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Abstract

We observe an unknown n-variables function f(¢),¢ € [0,1]™ in the white
Gaussian noise of a level e > 0. We suppose that there exist 1-periodical (in
each variable) o-smooth extensions of functions f(¢) on IR" and f belongs to
a Sobolev ball, i.e., || f|ls2 < 1, where || - ||5.2 is a Sobolev norm (we consider
two variants of one). We consider two problems: to estimate f and to test
of the null hypothesis Hy : f = 0 against alternatives || f]2 > 7.

We study the asymptotics (as € — 0, n — oo) of the minimax risk for
square losses in the estimation problem, and of minimax error probabilities
and of minimax separation rates in the detection problem. We show that if
n — oo, then there exist “sharp separation rates” in the detection problem.
The asymptotics of minimax risks of estimation and of separation rates of
testing are of different type for n < loge~! and for n > loge 1.

The problems under consideration are related with some version of “lat-
tice problem” in the numerical theory.

1 Statement of the problem

In this paper we consider ”observations” of the form
X=f+eW, f=ft), t=(t,...,ta) €[0,1]", f € L2 = Ly([0,1]"), (1)

where W is n-dimensional Gaussian white noise. According to the theory of gen-
eralized random fields, it means that, for any real-valued function ¢ € L2, we can
observe the random variable £ = X (¢) ~ N (a, 0?), where

a=(f.6)= [

[0,1]™

080, o =gl =< [ @bt
[0,1]™

and for any & = X(¢1), & = X (¢2) we have

Cov(&, &) = 52(¢1, ¢2) = e’ /[0 g ¢1(t)pa(t)dt.

The observation (1) determines the Gaussian measure P, ; on the Hilbert space L2
with the mean function f and covariation operator €21 (see, for example, [11]).

We assume below that underlying function admits 1-periodical extension in each
argument to IR" and this is o-smooth, i.e.,

1flloz < C.
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Here || - |52 is a Sobolev semi-norm (see below for definitions). To simplify, we
assume C' = 1 below. We denote F,, = F, (o) the set of functions f € L2 under
these constraints.

In estimation problem, we study the asymptotics, as e — 0, of minimax square risk
of estimation and in structure of asymptotically minimax estimators.

Namely, for an estimator f. (it is a measurable function of observation X, taken
values in L2), its minimax square risk is

|f - fAEHg;

Rg,n(fafn) = sup By
FEFn

where FE, ; stands for expectation over the measure F; f, which corresponds to
observation (1). The minimax square risk of estimation is defined by

R, = R, (F.) = inf RZ (f., Fu), (2)
fe
where the infimum is taken over all possible estimators f;. A family of estimators
[ is called asymptotically minimaz, if
R?,n(f:ﬂ Fn) ~ R?,n

Here and below limits are assumed as € — 0.

In detection problem, we test the null hypothesis H, : f = 0 against alternatives
H, : f € F., where the sets F., consist of functions f € F, that are bounded
away from zero function. More precisely, taken a positive family r. — 0, we set

Fen={f €Ly :IIflea <L, [Ifll2 > re}- (3)

We are interesting in asymptotics of “minimax error probabilities” 7. (F. ) and in
the structure of “asymptotically minimax tests” in the problem.

Namely for a test 9. (it is a measurable function of observation X, taken values in
the interval [0, 1]) we set

ae(we) = Ee,(ﬂpsa ﬂs(lps: f) = E|s,f(1 - 'Lps): 76(¢s: f) = ae(we) + ﬁe(wea f)

The minimax error probability defined by

75("7&6; fs,n) = 8sup ')’e(lps: f); Ye = VE(fe,n) = i}f%(%; fa,n)-

feJ:E,n

We call a family of tests 9 asymptotically minimaz, if

Ye(l, Fen) =7 +0(1), as e—0.

Also we are interesting in “separation rates” in the problem.



Namely, we call separation rates for alternative (3) a family r¥ such that

Ye(Fen) =0, if 7.>>7r],
Ye(Fem) = 1, if re <1l
It means that for small €, one can detect all functions f € F, ,, if the ratio r./r}

is large, whenever if this ratio is small, then it is impossible to distinguish between
the null-hypothesis and alternative F, ,, with small minimax error probabilities.

For the case n =1 and ¢ > 0 is an integer, the Sobolev semi-norm if defined by

1£lloz = 11512,

where f(%) is g-derivative of f. For general case under the periodical constraints,
this can be defined in terms of Fourier coefficients 6, = (f, ¢;) with respect to
the standard Fourier basis in L? = Lj([0,1]). We present this basis in the form
{1, | € ZL} where

do(t) =1, ¢i(t) = V2cos(2xlt), ¢_i(t) = V2sin(2xlt) for I > 0.

We have
1122 =D (@nll])* 6.

leZZ

Thus in the sequence space of Fourier coefficients 6; = (f, ¢;), | € Z, the set Fy (o)
corresponds to the ellipsoid

O(o)={0:> 67c; <1}

leZZ

of semi-axes ¢; ' = (27|l])~°.
In estimation problem for the Sobolev ball (just without periodical constraint), the
rate asymptotics of the minimax square risk were obtained in [4],

Ra,l — Re,l(o-) ~ 520/(20+1).
The relation R, 1(f., Fi(0)) =< R.1(0) is provides by estimators f. of kernel or of
projection types.

These results are extended to n > 1 (see [12] for regression model),

Rup = Ronl0) = 27107 < R,\(3), & =o/n, (4)

)

i.e., n-dimensional case corresponds to 1-dimensional case with changed & = o/n.

The sharp asymptotics of the minimax square risk for n = 1 were obtained in [10]
under periodical constraint. It was shown in [10] that

Rs,l ~ 0(0)620/(20+1), 02(0_) — (0’/7‘(‘(0’ + 1))20/(1+20)(1 + 20_)1/(1+2a)



The asymptotically minimax estimators are of linear type !

f: = Z a:,lX(¢l)a a:,l = (1 - (27T|l|)a/T)+ ]

leZZ

where the quantities T = T, are of the rate 7% ~ (20 +1)/RZ,.

In detection problem for the Sobolev ball (without periodical constraint), the sep-
aration rates r} = r} (o) were obtained in [5],

ria(0) = eb7/tiri), (5)

Thus if r./r* — 0, then it is impossible to distinguish between the null-hypothesis,
whenever if r,/r} — oo, then there exist test a family 9. = Ty, 7.} that provides
distinguishability. These tests are based on statistics ¢, of x2-type.

