�eomorphism of � onto �i. The intersection

�i \ �i0 , i 6= i0, of the patches �i and �i0 is supposed to be either ; or a common

edge or vertex.

Abbreviating for s = [s1; s2]
T 2 �


i;j(s) :=
@
i(s)

@sj
; 
i;j;k(s) :=

@2
i(s)

@sj@sk
; j; k = 1; 2;

the �rst and second fundamental tensors of di�erential geometry are given by

Ki(s) =
�
h
i;j(s); 
i;k(s)i

�
j;k=1;2

; Li(s) =
�
hn; 
i;j;k(s)i

�
j;k=1;2

:

Using these de�nitions, the mean curvature involved in (1.10) reads as (cf. [5])

H
�

i(s)

�
=

1

2
trace

�
K

�1
i (s)Li(s)

�
:

Moreover, consider a function u 2 H1(@
) which is de�ned via parametrization,

i.e., we have functions �i : � ! R satisfying u Æ 
i = �i, i = 1; 2; : : : ;M . Then,

according to [5], the surface gradient r@
u is de�ned as follows

(1.12) r@
u
�

i(s)

�
=
�

i;1(s); 
i;2(s)

�
K

�1
i (s)

�
@�

i
(s)

@s1
@�i(s)
@s2

�
:

With these preperations at hand, we are able to prove the next lemma. We mention

that it makes essentially use of the homogenous Dirichlet boundary conditions of v

on �.

Lemma 1.4. On � there holds the identity

@2v

@n@t
=
D
r�

@v

@n
; t
E
:
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Proof. Invoking the parametrization, we �nd

@

@s1

@v

@n
=

@

@s1
hrv;ni = hr2v � n; 
i;1i+

D
rv;

@

@s1
n

E
:

From

@

@s1
n =

@

@s1


i;1 � 
i;2

k
i;1 � 
i;2k

=
1

k
i;1 � 
i;2k

�
@

@s1
(
i;1 � 
i;2)�

D
n;

@

@s1
(
i;1 � 
i;2)

E
� n

�
and D

rv;
@

@s1
(
i;1 � 
i;2)

E
=

@v

@n

D
n;

@

@s1
(
i;1 � 
i;2)

E
we conclude D

rv;
@

@s1
n

E
= 0:

In complete analogy one infers the analogous result with respect to the derivative

@=@s2 such that we arrive at

@

@s1

@v

@n
= hr

2v � n; 
i;1i;
@

@s2

@v

@n
= hr

2v � n; 
i;2i:

Next, de�ning the two tangential vectors e
i;1 and e
i;2 via�e
i;1;e
i;2� := �

i;1; 
i;2

�
K

�1
i

one readily veri�es

h
i;k;e
i;li = Æj;k; k; l = 1; 2:

Hence, we can rewrite the tangent t by

t = ht; e
i;1i
i;1 + ht; e
i;2i
i;2;
which implies

@2v

@n@t
= hr

2v � n; ti = hr
2v � n; 
i;1iht; e
i;1i+ hr

2v � n; 
i;2iht;e
i;2i
=
D�

i;1; 
i;2

�
K

�1
i

h
hr

2v�n;
i;1i

hr
2v�n;
i;2i

i
; t
E
=
D
r�

@v

@n
; t
E
:

�

We now combine the Lemmata 1.2, 1.3 and 1.4 and derive the �nal result.
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Corollary 1.5. The shape Hessian (1.9) is equivalent to

d2J(
)[dr1; dr2] =

Z
S

2r dr1 dr2

"
1 �

2Hr2p
r2 + krSrk2

#

�

"�
@v

@n

�2

�

�
@w

@n

�2
#

+ 2r2 dr1 dr2

�
@v

@n

D
r�

@v

@n
;n� (bx� n)

E
�

@w

@n

D
r�

@w

@n
;n� (bx� n)

E�
+ 2r2 dr1

�
@w

@n

@dw[dr2]

@n
�

@v

@n

@dv[dr2]

@n

�
d�:(1.13)

1.4. Boundary integral equations. In this subsection we compute the unknown

boundary data of the state functions v and w by boundary integral equations. We

introduce the single layer and the double layer operator with respect the boundaries

�;	 2 f�;�g by

(V�	u)(x) := �
1

4�

Z
�

1

kx� yk
u(y)d�y; x 2 	;

(K�	u)(x) :=
1

4�

Z
�

hx� y;nyi

kx� yk3
u(y)d�y; x 2 	:

Note that V�	 denotes an operator of order �1 if � = 	, i.e. V�� : H�1=2(�) !