These results are extended to the case n > 1 in [6]. For any fixed n > 1 the
separation rates are of the form

rea(0) = e/ = /0T =47 1 (5), G =0o/n. (6)

Sharp asymptotics were obtained in [1] for n = 1 under the periodical constraint.
It was shown in [1] that

Ve(Fer) = 2®(—ue/2) + o(1), (7)

where ® is the distribution function of the standard Gaussian variable. The quan-
tities u. are of asymptotics

u, ~ d(o)r?t?27e72 @?(0) = w(1 4 20)(1 + 40) 17V (8)

The quantities u. characterize distinguishability in hypothesis testing problem for
nonparametric alternative F, ;. These are analogous to “signal-to-noise ratio” for
known signal detection problem.

Asymptotically minimax tests are of the form . = 1; ... o and are based on
statistics
_ . 1
ts = w, ! Z ws,l(Xez,l - 1)) We,1 = ((1 - |27Tl/m|2 )+)2a w? = 5 Z wz,la
I€Z leZ

where X, ; = e ' X (¢) and m = m, < rote.

The aim of the paper to study the asymptotics of minimax square risks and mini-
max error probabilities for the case n > 1 and as n — 0o. A smoothness parameter
o > 0 is assumed to be fixed.

The paper is structured as follows.

'Here and below ¢ stands for the positive part of t € R, i.e., ¢y =t for ¢ > 0 and ¢, = 0 for
t<0.



The main results are presented in Section 2. The results for estimation and detec-
tion problems are determined by similar extreme problems and these are formulated
in parallel. In particular, we show that, as n — oo, there are different types of

asymptotics for n < loge™! and for n > loge!.

The proofs are given in Sections 3—5. These are based on the study of the extreme
problems noted above. For the case n < loge™!, the proofs are based on analytical
methods: we study an accuracy of evaluations of the sums by integrals. For the
case n > loge™!, we use probabilistic tools based on larger deviation machinery.

2 Main results

2.1 Sobolev semi-norms

Let n > 1. To specify a Sobolev semi-norm for an integer o > 0, we consider two
variants of one. The first one is

n 2

3,2:2:

k=1

o f
oty

1/ (9)

2

The second one is )

o°f
o s [ 10
||f||0,2 Z ‘at’fl . atﬁn 9 ( )

where the sum is taken over all integer k& > 0, ..., k, > O such that k1 +...+k, = 0.

For general case o0 > 0, we determine semi- norms in terms of Fourier coefficients

el:(faqsl)a l:(lla"';ln)ezn

with respect to the Fourier basis in L2,

n

di(t) = T o (te)-

k=1
Clearly,
£ = >_ 6,
lez"
and (9) corresponds to
Ifllge = D Oict, ¢ =) [2nlf*, (11)
lezn k=1

whenever (10) corresponds to

= T @ = (Sen) (12)

lez™ k=1

1/

In the sequence space of Fourier coefficients indexed by [ € Z", the set F, corre-
sponds to ellipsoid of semi-axes ¢; ' determined by (11) or (12).
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2.2 Extreme problems

There are similar extreme problems that determines the sharp asymptotics of min-
imax square risks in estimation problem and of minimax error probabilities in
detection problem.

In estimation problem, this were formulated in [10]. Using the results [10] we obtain

Theorem 1 Let F,, be the set determined by the norm ||f||s2 of the form (11),
(12). Let Ef’n is the value of the extreme problem on the set of real-valued two-side
sequences {v;, | € Z"}:

v

2
2 2 ] . 2,2 -2
EZ, =¢e’sup Y R subject to Y cjvj <e (13)
lez™ "l leu
Then for any n = n. € N, one has
R, ~ EZ,.

The extreme sequence {07}, | € Z™ in (13) is of the form
#? = (T/a—1). (14)

(we formally set v} = oo, if ¢ = 0), where the quantities T =T, > 0 are taking in
such way that

SNoqgu=T*> (a/T - (a/T))*=¢2 T.— oo, (15)

<T <T

and the value of the problem is

EZ, =¢*> (1—a/T). (16)

<T

The asymptotically minimax estimators are of linear type,

f: - Z a:,lX(¢l)a a:,l =1- Cl/T.

<T

Proof. Theorem 1 follows directly from [10], where minimax estimation problem
for ellipsoids of general type were studied. Our case corresponds to o, = ¢, a; =
c?, P = 1in [10] (certainly there is nonessential difference | € Z in [10] and
l € ZZ" in our case). The assumption (19) in [10] corresponds to

Not)=#{l € Z" <t} < o0, Yit>0, (17)

and fulfilled for the norms under consideration. Applying Lemma 1 in [10] and
setting T = u~'/2, v; = 0; /¢, we go to extreme problem (13). The extreme sequence



is of the form (14), (15). It suffices to verify the assumption (25) in [10]. In our
case, this is of the form
5_2E52,n — 00,

and it follows from

L(T)=) (1-a/T)— o0

<T

The last relation follows from
Ny(t) > 00, as t— o0 (18)
for our cases and, for any ¢ € (0, 1),
I(T) > (1 = §)Na(6T) = o
Thus the theorem follows from Theorem 1 in [10]. O

Let us go to detection problem. In the sequence space indexed by [ € Z", the
alternatives determined by (3) and (11) or (12) correspond to ellipsoids of semi-
axes ¢, with a ball removed.

Let us start with general theorem based on methods and results [1], [8].

Theorem 2 Let F. , be the alternative determined by (3) and the norm | f||s2 of
the form (11), (12). Let u2, = u(e,rc) be the value of the problem

ul(e,re) 1nf— > v} subject to (19)
2 ez
> v = (re/e)’, D wig <e
lezn lezn
For anyn =n, €N,
Ye(Fem) = 1, as ufn — 0. (20)

Moreover let r. — 0. Then for any n = n, € N, one has
Ye(Fen) = 2®(—uen/2) + o(1). (21)
The extreme sequence is of the form
o =uy(1 = (a/T)")+, (22)

where the quantities uy > 0, T > 0 are determined by the equation

> u=u; > (1—(a/T)*) = (re/e)’, (23)

lez" a<T
> an =uy Y (1= (a/T)) = (1/e)’, (24)
lezZ" a<T



T>r" — oo, (25)

€

whenever the value of the problem is
1
L3 wt = sud > (1 (a/T)) (26)
leZ" Cl<T

Asymptotically minimaz tests are of the form ., = 1, ,>u, /2 and are based on
statistics

—ut Y w(X2 - 1), we= (1 (@/T)) o> wl,

lez™ ZEZ"

where X, ;= ¢ "X (¢).

Proof. Setting v; =& (f,v1), [ € Z", we pass to the sequence space of normal-
ized Fourier coeflicients. In this space the set F. , corresponds to the ellipsoid with
the semi-axes (ec;)™!, minus its intersection with the ball of the radius r./e. The
hypothesis testing problem for alternative of this type were studied in [7] and in
[8]. The relation (20) follows from these results (compare with [8], Proposition 3.6).
If r. — 0, then analogously to [8], Chapter 4 we see that there exists the unique
extreme sequence o7, | € Z" in the extreme problem (19). Using the Lagrange
multipliers rule we see that the extreme sequence is of the form (22), (23), (24).
Using (23), (24) we get the inequality

(1/e)* =ug > cf(1—(a/T)*) < Tug 3_ (1= (a/T)*) = T*(r./e)".

<T <T
By r. — 0 this yields (25).

In order to obtain (21) it suffices to verify that the extreme sequence satisfy

w?=sup v/ > v = sup o /2u?,, = o(1), (27)
lez™ leZ™ leZ

compare with [8], Proposition 4.5. Set

I(Ty= % (1-(a/T)*)"

IENL(T)
For any ¢ € (0, 1), we have
I(T) > (1= 6% Na(8T) — oo,
where N, (t) is defined by (17) and (18) holds. By (22),
w? <1/I(T),

and we get (27). Theorem 2 follows. O



2.3 Sharp asymptotics for fixed n

Using results of Section 2.2 we obtain the the sharp asymptotics of minimax square
risks and minimax error probabilities for any fixed n.

Namely, for estimation problem we have

Theorem 3 Assume n € N, o > 0 be fized. For the norms (11), (12), the
quantities E,, are of asymptotics

By ~ c(o,n)e?/otm) 72 E_2(20 + n)/n. (28)

For (11), the function c(o,n) is of the form

? = w2 oIM(1+1/20) 20/(n+20)
c*(o,n) = <(1 + 20 /n)" (o 4+ n)[(1 + n/2a)) ; (29)
for (12) one has
? = n/20 ol™(3/2) 20/(n+20)
c*(o,n) = <(1 + 20 /n)" (o +n)I'(1+ n/2) (30)

Proof of Theorem 3 is given in Section 3.

For any fixed n, the rates (4) follows from Theorem 3.

Let us go to detection problem. We obtain

Theorem 4 Assume n € N, o > 0 be fized. For the norms (11), (12), the
quantities u. , are of asymptotics

Ugp ~ d(o,n)r2T27e2 T2 = 2(40 +n)/n. (31)
For (11), the function d(o,n) is of the form
d?(o,n) = 7"(1 4 20/n)(1 + 40 /n) ™2 1T((20) " + 1)) "T'((n/20) + 1),
for (12) one has
d*(o,n) = 7"(1 4 20/n)(1 4 4o /n) "2 Y(T(2°1 +1)) "T(n/2 +1).
Proof of Theorem 4 is given in Section 3.

For any fixed n, the rates (6) follows from Theorem 4.



2.4 Sharp asymptotics for n — oo
2.4.1 Estimation problem

For n = n. — oo using Simpson’s formula for I'(z), £ — oo, we can slightly modify
the quantities ¢,(o,n). For (11) we have,

2(m) ~ (m/za))?" 20¢ (32)

2ro n

whenever for (12),
(o, n) ~ (e/2mn)°. (33)

Theorem 5 Let n = n, — oo, n = o(loge ). Then the relation (28) holds true
with ¢, defined by (32), (33).

Proof of Theorem 5 is given in Section 4.

However if n > loge ™!, then we have asymptotics of different type.

Theorem 6
(1) Let n = n, — oo, n/loge ! — oo, logn = o(loge™'). Then for the norm (11),

) logn — logloge™!

~ 34
e 2(2m)27 loge1 (34)
whenever for the norm (12),
logn — logloge™\’
2
Een~ < 8n2loge ! ’ (35)

(2) Let liminflogn/loge™ > 0. Then liminf R?, > 0. It means that there do not
exist consistent estimators in this case.

Proof of Theorem 6 is given in Section 5.

2.4.2 Detection problem

We can modify the quantities d,(o,n) for n — oo. For (11) we get

a"(mn/o)'/?(n/20e)"?7

d*(o,n) ~ e *n"(L((20) ' +1)) "T((n/20) +1) ~ 2t 120) (36)
whenever for (12),
d?*(o,n) ~ e 27™(I'(3/2))"T(n/2 + 1) ~ (27n/e)"?e~2\/mn. (37)
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Moreover, we can establish “sharp separation rates”, as n — oo. Namely in hy-
pothesis testing problem (3), we call sharp separation rates a family ¥ such that

Ye(Fem) = 0, as liminfr /7l > 1

and
Ye(Fem) = 1, as limsupr./rl < 1.

Note that sharp separation rates do not exist for the case of fixed or bounded n
in hypothesis testing problems under consideration here. For hypothesis testing
problems that were studied in [8], sharp separation rates exist for the problems of
“degenerate type” and for “adaptive problems” (see [8]). Sharp separation rates
were established in [9] for one-dimensional signal detection problems analogous to
(3), where the removed Ls-ball is replaced be removed L..-ball.

Theorem 7 Let n =n, — oo, r. = o(1).
(1) Let logu. = o(n). For the norms (11), let

nlogloge™!

lim sup <4, if o>1/2,

loge—!

nlogloge !

lim sup <8, if o0€(0,1/2).

loge!

For the norms (12), let

nlogloge™!

lim sup < 4.

loge—!
Then the relation (31) holds true with the functions d(o,n) defined by (36), (37).

(2) Let n = o(loge™). Then for the problem with the norm (11), the sharp sepa-
ration rates are of the form

rt = /Ut (9ge /n)Y2(T(1/20) /2n0)°. (38)
For the problem with the norm (12), the sharp separation rates are of the form

r¥ = glo/Uotn) (¢ Jorn)o/2, (39)

Proof of Theorem 7 is given in Section 4.