H1=2(�), while it is an arbitrarily smoothing compact operator if � 6= 	 since

dist(�;�) > 0. Likewise, if �;� 2 C2, the double layer operator K�� : H1=2(�) !

H1=2(�) is compact while it smoothes arbitrarily if � 6= 	. We refer the reader to

[5, 18, 23] for a detailed description of boundary integral equations.

The normal derivative of w is given by the Dirichlet-to-Neumann map

(1.14)

"
V�� V��

V�� V��

# "
@w
@n

��
�

@w
@n

��
�

#
=

"
1=2 +K�� K��

K�� 1=2 +K��

# "
0

f

#
;

cf. (1.1). Likewise, the unknown boundary data of v are determined by

(1.15)

"
V�� �K��

�V�� 1=2 +K��

#"
@v
@n

��
�

vj�

#
=

"
1=2 +K�� �V��

�K�� V��

#"
0

g

#
:

The unknown boundary data of the local shape derivatives dv = dv[dr] and dw =

dw[dr] are derived by the boundary integral equations"
V�� V��

V�� V��

# "
@dw
@n

��
�

@dw
@n

��
�

#

=

"
1=2 +K�� K��

K�� 1=2 +K��

#"
�hV;ni@w

@n

��
�

0

#
(1.16)
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and "
V�� �K��

�V�� 1=2 +K��

#"
@dv
@n

��
�

dvj�

#

=

"
1=2 +K�� �V��

�K�� V��

#"
�hV;ni @v

@n

��
�

0

#
:(1.17)

2. Discretization

2.1. Finite dimensional approximation of boundaries. Since the in�nite di-

mensional optimization problem cannot be solved directly, we replace it by a �nite

dimensional problem. Recall that the boundary � admits a unique representation

(2.18) � =
�
r(bx) � bx 2 R3 : bx 2 S	 ;

and the regularity � 2 C2;� is directly associated to r 2 C2;�(S). We now introduce

the spherical harmonics.

For n 2 N0 and jmj � n consider the Legendre polynomials

Pn(t) :=
1

2nn!

� d

dt

�n
(t2 � 1)n; t 2 R;

and the associated Legendre functions

P jmj
n (t) := (1� t2)jmj=2

� d

dt

�
jmj

Pn(t); t 2 R:

Then, the spherical harmonics Y m
n : S! R are given by

Y m
n (bx) :=s

2n+ 1

4�

(n� jmj)!

(n+ jmj)!
P jmj
n (bx3)

8<:Re
�
(bx1 + ibx2)m�; m � 0;

Im
�
(bx1 + ibx2)m�; m < 0:

Since the spherical harmonics are the restriction of homogeneous harmonical poly-

nomials to the unit sphere, the radial function r in (2.18) admits a unique represen-

tation

r(bx) = 1X
n=0

nX
m=�n

�m;nY
m
n (bx); bx 2 S;

with certain numbers �m;n 2 R. Hence, it is reasonable to take a truncated series

(2.19) rN (bx) = NX
n=0

nX
m=�n

�m;nY
m
n (bx); bx 2 S;

as approximation of r. We mention that also other boundary representations like B-

splines can be considered as well. The advantages of our approach is an exponential

convergence rN ! r if the shape is analytical.
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Figure 2.2. Parametric representation of 
.

Since rN has the (N + 1)2 degrees of freedom a0;0; a�1;1; : : : ; aN;N, we arrive at a

�nite dimensional optimization problem in the open set

�N := f(a0;0; a�1;1; : : : ; aN;N) : rN > 0 on Sand dist(�;�) > 0g ;

which is a subset of R(N+1)2. Then, via the identi�cation rN , 
N , the �nite

dimensional approximation of problem (1.2) reads as

(2.20) J(
N)! min

The associated gradient dJ(
N )[dr] and Hessian d2J(
N)[dr1; dr2] have to be com-

puted with respect to all directions dr; dr1; dr2 = Y m
n (x)x, m = �n; : : : ; n, and

n = 0; : : : ; N .