The assumption n = o(loge™!) is essential in Theorem 7 (2): if n > loge ™!, we
have sharp separation rates of different type. Namely

Theorem 8
(1) Let n = n, — oo, n/loge ! — oo, logn = o(loge™'). Then for the norm (11),

the sharp separation rates are of the form

. 1 logn — logloge~!
/ —
loge!

© = 20 ’ (40)

11



whenever for the norm (12), the sharp separation rates are

i (logn — loglogal)”/2

= 41
Te 16m2loge—1! (41)

(2) Let liminflogn/loge ! > b > 0. Then there exists ro = ro(b) > 0 such that
if limsupr, < g, then v.(Fen) — 1. It means that there do not exist separation
rates r; — 0.

Proof of Theorem 8 is given in Section 5.

Let us compare the rates of E, , in estimation problem and separation rates 7} in
detection problem. It follows from Theorems 5-8 that if n = o(loge™!), then

= 0(Ee ).
This relation is well-known for fixed n.

However if n/loge™ — oo, then for the norm (11) we have
'r: ~ 2_1/2E5,n;

and for the norm (12),
Ty~ 2"’/2E6,n.

Remark 2.1 Note that for the norm (12), the asymptotics of the minimax square
risk sharp separation rates are closely related with the following version of the lat-
tice problem: what are the asymptotics of numbers of lattice points in n-dimensional
Fuclidean ball of radius m, as n — oo, m — oo ?

If n is fixed, then, roughly, this number is close to the volume of the ball (see the
paper [3] and references in this paper for details). However if n — oo, m — oo,
then this holds for n = o(m?), whenever if n >> m?, then the asymptotics are of
different type.

Analogously, the case of the norms (11) is related with the number of lattice points
in n-dimensional ball in [,-norm, n = 20, of radius m — oo and we have analogous
effects in this problem.

See Remarks 3.1-5.1 in the proofs of Theorems.

3 Proof of Theorems 3, 4

3.1 Proof of Theorems 4

In order to prove Theorem 4, we need to study the equations (23), (24), (26)
assuming 7" — oo by (25). Set

L= > (1-(a/T)%), (42)

c<T

12



L = ) (a/T)*(1—(a/T)?), (43)

cy <T

I = S (—(a/T®)?=1—1, (44)

g <T
It follows from (23), (24), (26) that

T = 721/, (45)
u2:%mmmw3 (46)

€

Let us study the asymptotics of the quantities Iz, £ = 0,1,2 as T — oo assuming
n be fixed.

3.1.1 Norms (11)

Set

n=20, T=2mm)’, zy=1/m, dx;=1/m, dx;=4¥xy...0zy, =m™",
(47)

and denote
\z|, = Z |z;|")V", e R™

If n > 1, then |z|, is [,-norm in IR", if n € (0, 1), then it is quasi-norm. We get

(ar/T)? Z [zu|" = |27,

and by replacing the integral sums by the integrals (this is possible for any fixed n
since m — o0), we have

Iy =m" Z (1= |z|7)ézy ~ m™Jy, (48)
q<T
Iy=m™ Y |z|)(1 — |z|])dz; ~ m"Js, (49)
c<T
IO =m" Z (1 - |xl|g)25:pl ~ mn'](]) (50)
q<T
where
L::/(&—mmmhd%, (51)
n(1
h:tQmmw—ummhd%, (52)
%::/(&—MWMbd%:L—A, (53)
n(1

13



and Dp(1) = {z € R" : |z[, < 1} is the unit /,-ball. We can rewrite (45), (46) in
the form
(2rm)* ~ 720/ J, (54)
1
u? o~ §(r5/5)4m_"J0/J12. (55)

€

The integrals Jy — Jo are reduced to integrals of the form
Jn (T, = / ") dzy .. dzy,
) = [ () der e

= 0*”/A )™ Ny .yl dy,

n =1

where

An={yeR":y >0, Y <1}

i1
is the standard simplex in IR", n > 0, 7 > 0. Using the Liouville formula (see [2],
Section XVIII, n.14)

I'"(p)
['(np)

n 1
[ 6wty gy, = o B8 [ g, p> o,
" =1

e et n2"T"(1+ 1/n)
(nT+n)T(1 +n/n)

Jn(T,m) =
This yields

Ji = Ju(0,20) — Ju(1,20) = (;jnf;)}((lﬂlﬁgg) (57)

no 2" (1 + 1/20)

B = In(1,20) = In(2,20) = 5 e T T T 20y D)
Jo = Jn(0,20) — 2J,(1,20) + Ju(2,20)
_ 0'22"+3F"(1 + 1/20’) (59)

(20 +n)(40 +n)I'(1 +n/20)

Using this relations jointed with (54), (55) we obtain the statements of Theorem 4
for the norm (11).

3.1.2 Norms (12)

Using (47) we have



where |z| = |z| is the Euclidean norm. Analogously,

Li=m") (1- |z|*7) 0z ~ m" 4, (60)
c<T

I=m 3 (1 — [0*)oa ~ m" (61)
c<T

Iy=m"> (1-— |z|*7) 262 ~ m™ Jo, (62)
q<T

where
Jy = / (1= |2|?)dzs . .. dzn = Ju(0,2) — Ju(0,2),
D3 (1)
Iy = / 2|2 (1 — |227)day . . . dew = Ju(0,2) — Ju(20,2),
Dp(1)

2

Jo = / ( )(1 — 122°)2dzy . . . dzy = Jn(0,2) — 2J,(0,2) + Ja(20,2),
DZ(1

2

the region D3 (1) is the unit Euclidean ball in IR". Using (56) ones again we get

T3y
= e+ T+ n/2)’ (63)
B no2"11r"(3/2)
"= B T n) e T )T+ )2)’ (64)
Jo = 022" 31" (3/2) (65)

(20 +n)(4o +n)I'(1+n/2)
Using this relations jointed with (45), (46) we obtain the statements of Theorem 4
for the norm (12). O

3.2 Proof of Theorems 3

In order to prove Theorem 4, we need to study the equations (15), (16) assuming
T — oo. Set, analogously to (42),

I, = ZT(l —¢/T), (66)
L = Y (a/T)(1— (a/T)). (67)

We have
T? = (2rm)* = 1/(’L), E2, =¢1.. (68)

The study of the sums (66), (67) is the same as in Section 3.1. We have

Il ~ m"Jl, 12 ~ anQ, (69)

15



where, for the norm (11),
J1 = Jn(0,20) — J,(1/2,20), Jy = Ju(1/2,20) — Ja(1,20),
whenever for the norm (12),
J1 = Ju(0,2) — Ju(0/2,2), Jo= Jn(0/2,2) — Ju(0,2),

and J,(7,7n) are defined by (56). Thus, for the norm (11),

o orTral2e) o meXTh(4/20)
(6 +n)I'(1+n/20) (6 +n)(20 +n)['(1+n/20)
whenever for the norm (12),
o2"T™(3/2) no2"T"(3/2)
LS o+ +n/2) 2~ (0+n) (20 + )T +n/2)’ (71)
I"(3/2) = n"/227".
It follows from (68), (69) that
m o~ (52J2(27r)2")_1/(20+n) ,
B2, ~ &*mtJy ~ el@om (], ) 1) 30 BT (g) e/ @etm) - (79)

Combine (70), (71), (72) we obtain (28), (29), (30). O

Remark 3.1 The sums Iy, k£ = 0,1,2 are related with the numbers of lattice
points N,(T') in the n-ball in R" (see (17)). If n is fixed, then for the norm (11)
analogously to (57)—(59),

Ni(T) ~ m"Va(n),

where V,,(n) = J.(0,7n) is the Euclidean volume of the unit ball D}'(1),
2"T™(1+1/n
Va(n) = T 0)
I'(1+mn/n)
here we used the equality I'(1 + z) = zI'(z).
Note that the relations (57)—(59) could be rewritten in the form

7= 20V, (20) 2noV,(20) 802V, (20)
YT on420

2T (n+20)(n+40) 0 (n+20)(n+40)

Analogously for the norm (12),
No(T) ~ m™Vi(2), Vu(2) = 7™?/T(1+n/2),

and the relations (63)—(65) are the same form with the change V,,(20) by V,.(2).
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4 Proof of Theorems 7, 5

4.1 Proof of Theorems 7

To study the case n — oo we need to evaluate the accuracy of of replacing the
integral sums by integrals in the evaluations in Section 3.

4.1.1 Norms (11)

Because of |z], is not a norm for n € (0, 1), we need the following statement.

Lemma 4.1 Let
zcR", 6 € R", max |0;| < 1/2.

Then

z|, —n'/"/2 < |z + 6|, < |z|, + n'/"/2, for n>1, (73)
27 —n27" < |z +4[p < [z[p +n27",  for ne€(0,1). (74)

Proof of Lemma 4.1. The inequality (73) follows directly from the triangle
inequality since |6], < n!/"/2. The inequality (74) follows the inequality
|z +yly < |zff +[yls,  n€(0,1), (75)

since |§]] < n27". Let us prove (75). It is of the form
dolzitwl” < D (lzil" + Jwil"),
i=1 i=1

and it suffices to consider the case n = 1. Let |z| > |y|, =,y € IR. Then using the
inequality
1+2)"<1+4+nz, 2z>-1

(this follows from concavity of the function (1 + 2)? in z > —1 for n € (0,1)), we
have

@+ y|" = [2"(1+ [yl/|))" < 2" (1 + nlyl/|2]) < 2"+ [yl/|e]" " < |2]” + |y|".
O

Let
Al:{iﬂeﬂ:{n2$i—1/2§l,’<$1‘+1/2}

be the cube with the centre [ € Z™ of the size 1. For m > 0 let

Dy(m) ={z € R" : |z], < m}

17



be the [,-ball of radius m in R" and
Ly(m)={leZ" : |ll, <m} = Dy(m)NZ".

Set also _

leLy

Set, for any b > 0,

b { nl/ﬂ/Qm’ n > 1;

n/(2m)", n € (0,1),

ot _ 1+ n'/7/2bm, n>1,
LA En/@m)), g€ (0,1),

and put
Cn,b = C:’b; Cn,pb = C,

n,b*

Using Lemma 4.1 we have the embedding,

D7 (bm) C D} (Chpbm)
and, for ¢, > 0, 3

D7 (cnpbm) C D7 (bm).

In fact, let
rel, |l,<bm, (=Il-u, |C|n§nl/’7/2.

If n > 1, then
|z|, < |y + |Cly < bm + nl/"/2 = bmC, .

If n € (0,1), then

2|7 < |17+ |¢]P < b7m" + /2" = B'mCT,

These yield (76). Let us verify (77). For |z|, < c¢,3bm, let us take | = (I, ...

Z" such that |z; — ;| < 1/2, i=1,...,n,ie., z € A;. Setting
¢=l—z, [(ly<ni"/2,
analogously to above we have, for n > 1,
Uy < faly + |Cly < bm,

and for n € (0,1),
12 < folg + Icly < b

These yield (77).

Analogously, if ¢, > 0, then the evaluations above yield the inequalities

Cnpllly < lz|lp < Crpllly, VYIE€Z™, |l|, >bm, zel.

18
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Our aim is to evaluate the sums in (48)—(50)

Ik :Ik,Z: Z fk(l)7 k:071727

leLp(m)
where
filz) = 1—(|z[,/m)",
fo(z) = (lz|y/m)"f1(z),
foz) = fi(z) = fi(z) — fo(2).
Set

fel@) = fi(l), for zeA, leLlm); fi()=0, for z€R"\DI(m).

Note that 3
Lz :/ fu(@)de, k=0,1,2.
Rn

Fix any b € (0,1). Introduce the functions

@) = Q= (aly/Cagm)")s,  fi (@) = (1= (|z]n/cnpm)")+,
f(@) = (zly/enpm)" i (),  f5 (2) = (lely/Crpm)" f1 (),
fo@) = (fif(2)

In view of inequalities (73) we have

i (2) < filz) < £ (2), k=0,1,2, VzeR"\D}(bm). (79)
Consider the integrals
I, :/ fE(z)dz, k=0,1,2.
’ R"

By making change of variables y = z/C,, or y = z/cnp we get

IIIR = (C’n,bm)”Jk, II;,R = (Cn’bm)an, k= 0, 1 (80)
I3 p = (Cop/cnp) (Cupm)"Ja, I3 = (cnpym/Crnp)"(capm)"J2,  (81)

where the integrals Ji, £ = 0,1,2 are of the form (51)—(53) and these were calcu-
lated in (57)—(59). Recall that by Remark 3.1 we have

Jo =< Vo(n)/n, k=1,2, Jy=<V,(n)/n> (82)
Introduce the assumptions:

Al. 6, —>0asn— oo.