At the end of this subsection, we like to point out that a parametric representation in

accordance with Subsection 1.3 can be constructed as follows. The cube [�0:5; 0:5]3

consists of six patches. Each point x 2 [�0:5; 0:5]3 can be lifted onto the boundary

� via the operation

(2.21) y(x) = rN

�
x

kxk

�
�
x

kxk
2 �:

That way, the surface is subdivided into six patches. The parametric representations


i : �i ! � can be easily derived from (2.21). In Figure 2.2 one �nds an illustration

of the proposed parametric representation.

2.2. Treating the optimization problem. The minimization problem de�ned by

(2.20) implies to �nd its stationary points 
?
Nr

(2.22) dJ(
?
Nr
)[dr] = 0
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for all directions dr = Y m
n (x)x, m = �n; : : : ; n, and n = 0; : : : ; N . To solve (2.22),

we consider on the one hand a method which is based only on �rst order information,

namely a quasi Newton method updated by the inverse BFGS-rule without damping,

see [16, 17] for the details.

On the other hand, we perform a Newton method which we regularize since the

shape Hessian is compact at the optimal domain 
?. Namely, abbreviating the

discrete gradient by Gn and the associated Hessian by Hn, we consider in the n-th

iteration step the descent direction

hn := �(H2
n + �nI)

�1
HnGn;

where �n > 0 is an appropriately chosen regularization parameter. This descent

direction hn solves the minimization problem

kHnhn �Gnk
2 + �nkhnk

2
! min

and corresponds to a Tikhinov regularization of equation (2.22). Moreover, note that

we employ in both methods a quadratic line search with respect to the functional

(1.2) based on the information of the actual value of the cost functional and its

gradient, and on the value of the cost functional with respect to the new domain.

2.3. Numerical method to compute the state. We want to employ a boundary

element method to compute the required boundary data of the state equations.

Recall that we have introduced in Subsection 1.3 a parametric representation of

boundary @
 = � [ � by quadriliteral patches. A mesh of level j on @
 is then

induced by dyadic subdivisions of depth j of the reference square � into 4j squares.

This generates 4jM elements (or elementary domains). On the given mesh we

consider on each boundary � 2 f�;�g piecewise bilinear basis functions f��j;k : k 2

4�
j g, where 4

�
j denotes an appropriate index set.

For �;	 2 f�;�g, we introduce the system matrices

V�	 =
1

4�

�Z
	

Z
�

1

kx� yk
��i (y)�

	
j (x)d�yd�x

�
i24�

j
; j24	

j

;

K�	 =
1

4�

�Z
	

Z
�

hx� y;nyi

kx� yk3
��i (y)�

	
j (x)d�yd�x

�
i24�

j
; j24	

j

;

and the mass matrices

M� =

�Z
�

��i (x)�
�
j (x)d�x

�
i;j24�

j

;

and the load vectors of Dirichlet data f� and Neumann data g�

f� =

�Z
�

��i (x)f(x)d�x

�
i24�

j

; g� =

�Z
�

��i (x)g(x)d�x

�
i24�

j

:
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Then, the linear system of equations"
V�� V��

V�� V��

#"
a�

a�

#

=

"
1=2M� +K�� K��

K�� 1=2M� +K��

#"
M

�1
� f�

M
�1
� f�

#
;(2.23)

gives us the Neumann data a� =
P

i24�
j

[a�]i�
�
i on � and a� =

P
i24�

j

[a�]i�
�
i on �

from the Dirichlet data on � and �. Likewise, the system"
V�� �K��

�V�� 1=2M� +K��

# "
b�

a�

#

=

"
1=2M� +K�� �V��

�K�� V��

#"
M

�1
� g�

M
�1
� f�

#
;(2.24)

yields the Dirichlet data b� =
P

i24�
j

[b�]i�
�
i on � and the Neumann data a� =P

i24�
j

[a�]i�
�
i on � from the Neumann data g� on � and the Dirichlet data f� on

�. Note that we plugged in the L2-orthogonal projection involvingM�1
� to decouple

the data vectors from the boundary integral operators on the right hand side, see

also [12, 13].