A2. néd, — 0asn— oo.
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Assume Al. For any b > 0, we have, for some a, < A, <1,
Cn,b =1 + Anén ~ 1, Cn,b =1- anén ~ 1.

Taking b € (0, 1), denote

hiz = % RO)=[  fu@)ds,

1eLy (bm) Dy (bm)
faz = leL;;(m%\:Lg(bm) fil) = /m"\ﬁﬁ(bm) Ji(z)da = Tz = iz,
Ik_,l,R = /Dg(Cn’bbm) fr (z)dz, Ik_,Q,R = R\ D3 (Co ) fr (z)dz,
II?:I,R = /D;;(cn’bbm) f,;"(a:)da:, I;:Q,R = R\ D7 (en ) f,j(x)dx,

I’?}‘f?,R — Ik,R_I’élfl,R’ k:0,1,2.
By the embeddings (76), (77) and inequalities (79), we have

liop <Ikoz <Ijsp k=0,1,2.

For a set D C IR™, let V,,(D) be its volume in IR". Note that, for any b > 0,
Va (D3 (bm)) = (bm)" Vo (Dy (1)) = (bm)"Va(n).
It follows from (76),

bm) " Viu(n), k=0,1, ijl’R < b(Cy pbm)"Vu(n),
(Crpbm)™Vi(n), k=0,1,2.

By (82)—(85) we have, for some a,, < 4, <1,
ank(l — anén)" S Ik,Z S ank(l + Anén)", k= 0, 1, 2.
We can rewrite (86) in the form

Itz = m"Jrexp(n(,)), (o =0(6,). k=0,1,2.

Let us evaluate the ratio
R,=17/1z.

(83)

Clearly, R,, > 1 because of f,(I) < fi(l) for [ € Ly(m). On the other hand for any
b€ (0,1) in view of (85), (87) we have I z ~ I 5 z. However if [ € L7 (m)\ Ly (bm),

then fy(l) > b"f1(1), which yields

(1+0(1)) < b (1 +o(1)).




Since we can take b € (0, 1) arbitrarily close to 1, this yields R, < 1+ o(1). Thus

II,Z ~ IQ’Z. (88)

In view of (87), (88), (47) under A1, we can rewrite (45), (46),

omm ~ 1 YO, (89)

1

W~ /o)) T exp(nm), T = o{1).

By Remark 3.1 this yields

u? = r§+"/”5_4(27r)"(Vn(2a))_le"T", T, = o(1). (90)

€
If logue = o(n), then, as n — oo,

r. = (u6€2)20/(40+n) ((27T)—nvn(20_))a/(40'+n) e'rnno/(4a+n)
gto/Uotn)(D(1/20) /210)° (20¢e /n)/? = 17,
where the rates r* are defined by (38). For any C' > 1, one can see that if r. > Cr,
then u, — oo, and if r. < r¥/C, then u, — 0.
Let us verify the assumption A1l. This is of the form

n<Km* xr ?

and for r. < r} this is equivalent to

-1
n/2rr < gho/lotn) _y g dologe™ 00
: ' do+n ’

or
n = o(loge ).

This yields the statement of Theorem 7 (2) for the norm (11).
Assume A2. Then (87) yields
Ik,Z ~ ank; k= 0, 1, 2. (91)

This yields the relations (54), (55), (36), and the asymptotics of u, in the theorem.
In fact, using (51), we get

Lz o,z Jo 40+ o(1)
—/ = 1+——=14+—(1+o0(1)) =14 ———=,
Iz,z IQ,Z J2( ( )) n
I(],Z J(] 40"+1T(2 + n/20)

2, 7 mra?” mr(do +n)ln(1/20)
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In view of (45), (46), (47) this yields

1/20

4 1

m = (27_‘_7,;/0)71 <1+ O'"—O( )) ’ m" ~ (271')7”7';”/062,
n

Wl o~ pin/o—4 m"['(1+n/20)
€ € el (1+1/20)

Let us verify the assumption A2. It suffices to consider the case r, < r}.
In view of (89) for n > 1, the assumption A2 is of the form
n o2 T
and it is equivalent to n = o(e=%(“7+) or
(4loge™")/(40 + n) — logn — oco.

It suffices
limsupnlogn/loge™ < 4.

The last relation holds for

n < Cloge™"/logloge™, C < 4. (92)

For n € (0,1), the assumption A2 is of the form
n~t> ot

and it is equivalent to
n = 0(6—80/(40'—1—71))

or
(8cloge 1) /(40 + n) — logn — oo. (93)

The relation (93) follows from
limsupnlogn/loge ! < 8o.
The last relation holds for
n < Cloge '/logloge™!, C < 8o.

This yields the statement of Theorem 7 (1) for the norm (11).
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4.1.2 Norms (12)

The proof follows to the scheme of Section 4.1.1 and we note the differences only.
We set

6 =n'%/2m, Cnp=140,/b, cap=1—0,/b, V>0,

We change the balls D'(m) by the Euclidean balls D7 (m), and the sets L} (m) by
L3(m). The embedding (76)—(77) and relations (78) hold true as well. We consider
the functions

filz) = 1—|z/m]3,
fa(z) = |z/m[3fi(z),
folz) = fi(z) = fi(z) — fa(2),

and functions f, fi of analogous structure such that (79) hold true. Next evalua-
tions are the same. These yield the relation (87) with J; determined by (63)—(65).
The relation (88) holds true as well. These lead to sharp rates (39) under A1, and
the sharp asymptotics (31), (37), under A2.

Let us verify the assumptions A1, A2. It suffices assume r. =< r*. In view of (89)
and (39), the assumption A2 is of the form

n3/2 < m = ,rs—l/o‘ — n1/28—4/(4a+n),

This is equivalent to n = o(e~*/(47+")) and is fulfilled under (92).
Analogously, the assumption A1 is of the form

n'/? < m = n1/28—4/(4a—|—n),

and it is equivalent to n = o(loge™). O

4.2 Proof of Theorems 5

The proof is based on the considerations of Section 4.1 under assumption Al. We
study the sums I = I ; defined by (66), (67) and show that

Lyz~Iyz, Inz=m"Je"™, 1,=0(1), k=12,

where Ji, were calculated in (70), (71). By (68) we have,

El, =&y =TI/l ~T7? = (2rm)~%". (94)
On the other hand,
mie = (hem)er) T — (e ampe) T et
~ (2d(amy) O (95)

Combining (94), (95), (70), (71), we obtain the asymptotics of Theorem. As above,
the assumption A1 corresponds to n = o(loge ). O
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Remark 4.1 The quantities N,(7") (see (17)) correspond to the sums Iz for
function fi(z) = 1. Therefore as n — oo, T? = (2rm)" — oo, n = 20, under
assumption A2, the considerations above yield the relation

which are analogous to (91). Under assumption A1, we obtain somewhat rough
relation,
log Na(T) = log(m"Va(n)) + of(n),

which are analogous to (87). These extend the asymptotics in Remark 3.1.