Using the traditional piecewise bilinear nodal basis functions leads to the traditional

boundary elementmethod. Then, the systemmatrices are densely populated and we

end up with an at least quadratic complexity for computing the approximate solution

of (2.23) and (2.24), i.e., the computational work scales like O
�
(j4�

j j + j4�
j j)

2
�
=

O(16j).

We employ instead appropriate biorthogonal spline wavelets as constructed in several

papers, see e.g. [8, 20, 21]. Then, we obtain quasi{sparse system matrices having

only O(j4�
j j + j4�

j j) = O(4j) relevant matrix coeÆcients. Applying the matrix

compression strategy developed in [6, 25] combined with an exponentially convergent

hp{quadrature method [19], the wavelet Galerkin scheme produces the approximate

solution of (2.23) and (2.24) within linear complexity. In particular, due to the

norm equivalences of the wavelet bases, the diagonal of the system matrices de�ne

appropriate preconditioners [7, 25]

We mention that the appearing system matrices have to be computed only once

for each domain while the systems (2.23) and (2.24) have to be solved (N + 1)2

times with di�erent right hand sides to obtain the Neumann data of the local shape

derivates. We emphazise that the iterative solution is much faster for the very

sparsi�ed system in wavelet coordinates compared to the dense system arising from

the traditional boundary element method.
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Figure 3.3. The exact inlcusion (left) and the initial guess (right).

3. Numerical results

We choose D as the cube [�1; 1]3 and a inclusion S centered in 0 as shown in

Figure 3.3. The Dirichlet data f are chosen as (4x2�3y2�z2)j� while the Neumann

data g are computed numerically with appropriate accuracy. We use a sphere, also

centered in 0, near the optimal domain as initial guess, cf. 3.3. The numerical

setting is as follows. We choose N = 5, i.e. 36 spherical harmonics to represent the

boundary �. The cube is represented by six patches, that are twelve patches in all to

represent the boundary @
. The Galerkin discretization is performed on the mesh

of level 4 which yields 3468 piecewise bilinear boundary elements. We follow [14]

and choose �n = 2�n in the n-th step of the regularized Newton method. Thus, in

each step we reduce the regularization parameter by the factor 2. Again this choice

turns out to be very eÆcient.

In the left picture of Figure 3.4 the history of the shape error is plotted, measured by

the `2-norm of the coe�cients associated with the spherical harmonics. The dashed

line corresponds to the quasi Newton method while the solid line belongs to the

regularized Newton method. The regularized Newton method requires only 30 it-

eration steps to achieve the accuracy o�ered by the underlying discretization which

is indicated by stagnation of convergence about the shape error 5 � 10�5, cf. Fig-

ure 3.4. In contrast, the quasi Newton method does not compute the optimal shape

so accurate even after 50 iterations. Its convergence is much slower compared to the

regularized Newton method. It realizes within 50 iterations only an approximation

error of about 5 � 10�2. Nearly the same behaviour can be observed in the history

of the cost functional, that is the left picture of Figure 3.4. We emphasize that the

regularized Newton scheme realizes an value of 5 �10�11 in constrast to 3 �10�5 which
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Figure 3.4. Shape error (left) and cost functional (right) versus it-

eration step.

is achieved by the quasi Newton method. The �nal approximations to the optimal

domains can be found in Figure 3.5.

The Newton method consumes about 1.5 hours computing time at a standard per-

sonal computer, the quasi Newton method requires even 10% more cpu-time. We

mention that about 80 seconds are required to compute the system matrices and

to solve them with one right hand side each. Therefore, one quasi-Newton step

requires about 80 seconds if the line search becomes not active. Whereas a Newton

step requires about twice that time which issues mainly from the multiple iterative

solution of the linear equation systems to compute the local shape derivatives. But

we emphasize that in the present example the regularized Newton scheme requires

never the line search.

4. Conclusion

In the present paper we considered second order methods for the identi�cation of

voids or inclusions. The problem under consideration is well known to be severely

ill-posed. Since the shape Hessian is compact at the optimal domain, we propose

a regularized Newton method for the resolution of the inclusion. The numerical

example shows that the proposed regularized Newton method converges faster and

yields a more accurate solution compared to a quasi Newton scheme.
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