5 Proof of Theorems 8, 6

We use a different way for estimations of quantities Iy—I, in (42)—(44) and in (66)—
(67). This is based on probabilistic machinery.

5.1 Proof of Theorems 8
5.1.1 Norm (11)
We start with the case logn = o(loge™!). Set?

H = m20 — T2/(2’/T)20, L = [HI/QJ]

and supposes
H — oc. (96)

Let X = X(I) be integer-valued random variable defined on the set Q = {l =
0,41,...,£L},

X =1, P(X=0=1/2L+1), leq, (97)
and
Y =Y(X)=|X*.
Note that
9 L 1 L20’ H
EY:L207 lL?aNL20'/ 20d: ~ ]
o(Y) 2L+1Z(/) e Y R VS |

=1

Let X, X1,..., X, beiid., Y;=Y(X;) and let

2Here and below [t] stands for the integer part of ¢t € IR, i.e., t = [t] + 4, & € [0, 1).
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be defined on the set Q. For [ € Q™ in the relations (42)—(44), we have

(e/T)* = Su(l)/H,

i.e., we consider quantities ¢ as realisations of random variable S,7?/H. The
constraint ¢; < T corresponds to S,, < H. The quantities I, £ = 0,1,2 can be
presented in the form

Il - (2L + ].)nEl, El - E(]’n(l - Sn/H)]ISn<H;
IQ — (2L + ].)nEz, E2 — E(]’n(Sn/H)(]_ - Sn/H)]ISn<H;
IO — (2L + 1)nE0, EO — EU,n(l - Sn/H)zﬂSn<H,

where Fj 5, is the expectation with respect to Fj-probability.

For the study of expectations Fy, k = 0,1,2 we use large deviation methods. Let
us pass to measure P such that

dPy/dPy = e " /U(h), W(h)= Ese ™,

ie.,

P, (Y = |I]?) = Z, Y exp(—h|l|*), Zn= (2L + 1)¥(h).
The quantity h = h. is taking such that

EyY = H/n, ie. Ey,S,=H.
This choice is possible because of the function
EnY = —dlogW(h)/dh

decreases in h and takes all values in (0, Eq(Y")) for h € (0, 00).

We consider the case H/n — 0 because of the case H/n — oo corresponds to
Theorem 7 (2). Note that if h < 1, then

Zn = exp(—hll]*?) < 2/00 e dg =
0

<L
T'(1/20)

_ 1/20—-1 o

o hl/?a’o./ y / eXp( )dy - h1/20. )

EY = — 3 [ exp(—hll*) vZ/ 7 exp(—a*)do

Zn |l|<L

o 1/2¢ .
- 0_h1+1/20.Zh / y eXp( y)dy -

T(1+1/20) _ 1
h+1/2067, " 20h

= 1.

Therefore the case Ex(Y) = H/n — 0 corresponds to h — oc.

Set
o2 = Var,Y, a,%,n =no; = Vary,Sp, &= (Sn— H)/0hn,
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ie., Epnén = 0, Var,,&, = 1. Then the expectations are of the form

Ey = V" (h)e" Ky, Ky = Epnfi(&)e" 1, <o, (98)
Ey = V" (h)e" Ky,  Ka = Eppfo(&n)e 4 1¢, o, (99)
Eo = U"(h)e" Ky, Ko = Epnfo(&n)e " T, <o, (100)
where
fl(gn) — _O'h,nfn/Ha (101)
f2(§n) = (1 + O'h,né‘n/H)fl (é‘n): (102)
We rewrite (45), (46) in the form
H ~ (27) %7 ?K,/Ko, (104)
1
u? = i(rs/s)‘lZ,:"e_hHKg/Kg. (105)
Thus, we need to evaluate quantities h, Z; and K, £k =0,1,2, as h — oc.
Setting
p:26_h—>0, n = 20,
we have
Zn="Y_ exp(—h|l|") = 1+ 2¢ " + exp(—2"h) f (),
<L
where

f(R)="%_ exp(=h(|I]" —2")).

2<||<L
Clearly, f(h) decreases in h and for h > 1,
f(h) < f(1) <exp(—2")Z(1) < 1.
This yields
Znp =14 2e7" 4+ O(exp(—2"h)) ~ 1 + p. (106)
Analogously,

1 2e~" + O(exp(—2"h))
E: ; = — 1 — m — ~ D. 1
h( ) Zh l:<:L |l| eXp( h|l| ) 1 267}1 O(exp(_2nh)) p ( 07)

The relations (106), (107) yield

p~ H/n, h~logp .

Analogously to (106), (107), we have

1 2e~" + O(exp(—2"h))
EY? = — > |l exp(—hll|") = ~
" Zn l<L| exp Al 1+ 2¢ "+ O(exp(~2h)) ~ *°
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which yields o2 ~ p,
Opp~np~H—00, opn/H~H =0, hop,~H"logp', (108)

e = (2n/H)He?) 77 — exp(H (1 + o(1))). (109)

Analogous calculations yield
E,Y3 ~ p.

Therefore
Eh|Y - Ethv|3 S Bpa

and the Lyapunov ratio is controlled by

Ep|Y — E,Y)?

-1/2
n1/202 < BH — 0.

This yields the Central Limit Theorem for S,, under P, ,-probability,

sup |Prn(én <t) — ®(t)] = 0, asn — oo.
teR

Let us evaluate the quantities Ky, k = 0,1, 2. Clearly,
K, <1.

On the other hand, for any § € (0,1], let K; be analogous quantities with the
change T¢, <o by T, c—25,—5) and note that by the Central Limit Theorem,

Pr(&, € [—26,—06]) > BS.
We have

K, Ky, > B6?H ™" exp(—2ho, 16) Pu(€, € [—26, —0))

>
> BH 6% exp(—VHlogp (20 + 0(1))).

This yields
Kpy= (H/n)™VE 1.0 k=012 (110)

Let us evaluate the ratio K;/K,. Clearly,
Ki/Ks > 1.

On the other hand, for any C' > 0 let K,El)(C) and K,(cz)(C) be the quantities
analogous to Kj with the change 1, .o by I, «_¢ and by I, c[—c,) respectively,

KM (C)+ KP(C) = Kq.
We have
Kél)(C’) < exp(—Chon ) < exp(—CVH logp™ (1 +0(1))) < (H/n)cx/ﬁ/z_
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Taking into account (110) and since

1>1+4o0pnén/H > 1+0(1), for &, e (—C,0],

K(C) = o(Ks), Ki/Ks < KP(C)/KP(C)(1+0(1)) < 1+ o0(1),

which yields
Kl/K2 ~ 1.

The evaluations above yield
I ~ I, I,=Zte" Ky = (2en/H)H o), (111)

Using (111) we can rewrite (104), (105) in the form

re ~ (2m) "H Y2 (112)
uw? = e *H2(H/2en) (W) = ¢=4( [ /p)H(FoL), (113)
Let
logu. = o(H). (114)
The relation (113), (114) implies
4loge™' ~ H(logn —log H). (115)
Setting
D, =n/4loge ' - o0, Y.=n/H, (116)
we rewrite (115)

The equation (117) yields the asymptotics
Y. ~ D.log D,

which yields

4loge ! 4loge !

H ~ (118)

log D, ~ logn — logloge=!’
Note that Y, — oo, which yields h ~ log Y, — oo, which corresponds to the original
assumption.

Taking into account the relation (112) and (118), we obtain the rates (40)

1 logn — logloge™1! .
=7l
2(2m)” loge~! ¢

Te N~

The assumption logn = o(loge™!) corresponds to 7. = o(1). In view of (25) this
yields (96).
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Using (112), (113) one can easily verify for any C > 1, that, if . > Cr¥, then
ue — 00, and if r, < r¥/C, then u, — 0, i.e., these are the sharp separation rates.
The statement (1) follows. O

Let us go to the statement (2). Let
liminflogn/loge ' > b > 0. (119)

By Theorem 2 (see (20)) it suffices to show that the value u2, of the extreme
problem (19) tends to 0. First note the inequality:

uZ, < (2T'NL(T))Y, T=r" (120)
the quantities N, (7) are defined by (17). In fact, consider the sequence
v =ulyery, LE€Z", u®=r2/e’N.(T).

The constraints of the extreme problem (19) are fulfilled and

1
u?, < 2 > v = (2T N, (1))

o lezZ"
Let T? = (2m)>°H, H € N, H < n. Then
N,(T) > 22CE, (121)
In fact, it suffice to consider the the set C,, z that consists of collections
L= (k,...,l), ; €{0,£1}, > |l =H.
=1
Ifl € C, m, then ¢Z = Y7 ,(2n|l;])* = T?% and #(C,. z) = 27 CH.
Under assumption (119) take H € IN, H > 4/b. Then
net = 00, 29CH ~ (2n)"/H! (122)
It follows from (120), (121), (122) that if r, < ro = T~ = (27) " °H /2, then

2
U, 0. O

5.1.2 Norm (12)
First, let logn = o(loge™!). Set
H=m?>=T%"/(2r)* - 00, L=[HY?.

Assuming H — oo, we consider the random variable Y = X? and the sum S, =
>i,Y;. We have, in the relations (42)—(44),

(er/T)* = (Su())/H)".
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Next considerations repeat ones for the norm (11) with the change of the functions
(101)—(103) by

fil€) = 1—(1+onnéa/H), (123)
fz(fn) = (1+0'h,n£n/H)of1(£n)a (124)
fol&) = fi(&): (125)

This change is not essential for the results. In view of (45), the relation (104) is
changed by
(27T)20H0 ~ T';zK]_/Kz.

Next, we obtain the relation (113), whenever (112) is replaced by
re ~ ((2m)2H) /2,

This leads to the sharp separation rates

. [logn —logloge™ o/
¢ 16m2loge 1! '

The statement (1) follows. O
Next, assume (119). Analogously to (121) we show that if
T? = (2m)*H°, HcIN, H<n,

then
N,(T) > 2" CH,

Taking H € IN, H > 4/b and using (120) we see that if r. < ry = T !, then
Uen, — 0. By (20) the statement (2) follows. O

5.2 Proof of Theorem 6

The proof of Theorem 6 (1) is analogous to the proof of Theorem 8 (1). The study
of the sums (66), (67) follows to Section 5.1. As above, for the norm (11) we set

T = HY2(2n)°, (126)

whenever the norm (12),
T = H?(27)°. (127)

We repeat the considerations above with the change o by 1/2 for the norm (11),
and by ¢/2 for the norm (12), in (123)—(125). These yield the relations (111).
Applying these to (68) we get

H(1+o(1))log(2en/H) 4 21logT = 2loge ', EZ, ~T? (128)
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By (116), (126), (127), the first equation (128) yields (compare with (118))

2loge !

- logn — logloge=1

By the second equation (128) for the norm (11), we have (34), and for the norm
(12), we have (35).

Theorem 6 (2) follows from Theorem 8 (2). In fact, if there exist a family of

A

estimators f, such that d? = Rg,n(f;, F,) — 0, then by taken plug-in tests

Ye = L fulosresop
we have Y (ve, Fen) — 0, for any family r./d. — oo (see [8], Proposition 2.17). In

particular, we can take r, = d;/z — 0. This contradicts to Theorem 8 (2). O

Remark 5.1 The quantities N, (7)) (see (17)) are of the form
No(T)= QL+ 1)"Fy (S, < T)
and can be studied by the same way. Analogously to (98)—(100) we have
Py (S, < T) = ®"(h)e" K,

where the expectations K is analogous to Kj, for function f(&,) = 1. Let n —
0o, T? = (2rm)" — oo, and for the norm (11), T? = H(27)" = o(n), whenever for
the norm (12), 7?7 = (2nr)2H = o(n). The considerations above yield the relation

log N,,(T') ~ H log(2en/H),

which are analogous to the second relation (111). This yields the asymptotics of
differ type than the asymptotics in Remark 4.1.
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